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cohort database
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Objective: To develop a decision tree model using clinical risk factors to predict
massive pulmonary hemorrhage (MPH) and MPH-related mortality in extremely
low birth weight infants (ELBWIs).
Method: We retrospectively analyzed data from a national multicenter
prospective web-based registry using machine learning algorithms with the
C5.0 decision tree model to develop a clinical prediction rule for MPH and
MPH-related mortality in ELBWIs admitted to participating neonatal intensive
care units (NICUs) from January 2013 to December 2020. This C5.0 model
was developed through data preprocessing, attribute selection based on
splitting criteria, and pruning techniques to minimize overfitting.
Results: A total of 5,752 infants were included. Of them, MPH occurred in 664
(11.5%) infants. Among infants with MPH, 136 (20.5%) infants died due to MPH.
The decision tree model for MPH identified “gestational age (GA)≤ 25+2” as
the first discriminator, followed by “APGAR score at 5 min≤ 7” and “multiple
gestation”. The decision tree model for MPH-related mortality identified
“GA≤ 25+2” as the first discriminator, followed by “APGAR score at 5 min ≤2”.
The predictive accuracy of the C5.0 MPH model achieved an area under the
ROC curve (AUC) of 88.2% on the training set and 89.0% on the test set, while
the MPH-related mortality model attained an AUC of 97.7% on the training set
and an AUC of 97.4% on the test set.
Conclusions:We developed a C5.0 decision tree model using clinical risk factors
to predict MPH and MPH-related mortality in ELBWIs, enabling early
identification of high-risk infants and facilitating timely interventions to
improve neonatal outcomes. This decision-based risk stratification tool
requires additional verification using larger multicenter cohorts to evaluate its
practical applicability and clinical effectiveness before routine clinical
implementation in NICUs.
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1 Introduction

Massive pulmonary hemorrhage (MPH) in neonates is a

critical and life-threatening condition characterized by a rapid

onset of significant pulmonary bleeding, which can lead to severe

cardiorespiratory instability. In extremely preterm infants, MPH

remains a life-threatening emergency with high risks of neonatal

death and increased risks of long-term morbidities despite

various management approaches (1, 2). The incidence of MPH

varies by birth weight and diagnostic criteria, ranging from 5%

to 8% in very low birth weight infants (VLBWIs), with a recent

report showing an incidence of 6.3% in Korea (2, 3). Therefore,

identifying risk factors for MPH and predicting associated

complications are crucial for enhancing survival rates and quality

of life of these infants.

Previous studies identifying risk factors for MPH have mainly

utilized statistical methods such as logistic regression (4–7).

Recently, our researchers have analyzed a large, nationwide

cohort database to identify perinatal risk factors for MPH and

MPH-related mortality in very low birth weight infants

(VLBWIs) and proposed proactive management strategies to

reduce MPH incidence and associated mortality (3).

Although traditional statistical methods (both univariate and

multivariate analyses) can identify significant variables, they are

limited in determining the relative importance or priority of

these variables. In contrast, decision tree analysis as part of a

clinical decision support system offers a clear advantage by

confirming the priority of significant variables based on their

contribution to the outcome, providing a more intuitive and

structured understanding of the data.

Similarly, traditional statistical analysis methods such as

logistic regression frequently employed in neonatal risk

assessment are based on linear assumptions and are susceptible

to challenges like overfitting and multicollinearity. These

limitations constrain the ability to examine complex relationships

among multiple variables and inhibit the creation of more

effective, clinically applicable models (8–10). In contrast, artificial

intelligence, particularly machine learning, can overcome these

limitations by adapting to large datasets and enhancing

predictive performance, allowing for the development of more

accurate and flexible clinical models for identifying risk factors in

neonatology and other medical fields (11–19).

A C5.0 model is a data mining algorithm that employs a tree-like

structure for decision making. It classifies datasets through conditional

branching to produce accurate classification results. Decision trees

offer efficient data processing capabilities, handling both

classification and prediction tasks with highly interpretable and

intuitive outcomes (20). Consequently, they provide a reliable
Abbreviations

ACS, antenatal corticosteroids; BW, birth weight; CRIB, clinical risk index for
babies; CPAP, continuous positive airway pressure; ELBWIs, extremely low
birth weight infant; GA, gestational age; GDM, gestational diabetes mellitus;
MPH, massive pulmonary hemorrhage; PIH, pregnancy induced hypertension;
PROM, premature rupture of membrane; RDS, respiratory distress syndrome;
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approach for comprehensive and nuanced analysis in clinical

practice. Decision tree models are widely used in clinical research to

develop predictive tools for disease diagnosis and prognosis and to

identify key factors influencing disease outcomes (21).

In this study, we retrospectively analyzed data from a national

multicenter prospective web-based registry using machine learning

algorithms with the C5.0 model to develop a clinical prediction rule

for predicting MPH and MPH-related mortality in extremely low

birth weight infants (ELBWIs). We compared these findings with

those from statistical multivariate regression analysis to appraise

the effectiveness of the C5.0 decision tree model in identifying

risk factors for MPH and MPH-related mortality.
2 Methods

2.1 Data source

Data were collected from a de-identified dataset approved by

the Committee of Ethics and Publication of the Korean Neonatal

Network (KNN). The KNN is a nationwide prospective

registration system for VLBW infants admitted to 69

participating hospitals in Korea (22). Data collection for the

KNN received approval from the Institutional Review Board

(IRB) of each participating hospital, with all data regularly

monitored by the KNN data management committee. Written

informed consent was obtained from parents upon enrollment at

every NICU participating in the KNN.
2.2 Study population

We conducted a retrospective cohort study using KNN data

from 6,195 preterm infants with BW <1,000 g and GA <32

weeks who were admitted to participating NICUs from January

1, 2013 to December 31, 2020. We excluded 202 infants with any

major congenital anomaly and 241 infants with missing data on

patent ductus arteriosus (PDA) management. Ultimately, clinical

data of 5,752 ELBWIs were included in this study.
2.3 Outcome measures

Clinical characteristics of infants included perinatal variables

(such as oligohydramnios, multiple gestation, gestational diabetes

mellitus (GDM), pregnancy induced hypertension (PIH),

premature rupture of membranes (PROM), completion of a full

course of antenatal corticosteroids (ACS), and place of birth) and

neonatal variables [such as gestational age (GA), birth weight

(BW), sex, small for gestational age (SGA), initial resuscitation,

Apgar scores (AS) at 1 min and 5 min, clinical risk index for

babies (CRIB)-II scores, body temperature at admission, pH and

base excess within 1 h after birth, surfactant use, and

symptomatic PDA (sPDA)].

MPH was characterized by significant bloody fluid suction

through the endotracheal tube associated with acute respiratory
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failure or cardiovascular collapse. It was presented with fluffy or

ground-glass opacities across lung fields on chest radiography (4).

Oligohydramnios was defined by an amniotic fluid index of less

than 5. In cases of multiple gestation during the prenatal period

with subsequent fetal demise before birth, stillborn babies beyond

16 weeks of gestational age were included in overall counts and

classified within the multiple gestation cohort. Conversely,

selective abortions of fetuses from in vitro fertilization or cases of

vanishing twins with gestational age less than 15 weeks and 6

days were excluded from these counts. Pregnancy-induced

hypertension (PIH) encompassed diagnoses of gestational

hypertension, preeclampsia, or eclampsia. For ACS usage,

completion was defined when the full course of steroid

treatment, either two doses of betamethasone or four doses of

dexamethasone administered 24 h apart, was administered within

one week prior to delivery.

SGA was defined as a birth weight below the 10th percentile for

GA and sex (23). Initial resuscitation included applying at least one

of the following techniques at birth: oxygen supplementation,

continuous positive airway pressure (CPAP), positive pressure

ventilation, intubation, chest compression, and administration of

medications such as epinephrine. Body temperature at admission

was defined as the body temperature initially measured in degree

Celsius (°C) within an hour of admission. The use of surfactant

was designated for prophylactic or rescue treatment of

respiratory distress syndrome (RDS) but excluded when it was

used for treating pulmonary hypertension or meconium aspiration

syndrome. Symptomatic PDA (sPDA) was characterized by the

presence of at least three of the following five symptoms associated

with PDA, confirmed by a diagnosis of large left-to-right ductal

flow by echocardiography: (1) a systolic or continuous murmur; (2)

a bounding pulse or hyperactive precordial pulsation; (3)

hypotension; (4) respiratory difficulty; and (5) pulmonary edema or

cardiomegaly (cardiothoracic ratio >60%) on a chest radiograph (24).
2.4 Statistical analysis

During data cleansing, missing data based on MPH criteria

were excluded from analysis. Categorical variables were analyzed

using the Chi-square (χ2) test. Variables with frequencies less

than five and a prevalence of less than 20% were analyzed using

Fisher’s exact test. Continuous variables were analyzed using the

Mann–Whitney test after checking for normality.

Multivariate regression analysis and decision tree analysis were

utilized to examine variables significantly associated with the

incidence and mortality of MPH. Variables identified as

significant in the univariate analysis (P < 0.05) were included in

the multivariate analysis. Based on significant variables, a C5.0

decision tree model was developed to improve predictive accuracy.

The dataset was randomly partitioned into two subsets, with

70% allocated for model training and the remaining 30%

designated for testing. The model’s performance was then

evaluated using metrics. The decision tree pruning options

included local pruning with a maximum tree depth of 5, a global

pruning with a minimum parent node size of 100, and a child
Frontiers in Pediatrics 03
node size of 50. These settings were selected to prevent

overfitting by restricting tree growth and pruning branches with

insufficient data points. Additionally, 10-fold cross-validation was

conducted. However, boosting was not applied. These parameters

aligned with the SPSS Node Model Options to ensure

transparency and reproducibility.

All statistical analyses were conducted using IBM SPSS version

25.0 (IBM Corporation, Armonk, New York, United States).

A decision tree was created in IBM Clementine version 10.0

using the C5.0 model. Its performance was evaluated using

confusion metrics, including accuracy, precision, and recall.
3 Results

A total of 5,752 ELBWIs were included, with 664 (11.5%)

diagnosed with MPH. Infants were categorized into MPH

(n = 664, 11.5%) and non-MPH groups (n = 5,088, 88.5%).

Additionally, infants were divided into two categories: those

whose deaths were related to MPH (MPH-related mortality

group, n = 136, 2.4%) and those whose did not (non-MPH

mortality group, n = 5,616, 97.6%) (Figure 1). In the decision tree

model, nodes were split based on the risk factor with the highest

Chi-square value and data were recursively partitioned into

subgroups to optimize the classification accuracy.

Prenatal and neonatal characteristics and perinatal

interventions were compared between MPH and non-MPH

groups as well as between the group that died due to MPH

(MPH-related mortality group) and the group that survived

(non-MPH mortality group) (Table 1).
3.1 Factors associated with MPH

Clinical variables in ELBWIs significantly (P-value <0.1)

associated with MPH were analyzed using multivariate logistic

regression. Results are presented in Table 2. Three risk factors

associated with an increased incidence of MPH were identified:

multiple gestation (HR: 1.595; 95% CI: 1.277–1.992), surfactant

use (HR: 4.010; 95% CI: 1.242–12.946), and sPDA (HR: 1.700;

95% CI: 1.357–2.129). In contrast, PROM (HR: 0.709, 95% CI:

0.554–0.909) and higher gestational age (HR: 0.989; 95% CI:

0.980–0.998) were associated with a decreased incidence of MPH.
3.2 Factors associated with mortality-
related MPH

Clinical variables in ELBWIs associated with MPH-related

mortality having P-values <0.1 were analyzed using multivariable

analysis. Results are presented in Table 2. Multiple gestation

(HR: 1.878; 95% CI: 1.172–3.008) was found to be a significant

risk factor for increased mortality due to MPH. Conversely,

PROM (HR: 0.540; 95% CI: 0.308–0.949), a complete course of

ACS (HR: 0.566, 95% CI: 0.343–0.935), and a higher APGAR
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FIGURE 1

Study population identified with subsequent flow chart of the study in extremely low birth weight infants. PDA, patent ductus arteriosus; MPH, massive
pulmonary hemorrhage.

TABLE 1 Comparison of prenatal and neonatal characteristics and perinatal interventions in MPH, non-MPH, MPH mortality, and non-MPH
mortality groups.

Variables non-MPH
(n= 5,088, 88.5%)

MPH (n= 664,
11.5%)

P
value

Non-MPH mortality
(n = 5,616, 97.6%)

MPH mortality
(n= 136, 2.4%)

P
value

Oligohydramnios 879 (18.9) 89 (14.9) .019 958/5,131 (18.7) 10/118 (8.5) 0.005

Multiple gestations 1,646 (32.4) 282 (42.5) <.001 1,861/5,616 (33.1) 67/136 (49.3) <0.001

Gestational diabetes
mellitus

296 (5.8) 37 (5.6) .799 328/5,616 (5.8) 5/136 (3.7) 0.286

Pregnancy-induced
hypertension

916 (18.0) 119 (17.9) .959 1,009/5,616 (18.0) 26/136 (19.1) 0.730

Premature rupture of
membranes

1,894 (37.5) 222 (33.6) .052 2,085 5,572 (37.4) 31/135 (23.0) 0.003

Complete course of
antenatal steroids

2,494 (49.8) 278 (42.5) <.001 2,728/5,530 (49.3) 44/133 (33.1) <0.001

Outborn 154 (3.0) 20 (3.0) .983 171/5,616 (3.0) 3/136 (2.2) 0.800

Gestational age (weeks) 26+1 [24+6, 27+4] 25+3 [24+3, 26+5] <.001 26+0 [24+6, 27+4] 25+1 [24+2, 26+4] <0.001

Birth weight (g) 796 [670, 900] 710 [600, 834] <.001 790 [660, 900] 680 [570, 790] <0.001

Sex: male 2,436 (47.9) 363 (54.8) .001 2,727/5,615 (48.6) 72/136 (52.9) 0.313

Small for gestational age 1,029 (20.2) 152 (22.9) .109 1,147/5,616 (20.4) 34/136 (25.0) 0.192

Need for initial
resuscitation

4,948 (97.8) 657 (99.2) .014 5,470/5,585 (97.9) 135/136 (99.3) 0.529

APGAR score at 1 min 4.00 [3.0, 5.0] 4.00 [2.0, 5.0] <.001 4.0 [2.0, 5.0] 3.0 [2.0 5.0] 0.001

APGAR score at 5 min 7.00 [5.0, 8.0] 6.00 [5.0, 7.0] <.001 7.00 [5.0, 7.0] 6.0 [3.0 7.0] <0.001

CRIB-II score 11.0 [9.0, 13.0] 11.0 [9.0, 14.0] <.001 11.0 [9.0, 14.0] 13.0 [11.0 15.0] <0.001

Body temperature at
admission

36.2 [35.8, 36.5] 36.1 [35.7, 36.4] <.001 36.2 [35.8, 36.4] 36.0 [35.5 36.3] 0.001

pH within 1 h after birth 7.27 [7.19, 7.34] 7.25 [7.18, 7.33] .037 7.27 [7.19, 7.33] 7.25 [7.18 7.31] 0.065

Base excess within 1 h after
birth

−4.6 [−7.0, −2.2] −5.7 [−8.7, −3.1] .001 −5.0 [−8.0, −2.8] −6.00 [−9.0 −4.0] 0.020

Use of surfactant 4,843 (95.2) 658 (99.1) <.001 5,366/5,616 (95.5) 135/136 (99.3) 0.036

Symptomatic PDA 2,366 (46.5) 394 (59.3) <.001 2,695/5,616 (48.0) 65/136 (47.8) 0.954

Values are presented as median [range] or number (%).

P-values were calculated using the Chi-square (χ2) tests or the Mann–Whitney test.

MPH, massive pulmonary hemorrhage; CRIB-II score, clinical risk index for babies score; PDA, patent ductus arteriosus.
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TABLE 2 Risk factors for MPH and mortality due to MPH in ELBWIs by multivariate logistic regression analysis.

Variables MPH MPH mortality

Multivariate analysis

Exp (B) 95% CI P value Exp (B) 95% CI P value
Oligohydramnios 0.851 0.632–1.148 0.292 0.424 0.179–1.001 0.050

Multiple gestation 1.621 1.297–2.025 <0.001 1.969 1.228–3.157 0.005

Premature membrane rupture – – – 0.600 0.340–1.058 0.078

Complete course of antenatal steroids 0.775 0.620–0.968 0.024 0.532 0.322–0.879 0.014

Gestational age (weeks) 0.998 0.997–0.999 <0.001 1.001 0.980–1.021 0.956

Sex: male 1.279 1.027–1.592 0.028 – – –

Need for initial resuscitation 2.212 0.527–9.282 0.278 – – –

APGAR at 1 min 0.993 0.902–1.092 0.878 1.060 0.859–1.307 0.588

APGAR at 5 min 0.926 0.848–1.011 0.085 0.800 0.668–0.959 0.016

Body temperature at admission 1.027 0.882–1.197 0.730 1.068 0.783–1.455 0.679

pH within 1 h after birth 2.002 0.612–6.550 0.251 – – –

Base excess within 1 h after birth 0.976 0.944–1.008 0.142 1.003 0.951–1.057 0.916

Use of surfactant 4.695 1.450–15.199 0.010 18,363,410.67 0.000- 0.995

Symptomatic PDA 1.772 1.375–2.157 <0.001 – – –

Adjusted for variables (except BW) with P-values less than 0.05.

“Use of surfactant” was excluded from the multivariable analysis due to its extremely low frequency in MPH mortality cases (1/136), which resulted in unstable exp(B) estimates.

MPH, massive pulmonary hemorrhage; PDA, patent ductus arteriosus.

Park et al. 10.3389/fped.2025.1529712
score at 5 min (HR: 0.800; 95% CI: 0.667–0.960) were associated

with decreased mortality for patients with MPH.
3.3 C5.0 decision prediction of perinatal
factors associated with MPH

Our multivariate logistic regression analysis identified lower

GA, multiple gestation, surfactant use, and symptomatic PDA as

independent risk factors for MPH in a total of 5,752 ELBWI.

Our results aligned with results of our previous study (1) on

VLBWIs except that small for gestational age was not identified

in the current study as a risk factor for MPH.

Multivariate analysis was performed to determine

independent effects of various variables on MPH. Results

confirmed the relative importance of specific factors, including

gestational age (GA), birth weight, and APGAR scores. Upon

examining potential effects of multicollinearity, we found that

gestational age (GA) had a Variance inflation factor (VIF) of

8.3, birth weight had a VIF of 6.7, APGAR score at 1 min had a

VIF of 5.2, and APGAR score at 5 min had a VIF of 5.8.

Although multicollinearity was present, it was determined that

model adjustment was unnecessary, as all values were below the

threshold of 10.

Regarding the predicted accuracy of the C5.0 MPH model, it

exhibited an AUC of 0.882 on the training set and an AUC of

0.890 on the validation set.

The C5.0 decision prediction of perinatal factors influencing

MPH was demonstrated in Figure 2. It included six risk factors:

GA, APGAR score at 5 min, symptomatic PDA, type of

pregnancy, body temperature at admission, and base excess

within 1 h after birth. The incidence of MPH significantly

differed at each node categorized by these risk factors, as

evidenced by the chi-square test. Infant population was divided
Frontiers in Pediatrics 05
into 8 subgroups through different branches from the root node

to the leaf node in the C5.0 analysis.

GA was the primary factor distinguishing a higher incidence of

MPH among the six factors. In preterm infants with “gestational

age ≤25+2”, the next discriminator was “APGAR score at 5 min

≤ 7.5”, followed by “multiple gestation”. In case of “single

gestation”, the next discriminator was “base excess within 1 h

after birth ≤−13.7”, with the final discriminator being “APGAR

score at 5 min ≤2.5”. Consequently, node 15 in “single gestation”

and node 8 in “multiple gestation” displayed the highest

incidences of MPH at 22.5% and 21.8%, respectively, while node

4 exhibited the lowest incidence of MPH at 5.1%.

On the other hand, for preterm infants with “gestational age

‘>25+2”, the next discriminator was “Symptomatic PDA” and the

terminal discriminator was “BT at admission ≤36.0”.
Consequently, node 9 displayed the highest incidence of MPH at

15.5% and node 5 showed the lowest incidence of MPH at 5.9%.

A chi-square test evaluating predicted frequencies of decision tree

nodes showed statistical significance in all nodes except for MPH

nodes 11 and 12.
3.4 C5.0 decision prediction of perinatal
factors associated with MPH-related
mortality

Regarding the predicted accuracy of the C5.0 MPH-related

mortality model, it demonstrated an AUC of 97.7% on the

training set and an AUC of 97.4% on a validation set. Results of

C5.0 decision prediction of neonatal factors for MPH-related

mortality are depicted in Figure 3. Two risk factors, GA and

APGAR score at 5 min, were included. The incidence of MPH at

each node categorized by each risk factor showed significant

differences according to the chi-square test. Infant populations
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https://doi.org/10.3389/fped.2025.1529712
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 2

C5.0 decision prediction of all factors in MPH. In C5.0, the P-value from a chi-square test or Gini index indicates a variable’s significance in decision
splitting. The asterisk* represents a P-value from the chi-square test for each node’s frequency. *P value < 0.01, **P value < 0.001. MPH, massive
pulmonary hemorrhage; PDA, patent ductus arteriosus.
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FIGURE 3

C5.0 decision prediction of all factors in MPH-related mortality. In C5.0, the P-value from a chi-square test or Gini index indicates a variable’s
significance in decision splitting. The asterisk* represents a P-value from the chi-square test for each node’s frequency. *P value <0.01, **P value
<0.001. MPH, massive pulmonary hemorrhage.

Park et al. 10.3389/fped.2025.1529712
were divided into three subgroups using different branches from

the root node to the leaf node in the C5.0 analysis. GA was the

primary discriminator for the high incidence of MPH-related

mortality among these factors.

In preterm infants with “gestational age ≤25+2”, the next

discriminator was “APGAR score at 5 min ≤2.5”. Consequently,
node 3 exhibited the highest incidence of MPH-related mortality

at 8.6%, while node 4 had the lowest incidence at 3.2%. On the

other hand, in preterm infants with “gestational age ‘>25+2”,

there were no subsequent discriminators. Consequently, node 2

exhibited the lowest incidence of MPH-related mortality at 1.6%.

After conducting a chi-square test to evaluate predicted
Frontiers in Pediatrics 07
frequencies of decision tree nodes, all nodes were found to be

statistically significant.
4 Discussion

To the best of our knowledge, this is the first study that

employs a decision tree analysis using the C5.0 algorithm to

develop a clinical prediction model for MPH and MPH-related

mortality, utilizing a population-based cohort study design with a

large number of ELBWIs in NICUs. Besides identifying risk

factors, this approach also established a cut-off value for each,
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effectively classifying subgroups with statistically significant

differences in incidences of MPH and MPH-related mortality.
4.1 Risk factors for MPH

In our decision tree analysis utilizing the C5.0 model, six risk

factors were identified for MPH, including GA, APGAR score at

5 min, symptomatic PDA, multiple gestation, body temperature

at admission, and base excess within the first hour after birth.

Decreasing gestational age and birth weight are consistently

cited in the literature as clear risk factors for mortality and

morbidity in extremely preterm infants (25, 26). They are also

recognized as major risk factors for MPH and MPH-related

mortality in ELBWIs (5, 27). In our previous studies, MPH and

MPH-related mortality were observed in 870 (6.3%) and 162

(1.2%) of VLBWIs and in 664 (11.5%) and 136 (2.4%) of

ELBWIs registered in the Korean Neonatal Network (KNN) from

2013 to 2020, respectively (3).

Previous studies identifying risk factors for MPH primarily

used statistical methods such as logistic regression. In most

studies (3, 5, 6), gestational age and birth weight were significant

factors in univariate analysis but not independent predictors in

multivariate analysis. This suggests that these factors might be

confounded by other variables or lack a direct effect on the

outcome when controlling for other variables. Therefore, despite

their clinical importance, the significance of gestational age and

birth weight might have been underestimated and misrepresented

by current statistical methodologies.

However, our decision tree analysis revealed that GA was the

primary discriminator for predicting the occurrence of MPH

among six risk factors. Interestingly, this analysis determined a

GA cut-off of “25 weeks and 2 days” for a high incidence of

MPH. As a result, the incidence of MPH in Node 1 (GA≤ “25

weeks and 2 days”) and Node 2 (GA > “25 weeks and 2 days”)

showed a statistically significant difference, as indicated by the

chi-square test (16.1% vs. 9.4%, P < 0.001).

4.1.1 Preterm infants with a gestational age ≤25
weeks and 2 days

According to our decision tree analysis, preterm infants with a

gestational age ≤25 weeks and 2 days were then assessed based on

their APGAR score at 5 min, with a cut-off value of 7.5, indicating

a high incidence of MPH. Consequently, statistically significant

differences were observed in the incidence of MPH in Node 3

(APGAR score at 5 min ≤7) and Node 4 (APGAR score at 5 min

≥8), as demonstrated by the chi-square test (17.5% vs. 5.1%,

P < 0.001). Although the APGAR score has been identified as a

statistically significant factor in univariate analysis across multiple

studies (3, 5, 7), including ours, it has not been confirmed in

multivariate analysis. Therefore, despite its clinical relevance, the

importance of the APGAR score might have been

underestimated and misrepresented by current statistical methods.

For preterm infants with a gestational age ≤25 weeks and 2

days and an APGAR score at 5 min ≤7, the type of pregnancy

emerged as the next key discriminator. There was a significant
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difference in MPH incidence between single gestations (Node 7)

and multiple gestations (Node 8), as indicated by the chi-square

test (15.2% vs. 21.8%, P < 0.01). Multiple gestations associated

with higher risks and complications compared to single

gestations have been reported to significantly increase the

incidence of MPH and related mortality (4, 28).

Although few studies have considered multiple pregnancies as a

perinatal factor, both past and recent research (3) has confirmed its

statistical significance in both univariate and multivariate analyses.

In our decision tree analysis, Node 8 (multiple gestation) was

identified as a leaf (terminal) node, showing no further subdivisions

despite a high incidence of MPH and a substantial number of

affected infants. This underscores the clinical importance of

multiple gestation.

Node 7 (single gestation) is an internal node that splits the data

based on “base excess within 1 h after birth” with a cut-off value of

−13.7 indicating a high incidence of MPH. Consequently, a

statistically significant difference in the incidence of MPH was

observed between Node 11 (base excess ≤−13.7) and Node 4

(base excess >−13.7), as shown by the chi-square test (22.2% vs.

14.6%, P < 0.001). Previous research (3) has found that base

excess score is a statistically significant factor in univariate

analysis, although it is not a significant factor in multivariate

analysis. Therefore, despite its clinical relevance, the significance

of base excess score might have been underestimated and

misrepresented by current statistical methodologies.

The incidence of MPH is higher in infants born at less than 25

weeks gestation, particularly in those with low 5-minute Apgar

scores and low base excess (BE). Therefore, proactive

management including active implementation of neonatal

resuscitation (NRP) is essential for improving 5 min Apgar

scores and BE in these high-risk infants.

4.1.2 Preterm infants with a gestational age >25
weeks and 2 days

According to our decision tree analysis, in preterm infants with a

gestational age >25 weeks and 2 days, the next discriminator was the

presence of symptomatic PDA for the high incidence of MPH.

Consequently, the incidence of MPH in Node 6 (with symptomatic

PDA) and Node 5 (without symptomatic PDA) showed a statistically

significant difference, as demonstrated by the chi-square test (13.5%

vs. 5.9%, P < 0.001). Almost all studies (3, 7), including ours,

identified the presence of symptomatic PDA as a statistically

significant factor in both univariate and multivariate analyses.

Therefore, proactive management to decrease the risk of sPDA should

be recommended as preventive strategies to reduce the risk of MPH

in preterm infants with a gestational age >25 weeks and 2 days.

Node 6 (with symptomatic PDA) is an internal node that splits

the data based on “body temperature at admission” with a cutoff

value of 36°C for a high incidence of MPH. As a result, the

incidence of MPH in Node 9 (body temperature ≤36°C) and Node

10 (body temperature >36°C) showed a statistically significant

difference as demonstrated by the chi-square test (15.5% vs. 10.7%,

P < 0.05). In our previous study (3), body temperature was a

statistically significant factor in univariate analysis but not in

multivariate analysis. However, despite its clinical importance, the
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significance of body temperature might be underestimated and

misrepresented by current statistical methodologies.

In infants born at 25 weeks or later, the incidence of MPH

increased in the presence of sPDA and low body temperature.

Therefore, proactive management for decreasing the risk of

sPDA at the beginning of life and maintaining optimal body

temperature should be recommended as preventive strategies for

reducing the risk of MPH in extremely preterm infants.
4.2 Risk factors for MPH-related mortality

In our multivariate logistic regression analysis, multiple

gestation and APGAR score at 5 min were identified as ELBWIs

independent risk factors for MPH-related mortality. These

findings are consistent with those of our previous study (3) on

VLBWIs in the same cohort database.

In our decision tree analysis using the C5.0 model, GA and

APGAR score at 5 min were identified as two risk factors. Our

decision tree analysis identified GA as the primary discriminator for

predicting the occurrence of MPH-related mortality. Intriguingly,

this analysis provided a cutoff value of GA at “25 weeks and 2

days” for a high incidence of MPH-related mortality. Consequently,

the incidence of MPH-related mortality in Node 1 (GA≤ “25 weeks

and 2 days”) and Node 2 (GA > “25 weeks and 2 days”)

demonstrated a statistically significant difference, as evidenced by

the chi-square test (3.9% vs. 1.6%, P < 0.001).

In preterm infants with a gestational age ≤25 weeks and 2 days,

the APGAR score at 5 min served as the next discriminator, with a

cut-off value of 2.5 indicating a high incidence of MPH-related

mortality. Consequently, the incidence of MPH-related mortality in

Node 3 (APGAR score at 5 min ≤2) and Node 4 (APGAR score

≥3) exhibited a statistically significant difference, as evidenced by

the chi-square test (8.6% vs. 3.2%, P < 0.001). APGAR scores were

statistically significant factors in both univariate and multivariate

analyses in almost all studies (3, 4, 7), including our study.

In preterm infants with a gestational age >25 weeks and 2 days,

Node 2 was identified as a terminal node that could not split further

due to the lowest incidence of MPH-related mortality. This finding

indicates that GA plays a clinically significant role in MPH-related

mortality, suggesting that a higher gestational age might be

associated with a decreased risk of mortality associated with MPH.

MPH-related mortality was also found to be significantly

higher in infants born at less than 25 weeks of gestation with low

5 min. Apgar scores. This suggests that proactive NRP focused

on improving 5 min. Apgar scores might contribute to reduced

mortality associated with MPH.
4.3 Clinical implications of the decision
tree analysis

Traditional statistical analysis methods such as logistic regression

have been widely used in neonatal risk assessment due to their

interpretability and ease of implementation. However, these analyses

rely on linear assumptions, which may limit their ability to capture
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complex, non-linear relationships between variables. Additionally,

they are susceptible to challenges such as overfitting and

multicollinearity, potentially compromising the accuracy and

generalizability of findings. These inherent limitations restrict the

ability to analyze intricate interactions among multiple factors,

which are often critical in clinical decision-making.

In contrast, decision tree models as a decision-making tool can

provide a more flexible and robust alternative by addressing these

challenges. Unlike traditional statistical analysis, decision trees do

not require strict linearity assumptions. They can accommodate

complex, non-linear relationships within the data. Furthermore,

they offer enhanced interpretability by visually representing

variable interactions, which can facilitate the identification of key

predictors and their relative importance in clinical outcomes.

Given these advantages, decision tree models may provide

more practical insights for neonatal risk assessment, ultimately

enhancing predictive accuracy and supporting more informed

clinical decision-making. Future studies should explore

integration of advanced machine learning approaches, such as

ensemble methods and deep learning, to further refine predictive

capabilities and improve neonatal care outcomes.
4.4 Limitations

Our study has several limitations. Firstly, the retrospective

analysis of a large population-based cohort resulted in a small

number of deaths which restricted our ability to identify

statistically significant mortality risk factors, although the overall

sample size of our study was substantial. Secondly, the presence

of null values in the KNN data presumably influenced the

performance of the C5.0 model, thereby diminishing its safety

and reliability. Thirdly, biological interactions between perinatal

and neonatal factors are complex. Many uncontrollable factors

and individual biological variability can affect patient prognosis.

Therefore, coupling this algorithm with complementary methods,

performing rigorous data preprocessing, and conducting ongoing

validation to ensure reliable and actionable predictions in clinical

settings are crucial. Especially, a potential limitation of this study

is the presence of multicollinearity among key predictor variables

such as gestational age, birth weight, and APGAR scores. Given

their known correlations, multicollinearity might have influenced

the loss of statistical significance for certain variables in the

multivariable logistic regression model. In addition, we did not

explicitly calculate Variance Inflation Factors (VIF). This

limitation should be considered when interpreting our results.

Future studies may benefit from additional statistical techniques

such as collinearity diagnostics. In addition, our study utilized

retrospectively collected data from a population-based cohort

study. Moreover, our model was not externally validated.

Consequently, future research should aim to externally validate

the model using prospective data from diverse populations to

improve its generalizability and reliability. Additionally, further

investigations should focus on integrating real-time data and

employing more sophisticated algorithms to enhance predictive

accuracy of the C5.0 model.
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5 Conclusions

In this study, we developed a decision tree model based on

clinical risk factors to predict MPH and MPH-related mortality

in ELBWIs. This predictive approach enabled early identification

of infants at high risk of MPH and MPH-related mortality,

facilitating timely and targeted interventions. By optimizing

treatment strategies and enhancing clinical management, it

ultimately improved neonatal outcomes.

Decision-based risk stratification tools using a decision tree

model could be incorporated into neonatal intensive care

protocols. However, further validation with larger, multicenter

cohorts is essential for evaluating the practical applicability and

clinical effectiveness of the C5.0 decision tree model in NICUs

before routine clinical implementation.
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