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Introduction: Cerebral palsy (CP) is the most common disease affecting

mobility among children. However, relatively little is known about the muscle

phenotype and the resulting impairments in muscle function of this

population. We therefore examined feasibility and acceptability of a muscle

testing protocol that is based on the muscle examinations of astronauts and

in bed-rest studies in children and adolescents with CP (clinical trial registry

number DRKS00031107).

Methods: Twelve participants, aged between 8 and 18 years, with CP and age-

matched able-bodied counterparts (Ctrl) have been included to the study. They

completed testing procedures on two visits. Participants performed isometric

maximum voluntary contractions, step and ramp contractions in plantarflexion

on a custom build dynamometer. The tasks were visualized using a torque-

controlled video game. We computed steadiness, defined as standard

deviation of the fluctuations, and slope, as well as the achieved MVC. Data

were statistically analyzed via Intraclass correlation coefficient (ICC) for

between-visit analysis and Mann-Whitney U test for between-group analysis.

Results: One participant of the CP group was not able to perform the tasks and

dropped out for the second visit. Especially younger children and children with

cognitive impairments were not able to adequately answer the acceptance

questionnaire. The MVC of Ctrl was higher in both visits and was excellently

repeatable. During step contractions Ctrl showed lower fluctuations in both

visits. Also, during ascending ramp contractions Ctrl showed less fluctuations

but only at visit 1. During descending ramp contractions steadiness was better

in Ctrl at both visits. Performance parameters were all poorly repeatable,

because the CP group improved their performance in all tasks at visit 2.
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Discussion: Application of our gamified muscle testing protocol was well

acceptable and mostly feasible. Contrasting with constant isometric contractions

and decreasing ramp contractions, the performance of children with CP during

ascending ramp contractions improved to the level of control subjects within 2

visits. A crucial prerequisite to perform successful measurements are good

cognitive skills and at least one familiarization visit.

Clinical Trial Registration: https://www.drks.de/DRKS00031107, identifier

(DRKS00031107).

KEYWORDS

cerebral palsy, muscle, spasticity, contraction, muscle control, gamification, biofeedback,

neurorehabilitation

1 Introduction

Spasticity occurs secondary to lesions that affect the

information stream from the upper to the lower motor neurons,

as for example in persons affected by cerebral palsy (CP).

Accordingly, these patients suffer from functional impairments in

activities of daily living. Not all impairments can solely be

explained by neural deficits. Secondary to the neuronal

impairment, changes in the spastic muscle have been found.

Cerebral palsy leads to decreased muscle belly length (1, 2),

volume (1–4), cross-sectional area and thickness (3, 5–7), which

correlate with decreases in muscle strength. The published

literature is highly inconsistent with regards to effects on fiber

pennation angle and length. At macroscopic level, the spastic

muscle fiber is passively stiffer than the non-spastic muscle fiber.

At single-fiber level, this is explained by alterations of the titin

protein (8). Interestingly the exaggeration in passive stiffness

becomes blunted at the level of fiber bundles, most likely due to

the unorganized structure of the extracellular matrix (9). It has

been found that changes in muscle architecture due to spasticity

correlate with performance of different functional tasks (10).

However, little is known about the direct impact of all these

changes in muscle morphology on intramuscular strain-stress

behaviour and function. Investigation on muscle function

typically uses a testing protocol involving voluntary and

controlled contractions. Based on the muscle examinations of

astronauts and in bed-rest studies we created a measurement

setup with a testing protocol including the essence of different

examination procedures. This protocol includes the testing of

three different isometric plantarflexion contractions—maximum

voluntary contractions (MVC), ramp contractions and step

contractions. Investigating plantar-flexors is of great interest

because of the high prevalence of equinus (11) and the early

manifestation of increased muscle stiffness within these muscles

(12) in children suffering CP. Additionally, the triceps surae

muscles play a key role during gait by controlling balance and

velocity (13). Maximum voluntary contractions can be used to

investigate muscle strength and are the basis for step and ramp

contractions. Performing step contractions makes time-

consuming measurements like muscle oxygenation or

sonographic elastography possible. Ramp contractions on the

other hand allow high resolution ultrasound imaging of muscle

contraction at the muscle’s mid-belly to investigate fascicle

kinematic or at the muscle-tendon-junction to measure tendon

elongation and stiffness. Both contraction types can be used to

analyse electromyographic signals of agonists and antagonists to

investigate muscle activation patterns. Clearly, voluntary

contraction assessments have potential not only for science but

also for clinical application in cerebral palsy. However, it is not

clear how well these patients can really perform the

aforementioned types of voluntary contractions, given their

specific disability. Therefore, we examined feasibility, repeatability

and acceptability of our measurement setup and protocol in

children and adolescents with CP and able-bodied controls.

2 Materials and methods

2.1 Study design

To judge feasibility and acceptability, the study was designed as

parallel-group design with a group of CP patients and an age-

matched group of able-bodied counterparts. To asses

reproducibility, two visits were planned on separate days for each

participant. The study setting was the UniReha’s Queen Rania

Rehabilitation Center in Cologne. Prior to study commencement,

it had been approved by the ethics committee of the university

hospital cologne and registered with the German Register for

Clinical Studies (DRKS) with the index DRKS00031107 (www.

drks.de/DRKS00031107).

2.2 Participants

All participants gave informed, written consent before

participation. In case of underaged participants, informed and

written consent was obtained from their parents. The patient

group consisted of twelve adolescents between 8 and 18 years

with diagnosed unilateral or bilateral spastic cerebral palsy (CP).

Participation was offered to the adolescents with CP upon

recommendation of the treating physical therapists based on the

patient’s cognitive and motor skills. Exclusion criterion was
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reduced knee and ankle joint mobility inhibiting the measurement

position of 90� knee flexion and neutral ankle position. For each

patient healthy participants with matching sex and age (+1

year) were recruited for the control group.

2.3 Measurement setup and protocol

The custom-built measurement device consisted of a adjustable

seat and a fixed dynamometer (Figure 1). The dynamometer’s

working principle was based on a foot plate that was rotatable

around a fixed axis of rotation (AOR) and rested on a force

sensor under the front foot. The participants’ medial malleolus

was aligned with the dynamometer’s AOR. To achieve the

anticipated measurement position, the seat platform’s height

above the AOR was adjusted to the length of the shank (distance

from medial malleolus to medial knee joint cleft). The distance

from the seat to the dynamometer was adjusted until the shank

was oriented vertically (neutral ankle joint angle). The heel was

prevented from lifting during force generation by stabilizing the

distal thigh from the ventral side by a padded metal bar, serving

as resistance (Figure 1). A soft foam pad in front of the foot

served as landmark for the foot position, in case the foot has

been moved between trials. The foot has not been fixated further

to allow motion in case of arising spasms. To increase

acceptability and compliance of the participants the whole

measurement was gamified. The dynamometer part of the

measurment device was covered in a rocket-style aluminium shell

and all tasks were visualized in a torque controlled video

game in which a digital rocket rose up with increasing

plantarflexion torque.

There were three tasks given with three trials per task, each of

them demanding different types of isometric plantarflexion

contractions. In participants with unilateral CP, the affected leg

was chosen, while the leg with better movement was chosen in

patients with bilateral CP. The control group participants’ right

leg was examined. The first task was the maximum voluntary

isometric contraction (MVC). Participants were asked to drive

the game rocket as high as possible, meaning to physically exert

their largest possible torque. During trial 2 and 3, the maximum

previously achieved torque was always displayed. From the

overall maximum achieved, submaximal levels were defined at

20%, 40%, and 60% MVC. In three different trials these levels

were presented for 16 s as horizontal stars in the second task

“step contraction.” To accomplish this task, participants were

asked to collect 30 stars, that were arranged in a step-wise

fashion, with five stars at rest, followed by 20 stars at the desired

contraction level, back to five stars at rest. During the third and

last task “ramp contractions” participants performed

continuously increasing and decreasing isometric contractions for

FIGURE 1

Measurement setup. Force, EMG and goniometer signals are collected simultaneously. The force signal is additionally transmitted to control the

video game.
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eight seconds each from rest to 100%MVC and back. This task was

visualized by stars arranged in a triangular shape (Figure 1).

The repeatability measurements were taken after an interval of

at least 24 h.

2.4 Data acquisition

At the beginning of the first visit height and weight data, as well

as the Achilles tendon lever arm (ATLA) length were collected.

Afterwards the participants have been equipped with

electromyography (EMG) electrodes at the soleus, lateral

gastrocnemius and tibialis anterior muscle according to SENIAM

standards (www.seniam.org) and with a goniometer (Noraxon U.S.

A. Inc., Scottdale, United states) at the ankle joint. Force, EMG,

and goniometer signals as well as a trigger signal of a custom-built

hand trigger have been transmitted to a Noraxon system (Noraxon

U.S.A. Inc., Scottdale, United states) and recorded during the

whole measurement using the software myoResearch®version 1.08

Master Edition and a sampling rate of 1,000 Hz. The hand trigger

was pressed at the beginning and end of each trial.

2.5 Data processing

All data processing has been performed using the

programming language R version 4.3.2 (www.r-project.org) with

the RStudio development environment (14). Force and joint

angle signals were filtered using a fourth order Butterworth low-

pass filter with a cutoff frequency of 5 Hz. The force signal was

converted to Nm via calibration with a 1 m lever and a 10 kg

mass. Afterwards the data files of each subject cut into individual

trial recordings with the hand trigger signals. Resting torque was

defined in each of the three MVC trials as mean torque of a

manually defining 200 ms period before contraction with no

visible contraction in the EMG signals. The MVC torque of each

trial was calculated as average torque of the torque plateau. The

plateau was defined as the area where the torque reached over

90% of the maximal torque. The maximal MVC value out of the

three trials was then set as total MVC to calculate the

contraction levels for further trials of tasks 2 and 3. For all tasks

performance parameters have been calculated and statistically

analyzed. In case of comparable performances between groups,

additional muscle parameters about fascicle mechanics and

muscle activation have been analyzed.

2.5.1 Performance assessment
To quantify the performance in tasks 2 and 3, the torque

parameters steadiness and slope have been calculated. For task 3

the performance parameters have been calculated for the

ascending and descending part of the ramp separately. Steadiness

was defined as the standard deviation of the difference between

actual torque and regression line. This way fluctuations of the

torque could be quantified while time-shifting was neglected

(Figure 2). To quantify, if despite fluctuations the dictated slope

has been achieved, the regression line through the torque data

has been calculated additionally. A perfect slope was 0%/s for

task 2 and 12%/s and �12%/s for the ascending and descending

part of task 3, respectively.

2.5.2 Acceptance

After each task, participants were asked to rate the performed

task on a scale from 1 to 5 for fun, difficulty and excitement. The

scale was visualized on a board with smileys ranging from happy to

sad emotions representing scores 1 to 5, respectively.

FIGURE 2

Influence of exemplary torque graphs (red lines) during ascending ramp contractions on performance parameters slope and steadiness. The blue

dashed line indicates the prescribed path. (A) perfect steadiness and slope. (B) perfect steadiness and slope. (C) poor steadiness but perfect slope.

(D) poor steadiness and slope.
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2.6 Statistical analyses

Statistical analyses followed the “per-protocol” principle, i.e.,

incomplete data sets were discarded. Repeatability of the MVC

and the performance parameters steadiness and slope has been

tested using the two-way agreement-type intraclass correlation

coefficient (ICC). Between-group comparison within the visits

has been performed using Mann-Whitney U-test with Holm

correction for multiple comparisons. The statistical significance

level was set to 5%.

3 Results

One participant of the CP group was not able to perform the

tasks due to limited cognitive abilities and dropped out for the

second visit. All other participants completed both visits

successfully. Incomplete data sets were found in two further

participants of the CP and one participant of the control group

due to failures of the recording systems (Figure 3).

With the remaining 20 participants we found no differences in

age, female:male ratio, height and weight between groups (Table 1).

Acceptability data collection was stopped after four participants, as

these younger children were not able to understand and answer the

questionnaire adequately.

3.1 Feasibility

During the first visit, participants of the CP group reached a

MVC of 1.0 g while the control group reached 4.3 g (p , 0:001).

Similar results have been found for visit two (1.4 g vs. 4.9 g,

p , 0:001). Plantarflexion torque fluctuated more in the CP

group in all tasks at visit 1. During step contractions CP group’s

torque fluctuated by 52.2%MVC vs. 6.1%MVC in the control

group (p , 0:001). Similar differences could be seen during

ascending ramp contractions (26.3%MVC vs. 7.0%MVC,

p ¼ 0:005) and descending ramp contractions (34.1%MVC vs.

8.1%MVC, p ¼ 0:025). At visit 2 group differences in steadiness

decreased but remained significant for step contractions

(20.6%MVC vs. 5.3%MVC, p , 0:001) and descending ramp

contractions (15.9%MVC vs. 7.7%MVC, p ¼ 0:025) but

vanished for ascending ramp contractions (Figure 4). There were

no significant differences between groups in slopes during all

tasks and visits.

3.2 Repeatability

MVC showed excellent repeatability between the

measurements with an ICC of 0.94 (p , 0:001), whilst all

performance parameters of all tasks showed poor ICCs (Table 2).

Consistent with the previously mentioned better performance of

the control group during visit 1 and 2, we see only little

differences in fluctuations between visits in this group (Figure 5).

By contrast, almost all participants of the CP group improve

their performance during step and ramp contractions from visit

1 to visit 2 (Figures 5B–D). Despite the lack of any significant

group differences between slopes in both visits, there is a visible

trend in all tasks of the group to converge (Figure 4).

4 Discussion

Application of our Space-gamified muscle testing protocol

turned out to be feasible in most participants and in most of its

FIGURE 3

CONSORT-style flow chart.

TABLE 1 Demographics.

Variables Group p-value

Control (n=11) CP (n=9)

Age [years] 0.856

Mean (SD) 12.9 (3.6) 13.2 (3.9)

Median 13 14

Range 7–17 8–18

Sex 1

Female, n (%) 3 (27.3) 3 (33.3)

Male, n (%) 8 (72.7) 6 (66.7)

Diagnose

USCP, n (%) 1 (11.1)

BSCP, n (%) 8 (88.9)

GMFCS

II, n (%) 2 (22.2)

III, n (%) 7 (77.8)

Height [cm] 0.298

Mean (SD) 164.0 (22.4) 154.8 (15.9)

Median 166 155

Range 126–193 132–175

Weight [kg] 0.415

Mean (SD) 53.5 (20.9) 46.3 (17.7)

Median 57 42

Range 24–85 26–76

SD, standard deviation; CP, cerebral palsy; GMFCS, gross motor function

classification system.
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aspects. A crucial prerequisite to perform successful measurements

were good cognitive skills and at least one familiarization visit.

Although quantification of acceptance was not feasible with the

used questionnaire, subjectively all participants accepted the

measurement procedure exceptionally good and voluntarily

repeated the testing for visit 2. While MVC testing was feasible

and repeatable, the performance of the ramp and step

contraction improved during visit two in the CP group.

Contrasting with step contractions and decreasing ramp

contractions, the performance of children with CP during

ascending ramp contractions improved even to the level of

control subjects.

This learning effect limits the application of the procedure to

investigate interventions. With one familiarization visit, however,

the ascending ramp contraction can be applied as measuring

method during a second visit. As the measurement setup is at

the moment, it requires multiple devices (Game, EMG,

Dynamometer, Ultrasound, Trigger) at the same time which

makes a rather rapid and easy execution difficult. However, a

reduction to just the game run by the dynamometer signal is

relatively simple and could be implemented in a clinical setting.

A measurement system of choice could potentially be added as

needed. The game itself applied to another dynamometer would

even allow for measurements of other muscle groups.

FIGURE 4

Boxplots of steadiness and slopes of both groups and visits during (A) step contractions, (B) ascending ramp contractions and (C) descending ramp

contractions. Significance markers: * , 0:05, ** , 0:01 and *** , 0:001.
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The learning effect also shows that the procedure has therapeutic

potential to improve contraction control in patients with CP.

Especially the gamification of the measurement could be

particularly motivating, as gaming technologies grow in popularity

in neuropediatric rehabilitation to increase patient compliance (15).

The successfully performed ascending ramp contractions can

retrospectively be analyzed in regards to different muscle

parameters. The recorded EMG signals can be used to investigate

muscle activation and co-contraction from 0% to 100%MVC.

From the simultaneously recorded ultrasound sequences

architectural parameters like fascicle length, pennation angle and

muscle thickness can be extracted to gain insight into the

muscle’s mechanics. In future studies the successful application

of testing ascending ramp contractions makes additional analyses

possible. In 2021 Schranz et al. investigated, inter alia, muscle-

tendon-junction displacement to draw conclusions about Achilles

tendon lengthening and stiffness. An application of this method

during slow and continuous ascending ramp contractions could

improve the method, because the slowed down contraction

allows higher resolution ultrasound imaging. Ramp contractions

could also be used to apply quick release protocols.

In the next step the collected data of muscle activation and

architecture will be analyzed retrospectively for the evidentially

feasible ascending ramp contraction to define characteristic

muscle parameters of patients with CP. Additionally, a currently

running follow-up study applies the feasible assessment of MVC

and ramp contractions to investigate the effects of whole-body

vibration training with 20 subjects and three visits.
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