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Objective: Development and validation of a clinical prediction model for receipt

of pharmacotherapy for Neonatal Abstinence Syndrome (NAS).

Study design: Data from three cohorts included in- utero opioid exposed

neonates ≥37 weeks gestation. Primary outcome was the receipt of

pharmacotherapy utilizing a modified Finnegan Neonatal Abstinence Scoring

System (FNASS). A stepwise multivariable logistic regression model was built

and internally validated.

Results: Of 698 infants included, 430 received pharmacotherapy. The final

model included seven predictors of receipt of pharmacotherapy: gestational

age, exposure to maternal breast milk, type of maternal opioid medication,

and exposure to heroin, cocaine, benzodiazepines, and/or antipsychotic

medications. The model had an AUROC of 0.68 (95% CI: 0.64–0.72; optimism

corrected 0.65).

Conclusion: Our prediction model was parsimonious and identified seven

predictors associated with the need for PT. Larger cohort studies are needed

to more definitively establish risk of significant NAS requiring pharmacotherapy.
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Introduction

Neonatal Abstinence Syndrome (NAS) is characterized by signs of withdrawal that

affects neonates following chronic exposure to opioids in-utero, often with co-exposure

to other psychotropic substances. There has been an exponential rise in Opioid Use

Disorder (OUD) in pregnancy over the past two decades, resulting in a several fold

increase in the incidence of NAS (1, 2). Using National Inpatient Sample (NIS) data

(2004–2014), Winkelman et al. reported that one infant with NAS was born every

15 minutes. Medicaid financed births related to NAS contributed $462 million in

hospital costs (3). Average national length of hospital stay for opioid exposed neonates

is reported to be 16 days and prolonged hospitalization significantly adds to health care

costs (3–5).

Timely and accurate prediction of NAS severity remains elusive secondary to the

highly variable clinical expression in terms of onset, severity, and duration of signs

(6–8). More accurate risk stratification for receipt of pharmacotherapy (PT) for NAS at
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the time of birth has several potential advantages. First, evidence-

based resources could specifically be targeted for neonates at

highest risk of severe NAS. A potential approach would be

starting low dose PT such as Morphine prior to elevations in

Finnegan Neonatal Abstinence Scoring System (FNASS) scores or

abnormal Eat, Sleep, and Console (ESC) assessments (9).

Accurate risk stratification will help inform therapeutic strategies

that aim to minimize exposure while ensuring symptom control,

aligning with current clinical guidelines. Next, accurate risk

stratification can inform shared decision making with parents

about expected disease trajectory, potential interventions and

options for supportive care vs. pharmacologic therapy. Finally,

risk stratification allows identification of patient population for

clinical trials evaluating novel therapeutics e.g., drugs such as

Clonidine and non-pharmacologic tools such as vibration

mattresses or digital tools for care giver support.

Several predictive tools have been proposed to inform clinical

decision making for treatment of NAS (10, 11). However, these

tools have yet to be adopted in routine clinical practice primarily

due to a lack of objective assessment of NAS, paucity of external

validation and generalizability, and heterogeneity in the number

and type of variables used in various models. Isemann et al.

developed a prediction tool based on three specific signs of

withdrawal (with or without opioid exposure category) assessed

at 36 h of life to identify infants at risk for requiring PT for

NAS, achieving high positive predictive values in a small, single-

center retrospective cohort (N = 264) (10). However, the tool’s

reliance on subjective Finnegan scores and its postnatal timing

limit its utility for early risk stratification at birth and reduce

generalizability across diverse clinical settings. A recent

retrospective study by Singh et al. analyzed a statewide database

of over 2,000 opioid-exposed neonates to identify maternal,

neonatal, and care-related factors associated with receipt of

pharmacologic therapy for NAS and concluded that male sex, in

utero exposure to medication treatment for maternal OUD with

addition of non-prescription opioids, nicotine, benzodiazepines,

SSRIs, maternal ineligibility to provide breast milk and out born

infants were associated with higher likelihood of receipt of PT

whereas skin to skin care and rooming in was associated with

lower odds. While the study identified several important

associations, its reliance on administrative data limits its utility

for individualized risk stratification at birth. In the present study,

pooled patient level data from two randomized control trials

(RCTs) and three observational cohorts were used to derive a

clinical predictive model to stratify opioid exposed neonates into

two distinct risk groups (low, high) based on receipt

of pharmacotherapy.

Methods

Data source and study cohorts

Data were pooled from two RCTs, two prospective

observational research studies, and a retrospective community

hospital cohort. Cohort size ranged from 79 to 392 neonates

with the pooled cohort consisting of 698 infants. Inclusion and

exclusion criteria for all cohorts are outlined below.

Tufts Medical Center (N= 392)

This cohort included prospective data from an eight-site RCT

representing northeast and southeast US (Massachusetts,

Pennsylvania, Rhode Island, Maine, Florida and Tennessee) that

compared methadone with morphine for the treatment of NAS

(12) and a concurrent observational study of neonates whose

parents consented for participation in the clinical trial but did

not require treatment or whose parents refused consent for

randomization in the clinical trial but consented to data

collection (identical inclusion and exclusion criteria). Neonates

were eligible for inclusion if their mothers received opioid

agonist treatment for OUD during pregnancy with Methadone or

Buprenorphine or received an opioid prescription for chronic

pain. Neonates ≥37 weeks gestation with maternal history of

psychotropic drug use for a known psychiatric diagnosis or illicit

drug use during pregnancy were also included. Exclusion criteria

included prenatal exposure to significant alcohol use, evidence of

sepsis, major congenital anomalies, or genetic disorders.

Cape Cod/Falmouth hospitals retrospective
cohort (N= 79)

This cohort had retrospective data from two community

hospitals in Cape Cod Massachusetts and had similar inclusion

and exclusion criteria as the Tufts Medical Center trial (13).

Thomas Jefferson University (N= 227)

This cohort was composed of eligible participants in a single

center clinical trial of sublingual buprenorphine for treatment of

NAS as well as a prospective observational study at the same

center that enrolled all neonates at-risk for NAS based upon a

history of in utero opioid exposure (14). The trial included

neonates ≥37 weeks gestation exposed to opioids in utero and

excluded infants with major congenital malformation, birth

weight <2,200 g, serious medical or neurologic illness, seizures,

hypoglycemia requiring treatment with intravenous glucose, and

hyperbilirubinemia (serum bilirubin level >20 mg/dl). Neonates

with maternal exposure to benzodiazepines for more than 30

days prior to delivery were also excluded.

Inclusion/exclusion criteria

Neonates ≥37 weeks gestation born to pregnant women with

OUD during the current pregnancy were eligible. Preterm

neonates (<37 weeks gestation) were excluded given their variable

length of and response to in utero opioid exposure.
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Primary outcome and exposures

The primary outcome was the receipt of PT for NAS based on

modified FNASS criteria used to assess severity of NAS in all

cohorts. A score was assigned every 4 h and treatment was

initiated for a single score of ≥12 or 2 (Tufts Medical Center) or 3

(Thomas Jefferson University) consecutive scores of ≥8. Key

independent variables considered to predict the binary primary

outcome of receipt of PT are shown in Table 1. Co-exposure was

defined as exposure to any of the substances or drugs other than

Buprenorphine and Methadone and was determined by maternal

self-report, maternal toxicology screens, and neonatal toxicology

screens. Exposure to opioids was limited to methadone or

buprenorphine for treatment of OUD and illicit opioids.

Prescription opioid exposure was reported in only 32 of 730

mother- neonatal dyads in the initial pooled data set.

Sample size

Our initial pooled data set had 730 neonates [Tufts Trial/

Observational cohort 416; BBORN/TJU trial 121; Cape Cod

Hospitals 87; Thomas Jefferson University (TJU) Observational

cohort 106]. The current analytic data set with data on

demographic and clinical variables as well as the primary outcome

has a sample size of 698 (430 treated, 62%) after exclusion of the

32 (24 from Tufts Medical Center and 8 from Cape Cod Hospital)

neonates with maternal exposure to prescription opioids. Of note,

there were no neonates with prescription opioids exposure from

the remaining two cohorts (BBORN/TJU trial and TJU

observational cohorts). With 268 non-events (38%), our data set

could evaluate up to 13 predictors in the model to avoid model

overfitting, following the 20 events per variable guideline (15).

Missing data

While data on infant characteristics was almost complete, there

was missing data on some maternal exposures. Among the key

independent variables of interest, data on heroin exposure was

missing for 107 (15.3%), cocaine exposure was missing for 85

(12.2%), type of maternal treatment opioid was missing for 17

(2.4%), amphetamine was missing for 115 (16.5%) and alcohol

was missing for 240 (34.4%). Data on gabapentin exposure was

missing for more than 50% of subjects.

Statistical analyses

Variable selection

Potential candidate variables for model building were selected

based on expert opinion, clinical judgement and previously

published data (Table 1). Correlation matrix was used to detect

collinear relationship among variables. Variables with more than

50% missingness were excluded (e.g., Gabapentin). Variables that

had data missing across an entire cohort were also excluded (e.g.,

maternal race, alcohol exposure). Mode of delivery (C section vs.

Vaginal) was considered as a candidate predictor based on its

inclusion as a standard demographic variable in published

literature of NAS. However, we chose to exclude it from final

model given lack of a plausible biologic explanation for mode of

delivery to influence risk for PT. We performed univariate

comparisons between infants who did and did not receive PT to

explore crude associations. However, significant relationships based

on P value of less than 0.05 were not used to guide variable

selection, consistent with PROBAST recommendations (16).

Missing data on key independent variables was addressed using

multiple imputation (17, 18). Data were retrieved from electronic

medical records (EMR) with inconsistent documentation on

exposures and were handled under the assumption of missing at

random (MAR). Values for these missing variables were imputed

10 times to generate 10 complete datasets utilizing “MICE”

(Multivariate Imputation by Chained Equations) package in

R studio. For each missing baseline variable, a regression model

was generated to model the distribution of the missing variable

as a function of all available data. This preserved the underlying

variability, and distributional relationships present in the

underlying data. Variables used in subsequent analyses as well as

the outcome variable in the imputation model included: receipt

of PT, gestational age, birth weight (grams), sex, any breast milk,

type of maternal opioid for treatment of OUD, and exposure to

tobacco, heroin, cocaine, benzodiazepines, SSRIs and/or

antipsychotic medications.

Model derivation

The final model was derived using multivariable logistic

regression and specified a backward stepwise variable selection

procedure. P value criterion of 0.157 was used to exclude or

TABLE 1 Key independent variables considered for inclusion in the
prediction model.

Demographics Gestational age

Sex

Neonatal characteristics Birth weight

Any breast milk

Maternal characteristics Maternal racea

Cesarean section deliverya

Type of opioid for treatment of maternal OUD

Methadone

Buprenorphine

Co-exposures Heroin

Cocaine

Benzodiazepines

SSRIs

Antipsychotics

Alcohola

Tobacco

Amphetaminesa

Gabapentina

aNot included in final model.

SSRIs, Selective Serotonin Reuptake Inhibitors.
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include variables at each step of model building. This high P value

threshold was intentionally chosen as this aligns with Akaike

Information Criterion (AIC) based variable retention. This

approach is well supported in predictive modeling literature and

helps avoid underfitting (19). In predictive modeling, the goal is

not to identify statistically significant associations per se, but to

maximize predictive accuracy. Traditional thresholds like p < 0.05

are designed for hypothesis testing and can result in the

premature exclusion of variables that may contribute

meaningfully to model performance.

To enable variable selection while using multiple imputation, all

10 imputed datasets were “stacked” into a single large dataset. To

account for multiple observations for each subject, each entry was

weighted by (1-f)/M where f equals the average fraction of missing

data across all variables used in the imputation models and M is

the number of imputed data sets (10) (17, 18). This approach is

well supported in literature and was selected over traditional

Rubin’s Rules based on the following considerations: While Rubin’s

Rules are well-suited for pooling estimates from multiply imputed

datasets once a final model is chosen, they are not easily applicable

during the variable selection phase. When variable selection is

performed separately within each imputed dataset, it often results

in different sets of selected predictors across imputations. This

inconsistency poses challenges for inference and model

interpretability. Stacking allows us to leverage the full variability

and sample size inherent in multiple imputation, thereby

improving model stability and efficiency. The applied weights

correct for pseudo-replication of observations across the imputed

datasets. Wood et al. and Austin et al. highlight the trade-offs

between different selection strategies and show that stacked datasets

with weighting can achieve comparable performance to Rubin’s

Rules post-selection (17, 18). The 11 predictors included in the

model building procedure were identical to those described above.

Model validation

Due to lack of an independent cohort for external validation,

the model was internally validated using bootstrap validation (20,

21). We utilized “boot_MI” function in “psfmi” package

(R studio) (21) which bootstraps from the incomplete data set

and applies multiple imputation in each boot strap sample. Five

hundred bootstrap samples were generated from the original

dataset and multiple imputation was used to generate 10 datasets

for each bootstrap sample. Internal validation was conducted

with backward variable selection for each bootstrap sample

(including all candidate variables). Estimated slope value was

used as a shrinkage factor to prevent our model from being

overfitted in new data. This was done by multiplying the pooled

coefficients with the shrinkage factor to determine a new

intercept value aligned with the shrunken coefficients.

Leave-one-out validation (internal—external validation) (22)

was then performed using data from two study cohorts to

develop the model and conduct validation on the third cohort.

This procedure was run for three unique combinations of

cohorts, allowing us to examine stability of validation while also

performing external validation.

Model performance

Model performance was evaluated by measuring discrimination

and calibration in each of the three cohorts. Model discrimination

was determined by examining the area under the receiver operating

characteristic curve (AUROC) and calibration assessed graphically

by plotting observed risk of PT against deciles of predicted

risk. Shrinkage factor was applied to adjust for optimism.

A percent change in discrimination after adjusting for optimism

was calculated using [(Validation C-statistic� 0:5) � (Derivation

C-statistic� 0:5)]=(Derivation C-statistic� 0:5) � 100] (23). All

statistical analyses were performed using R software, version 4.0.5

(R foundation for statistical computing, Vienna, Austria).

Results

Maternal and neonatal characteristics

A total of 698 infants were included in the model development

with 61.6% receiving PT. None of the covariates were found to have

a strong collinear relationship. Univariate comparisons were made

between the 11 candidate predictors and receipt of PT with results

provided in Table 2. Neonates who received PT were more likely to

have been exposed to maternal treatment with methadone

compared to buprenorphine (69 vs. 31%; P: 0.002) and were less

likely to have received breast milk (46 vs. 63%; P = <0.001).

There were no significant differences in demographic

characteristics between the groups. Distribution of predictor

variables across the cohorts is shown in Table 3.

Receipt of pharmacotherapy

Table 4 displays the results of the final model which was

derived from all study cohorts and yielded seven predictors of

receipt of PT: gestational age, any breast milk, type of maternal

treatment for OUD, and exposure to heroin, cocaine,

benzodiazepines, and/or antipsychotic medications. All the

predictor variables in the final model were associated with higher

odds of receiving PT except for breast milk exposure. Exposure

to methadone was associated with higher odds of receiving PT

compared to buprenorphine (aOR: 1.57).

Model performance

The final model derived using data from all three cohorts had

an AUROC of 0.68 (95% CI: 0.64–0.72; optimism corrected 0.65

via bootstrapping). This decrement in discrimination from 0.68

to 0.65 reflects a percent change of approximately 17% calculated

as [(Validation C-statistic� 0:5) � (Derivation C-statistic� 0:5)]=
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(Derivation C-statistic� 0:5) � 100] (23) A C- statistic of

0.7–0.8 is generally considered acceptable and 0.8–0.9 considered

excellent (24, 25).

Although the model derived from the combination of Tufts and

CCH cohorts achieved better discrimination with an AUROC of 0.73

(Table 5), it did not perform as well on external validation in TJU

cohort (AUROC 0.65). The rest of the derivation cohorts had a

C-statistic similar to the final model (Table 5).

The final model and the three training models appeared to

calibrate well (Figure 1). However, models did not perform well

within the external validation cohorts except the one derived from

the combination of TJU and Tufts (Appendix Figures A2–A7).

Calibration slope for the final model was 0.84 based on boot strap

validation reflecting some overfitting.

Discussion

Our multicenter, pooled cohort observational study identified

seven specific maternal and neonatal clinical variables associated

with NAS severity and receipt of PT. In neonates, increasing

gestational age significantly increased the odds of receiving PT

while breast milk significantly decreased the odds. Currently, the

relationship between gestational age and NAS severity is not

clearly understood (26, 27). Neonates with a higher gestational age

have had a longer overall duration of exposure to in utero opioids

with more mature opioid receptors, potentially increasing the level

of physical dependence. Additionally, term infants likely have

more rapid renal and hepatic clearance of the circulating opioids,

which could potentiate the severity of NAS. Maternal breast milk

exposure has been associated with less severe NAS. In a

retrospective analysis of a statewide database of opioid exposed

neonates, the lack of breastmilk was associated with higher odds

of PT (11). Maternal breast milk is not only better tolerated but

TABLE 2 Maternal and neonatal characteristics and co-exposures by
receipt of pharmacotherapy.

Characteristics No PT PT P

value
Missing N

(%)
(N= 268) (N= 430)

Neonatal characteristics

Gestational age

(weeks)

39.1 (1.2) 39.3 (1.2) 0.09 0 (0.0)

Female sex 133 (49.6) 223 (51.9) 0.62 0 (0.0)

Birth weight (grams) 3,092.1

(482.7)

3,105 (470.5) 0.73 0 (0.0)

Breast milk exposure 166 (63.1) 193 (46.3) <0.001 18 (2.6)

Maternal characteristics

White race 147 (93.6) 262 (89.7) 0.22 249 (35.6)

Treatment of OUD: 0.002 17 (2.4)

Methadone 147 (57.2) 293 (69.1)

Buprenorphine 110 (42.8) 131 (30.9)

C-section 69 (31.7) 128 (34.6) 0.52 110 (15.8)

Co-exposures

Heroin 39 (17.3) 105 (28.8) 0.002 107 (15.3)

Cocaine 11 (4.7) 44 (11.5) 0.007 85 (12.2)

Benzodiazepines 9 (3.4) 65 (15.6) <0.001 17 (2.4)

SSRIs 28 (10.5) 64 (15.1) 0.11 6 (0.9)

Antipsychotics 13 (4.9) 42 (9.8) 0.03 5 (0.7)

Alcohol 8 (5.0) 21 (7.1) 0.50 240 (34.4)

Tobacco 201 (75.6) 349 (81.9) 0.05 6 (0.9)

Amphetamines 5 (2.3) 9 (2.5) 1.0 115 (16.5)

Categorical variables expressed as frequencies and %, continuous variables as mean ± SD.

TABLE 3 Maternal, neonatal characteristics and co-exposures by study cohort.

Characteristics Overall (n = 698) Tufts (n = 392) TJU (n = 227) CCH (n = 79)

Neonatal characteristics

Receipt of Pharmacotherapy 430 (61.6) 262 (66.8) 123 (54.2) 45 (57.0)

GA (weeks) 39.2 (1.24) 39.3 (1.3) 38.9 (1.2) 39.6 (1.3)

Female sex 356 (51) 206 (52.6) 111 (48.9) 39 (49.4)

Birth weight (g) 3,100.1 (474.9) 3,139.3 (503.4) 2,985.2 (421.7) 3,235.4 (406.2)

Breast milk exposure 359 (52.8) 226 (57.7) 91 (43.5) 42 (53.2)

Maternal characteristics

White race 409 (91.1) 345 (90.3) NA 64 (95.5)

Maternal treatment for OUD: 440 (64.6) 196 (50.0) 212 (98.6) 32 (43.2)

Methadone 241 (35.4) 196 (50.0) 3 (1.4) 42 (56.7)

Buprenorphine

C- section delivery 197 (33.5) 139 (35.5) 29 (24.2) 29 (38.2)

Co-exposures

Heroin 144 (24.4) 75 (19.4) 53 (40.2) 16 (22.2)

Cocaine 55 (9.0) 41 (10.7) 9 (5.9) 5 (6.6)

Benzodiazepines 74 (10.9) 57 (15.0) 11 (4.9) 6 (8.0)

SSRIs 92 (13.3) 50 (12.9) 33 (14.5) 9 (11.7)

Antipsychotics 55 (7.9) 35 (8.9) 16 (7.1) 4 (5.3)

Alcohol 29 (6.3) 23 (6.0) NA 6 (8.2)

Tobacco 550 (79.5) 301 (77) 187 (83.9) 62 (79.5)

Amphetamines 14 (2.4) 8 (2.0) 4 (3.3) 2 (2.6)

Categorical variables—frequencies and %; continuous variables—mean ± SD.
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may also have trace amounts of maternal medications, both of which

can help reduce NAS severity. Provision of breast milk is a key

component of non-pharmacologic care practices along with skin-

to-skin care, rooming in, and swaddling/holding the neonate

which is well recognized to reduce the severity of NAS. Provision

of maternal breast milk can be highly variable based on

institutional guidelines and specific eligibility criteria, especially if

illicit drug exposure is confirmed on toxicology screening.

There was no significant association between sex and receipt of PT

in our model. This is in contrast to a recently published study that

reported an association of receipt of PT with male sex (11). Another

large population-based cohort study also demonstrated that males

were more likely to develop NAS requiring PT (28). However, the

study did not demonstrate sex-based differences in severity of NAS

as evidenced by length of hospital stay (28). Sex dependent

differences in salivary gene expression of neonates with NAS

requiring PT has been reported (29). Clearly further research is

warranted to explore the association between sex and severity of NAS.

Maternal treatment with Methadone was associated with higher

odds of more severe NAS which is consistent with existing literature

and reinforces the accuracy of our model (11, 30, 31). Other notable

maternal exposures that were associated with higher odds of PT in

the final model were exposure to heroin, benzodiazepines, and

antipsychotic agents. Co -exposure to other psychotropic

substances in addition to opioids is well recognized to contribute

to severe NAS (e.g., prolonged therapy and increased use of

second line medications) (32, 33). A model designed to predict the

need for PT in NAS developed by Isemann et al. included four

categories of exposures: (1) Buprenorphine, (2) Methadone, (3)

Opioids other than Buprenorphine and Methadone, (4)

Polysubstance exposure. Only polysubstance exposure was noted

to be significantly associated with the need for PT (10). A notable

exclusion in the final model was SSRI exposure. SSRIs are widely

prescribed in pregnant persons with anxiety and depression and

their use has been associated with increased severity of NAS in a

clinical predictive model developed by Singh et al (11). In another

recent study, Bakhireva et al. found that neonates co- exposed to

maternal opioids and SSRIs were more than three times more

likely to receive PT than those exposed to opioids alone (34). The

lack of this association in our model could be due to the small

number of subjects exposed to maternal SSRIs as well as lack of

dosing data for this class of medication. Potential mechanisms

include drug-drug interactions and direct neurobehavioral

alterations independent from opioid withdrawal that can increase

NAS severity scores (designed specifically for opioid exposure).

Additionally, as highlighted by Lester BM et al., the association of

neonatal withdrawal severity and PT with SSRIs co-exposure can

represent an “artificial” inflation in neonatal withdrawal severity

scores by virtue of having an “additive” effect on withdrawal signs

from opioids (35). In order to have a better understanding of the

true association of individual psychotropic agents with NAS

treatment, more research is needed with adequately powered, well-

designed studies. While addressing maternal mental health during

pregnancy is critical, caution should be exercised when prescribing

multiple psychotropic agents to pregnant individuals with OUD.

TABLE 4 Multivariable logistic regression model.

Characteristics Estimate OR 95% CI P-value

Intercept −8.04

Neonatal characteristics

Gestational age (weeks) 0.21 1.23 1.08–1.41 0.003

Breast milk exposure −0.58 0.56 0.39–0.79 <0.001

Maternal characteristics

Treatment of OUD:

Buprenorphine Ref

Methadone 0.45 1.57 1.10–2.24 0.01

Co-exposures

Heroin 0.43 1.53 1.00–2.34 0.05

Cocaine 0.56 1.75 0.82–3.73 0.15

Benzodiazepines 1.59 4.89 2.34–10.21 <0.001

Antipsychotics 0.66 1.94 0.97–3.85 0.06

C-statistic 0.68 (95% CI 0.64–0.72).

OR—adjusted odds ratios; CI, confidence intervals.

TABLE 5 Model training and validation results.

Training Validation

Cohorts AUROC 95% CI Cohorts AUROC 95% CI

Tufts, CCH 0.73 0.64–0.78 TJU 0.65 0.56–0.72

TJU, CCH 0.67 0.60–0.73 Tufts 0.67 0.61–0.72

TJU, Tufts 0.68 0.64–0.73 CCH 0.64 0.51–0.76

Tufts, TJU, CCH are the three study cohorts. TJU, Thomas Jefferson University; CCH, Cape

Cod Health. FIGURE 1

Calibration plot for the final model. Calibration slope 0.84 based on

boot strap validation.
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Given the current gaps regarding safety and efficacy of these drugs

(with the potential for drug-drug interactions), it is important to

develop best practices based on more definitive research to guide

healthcare providers in making informed treatment decisions that

balance maternal mental health needs with neonatal outcomes.

Further research is required to establish clearer guidelines for the

safe and effective use of these medications during pregnancy.

Finally, while our findings demonstrate that co-exposure to

certain psychotropic agents (e.g., benzodiazepines, antipsychotics) is

associated with increased odds of PT in NAS, our study was not

designed to directly evaluate pharmacokinetic or pharmacodynamic

drug–drug interactions. These associations may reflect additive

effects on neonatal withdrawal severity or confounding by

underlying maternal psychiatric illness severity. Further research is

needed to elucidate the mechanistic basis for these observed

associations, including potential pharmacologic interactions.

Overall, our model is parsimonious (utilizing seven predictors)

and discrimination was broadly consistent across the three

derivation cohorts (AUROC 0.67–0.73) with only one model

(Tufts, Cape Cod Hospitals) reaching threshold of good

discrimination. It is also the first study to utilize geographically

diverse multicenter patient level data to predict the receipt of PT

in opioid exposed neonates. Early predictive tools developed by

Isemann and colleagues included 21 signs of withdrawal from

the Finnegan Scoring Tool as predictors of PT “within 36 h of

birth” as well as some exposure data (10). Our study was unique

in developing a model to predict the need for PT “at the time of

birth” utilizing available demographic and exposure data.

Limitations

While the internal and leave-one-out validation enhanced the

methodological rigor of the study, several important limitations

exist. All the included studies in the data set utilized FNASS for

assessment of opioid exposed infants. While it would have been

ideal to have both FNASS and ESC scoring tools in our dataset,

this is a limitation that we acknowledge. However, the centers

using ESC will still benefit from the results of this study as it helps

identify infants at risk for more severe withdrawal at birth.

A recent publication noted that the ability to diagnose and treat

severe NAS is similar for the two approaches (FNASS and ESC)

for monitoring and mainly impacted by other factors (36). The

percentage of infants requiring pharmacotherapy in ESC approach

varies considerably across institutions (37, 38). The only and largest

trial to date that has directly compared ESC approach to usual care

including the use of the Finnegan tool for NOWS reported about

19.5% use of PT in ESC group (37). In a retrospective review of

medical records from a regional referral center in central

Appalachia, 27% of infants required PT in the ESC period vs. 34%

in pre-ESC period (p = 0.36) (38). These figures demonstrate that a

significant proportion of infants still require pharmacotherapy with

use of ESC. Clinical predictive models such as ours that aim to risk

stratify infants will still have utility in settings using both FNASS or

ESC approach as it helps: 1) guide conversations with parents and

caregivers, 2) reallocate resources to high-risk infants (nurses,

volunteer/cuddlers) and 3) implement non-pharmacological care

modalities such as vibrating mattresses, noise reducing devices etc.

In our model there is lack of data on some clinically important

variables that resulted in their exclusion and could have potentially

contributed to a relatively modest discrimination. Variables of

interest in this regard included exposure to gabapentin and maternal

race which were either missing entirely across cohorts or had

significant amount of missingness. Gabapentin is increasingly being

prescribed to pregnant persons and co-exposure with opioids may be

associated with an atypical or severe withdrawal syndrome in

neonates (39). Data on alcohol use was also missing for one entire

cohort and was excluded. Another notable exclusion was exposure to

amphetamines which may be more common and relevant in some

geographic locations. The missing data for included predictors

ranged from 2.4% to 16.5% and was addressed using statistical

methods (multiple imputation MI) that are well described in

statistical literature. For data missing at random (MAR), simulation

studies have shown that valid MI reduces bias even when the

proportion of missing data is large (40). In our study we chose to

not include variables with more than 50% missingness. The only

variable of interest that fit this criterion was exposure to Gabapentin.

Additionally, lack of accurate means of measurement of certain

exposures could have compounded the predictive accuracy (e.g.,

alcohol use which is dependent on self-report and not routinely

detected on toxicology screens). The internal-external validation

demonstrated poor calibration within the external validation cohorts

except the model derived from Tufts and TJU cohorts which was

externally validated using the Cape Cod Hospitals cohort. Poor

calibration likely reflects overfitting within derivation cohorts or

could be attributed to unaddressed differences in eligibility criteria

and outcome rates across the study cohorts. Specific data on the

routine use of non-pharmacologic measures was not available, which

has now been shown to be associated with improved outcomes.

There was fair heterogeneity across the study as demonstrated by

variation in outcome frequency (54%–67%). This reflects variability

in criteria used to initiate PT across the study cohorts, despite all

sites utilizing a modified Finnegan NAS Scoring System. While some

cohorts initiated treatment for a single FNASS score ≥12, others

required two or three consecutive scores ≥8. These differences likely

introduced variation in outcome assignment that may have affected

both model calibration and the strength of associations between

predictors and outcome. This limits the inter-study comparability in

terms of reported exposure rates and subsequent model performance

and was not addressed during modeling. This heterogeneity also

reflects the variation in real-world clinical practice and underscores

the challenge of developing universally applicable predictive models.

Future studies should aim to incorporate more standardized or

objective criteria for defining PT initiation in NAS to improve

consistency across sites and enhance model performance. Finally, our

model has not been validated using a fully independent external

validation cohort and may not be suitable for reliable risk prediction

in a broader opioid exposed neonatal population. Despite these

limitations, our study builds upon prior work by using a multicenter

dataset, transparent variable selection and internal-external

validation. Additionally, we provide detailed justification for

candidate predictors and a reproducible model development approach.
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Our study demonstrates that prediction of a neonate’s risk of

receiving PT for NAS remains a challenging task. While several

demographic and clinical factors involving maternal exposures

and neonatal characteristics have been strongly associated with

the need for PT, their predictive power is not sufficient to enable

risk prediction at an individual patient level. Nevertheless, these

frequently highlighted predictors need to be further investigated.

With substantial increases in polysubstance use (licit and illicit)

among pregnant persons and unknown interactions among

psychotropic agents (including opioids) in this patient

population, it is difficult to understand what precise drug-drug

interactions substantially enhance risk of NAS in an individual

infant. Better understanding of the biologic pathways in which

these drugs interact and are metabolized will help delineate

exposures or combination of exposures that significantly increase

risk of a neonate being treated for NAS. Furthermore, challenges

in prediction are also magnified by the lack of a gold standard

definition for diagnosing NAS across clinical as well as research

settings (41). The majority of NAS definitions and diagnoses are

linked to a neonate’s scores on the modified versions of

Finnegan NAS Scoring System or use of administrative coding

data (42). These scoring tools are inherently subjective and

greatly influenced by inter- rater variability. This variation in

NAS definition across centers and studies is likely to impact

predictive model performance in external validation by limiting

inter-study comparability in event rates. In the future, addition

of genomic data such as Polygenic Risk Scores (PRS) to

metabolomic and proteomic biomarkers and comprehensive

clinical and demographic data in larger cohorts of neonates

could provide greater accuracy in identifying neonates at risk for

developing more severe forms of NAS (43).

Conclusion

There is an urgent need to develop objective clinical tools to

accurately predict NAS severity to facilitate the optimal precision

medicine approach for neonates born following in- utero opioid

exposure. We have attempted to overcome the current limitations

for establishing clinical utility of the existing predictive models

such as validity, small sample size, data from a single center, or

claims based with variation in coding for NAS. Future work

should focus on establishing large and diverse NAS data registries

and obtaining more definitive data on safety and efficacy of

polypharmacy in this population. These efforts are currently

underway through the Helping End Addiction Long term (HEAL)

program supported by the National Institutes of Health in the US.
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Appendix

This document contains calibration plots for the three training

models and internal-external validation.

FIGURE A2

Calibration plot for model 1 derived from tufts and cape

Cod cohorts.

FIGURE A3

External validation of model 1 in TJU cohort.

FIGURE A5

External validation of model 2 in tufts cohort.

FIGURE A4

Calibration plot for model 2 derived from TJU and cape

Cod cohorts.
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FIGURE A6

Calibration plot for model 3 derived from tufts and TJU cohorts.
FIGURE A7

External validation of model 3 in cape Cod cohort.
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