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Hemodynamic support in critically ill children with septic shock is a pervasive
challenge in the intensive care settings. Cardiovascular involvement in sepsis
entails both macro- and microcirculation abnormalities, with the main
treatment objectives seeking to increase cardiac output and improve tissue
perfusion, respectively. Fluid therapy and vasoactive drugs are cornerstone
therapies for circulatory problems in sepsis. Fluid boluses are a common first-
line treatment for actual and relative hypovolemia. However, their use has
been linked to adverse events due to factors such as their composition, high
volumes and rapid infusion rates, and the variable response of individual
patients. Furthermore, they often have transient efficacy or lack of response in
many patients. Vasoactive drugs are also often used late, which favors
repetitive fluid boluses, leading to hypervolemia, tissue edema and worse
outcomes. After the resuscitation phase, active fluid removal through diuresis
or dialysis is increasingly being used in patients who receive fluid therapy, but
it has not yet been standardized, and the safest and most effective strategies
in children are still not known. We believe that these interventions for
hemodynamic problems in sepsis offer an opportunity to personalize
treatment and apply precision medicine strategies. Using a phased approach
adapted to each patient’s context and clinical condition can potentially
improve outcomes. The proposed Resuscitation, Equilibrium and De-
escalation (RED) strategy is a simplified phased hemodynamic management
approach for patients with sepsis and septic shock. Our goal with the
introduction of this concept is to organize and underscore the fact that the
cardiovascular support of sepsis is dynamic and should be adapted to each
individual and context.
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Introduction

Sepsis continues to be a public health problem with high
morbidity and mortality, especially in countries with limited
resources (1). Up to half of all sepsis-related deaths occur within
the first 48 h, mainly due to refractory shock (2). The most
recent pediatric sepsis management guidelines recommend
considering the context and presence of hypotension when using
fluid boluses as the first line of management for children with
septic shock (3, 4). Today, the main research and development
lines in children with sepsis-related hemodynamic abnormalities
are aimed at evaluating fluid responsiveness indicators,
hypervolemia associated with non-resuscitation fluids, early
initiation of vasoactive agents, and fluid redistribution in children
with sepsis (5–7).

We believe that the use of a structured, phased hemodynamic
management approach could help improve outcomes in children
with septic shock (8, 9). The approach to shock in adults was
initially proposed in four phases, seeking to adapt the
monitoring and treatment goal to each phase (Salvage,
Optimization, Stabilization and De-escalation, known as SOSD)
(10). This approach was later termed the resuscitation,
optimization, stabilization and evacuation (ROSE) strategy,
highlighting that hemodynamic resuscitation in shock is a
dynamic concept (11). Streamlining and identifying each of these
hemodynamic intervention stages in septic shock can provide
clinicians with a more holistic approach and can help personalize
treatments according to the clinical condition and timing of
septic shock diagnosis (11).

However, while the optimization phase seeks to adjust

hemodynamic support to improve perfusion, excessive reliance
on macrocirculation parameters may not accurately reflect tissue
perfusion. In addition, some macrocirculatory changes tend to

occur late in pediatrics, as is the case of hypotension which,
when present, indicates greater disease severity (12). The

stabilization phase involves a continuous administration of fluids
and vasopressors which may result in hypervolemia and

pulmonary edema. Additional fluid boluses must be well justified
and based on much more precise and specific monitoring. We
believe that these two stages (optimization and stabilization) have

common objectives aimed at seeking hemodynamic equilibrium
in children with sepsis and could be simplified to a single phase.

In pediatrics, the inclusion of both phases under the concept of
“equilibrium” can facilitate continuous and adaptable clinical

management, especially in critical care settings. Furthermore, it
provides a simplified framework which may be useful for clinical
practice, in which adherence and speed are essential. This

approach is especially relevant for institutions with limited
resources or less specialized staff, where simplified terminology

can promote better outcomes.

Therefore, in this review, we propose a new pediatric strategy of

Resuscitation, Equilibrium and De-escalation (RED) as an

approach to circulatory shock which, adapted from ROSE, aims

to be more personalized and updated with the most recent

pathophysiological advances. The RED strategy seeks to make

healthcare staff aware that the hemodynamic approach in sepsis
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must be dynamic rather than static. What may initially be

helpful may be harmful in advanced stages of the disease. It also

highlights the idea that the interventions should be structured

and adapted to the patient’s clinical condition and both macro-

and micro-circulatory changes.
The RED strategy

The Resuscitation, Equilibrium and De-escalation (RED)

strategy involves a holistic, dynamic and updated approach to all

the hemodynamic intervention phases in pediatric sepsis and

septic shock. In addition to conventional management strategies

that includes early recognition and initiation of antibiotics, a

structured, phased approach allows the hemodynamic

resuscitation phases or phenotypes in sepsis to be streamlined

and personalized (Table 1).

For this review and viewpoint, a systematic search of the PubMed,

Embase and Cochrane Library databases was conducted up to July

2024. The search terms included “pediatric sepsis,” “fluid therapy,”

“vasopressors”, “shock management,”, “diuretics”, “hypervolemia”,

“tolerance fluids”, “albumin”, and “fluid creep,” combined using

Boolean operators. Studies in English and Spanish that evaluated

fluid and vasopressor management strategies in pediatric patients

with sepsis were included. We included clinical trials, observational

studies, systematic reviews, and opinion articles, while editorials,

letters to the editor and case reports were excluded.

This RED strategy could help personalize interventions

according to the patients’ characteristics and clinical condition in

all phases of circulatory failure in children with sepsis. Below, we

present each of the proposed phases with an initial clinical case

that illustrates the challenges and difficulties faced by clinicians

in real-world practice.

The RED strategy phases include (Figure 1).
1 Resuscitation

James, a previously healthy six-year-old boy, presents to the

emergency room with signs of septic shock, including hypotension,

tachycardia, and cold extremities. Antibiotics are started within

the first hour of care, and his blood pressure improves slightly after

the initial fluid bolus; however, hypotension persists, raising the

dilemma of whether to continue fluid resuscitation or start

vasopressors to avoid fluid overload. The team decides to administer a

second fluid bolus and, given the suboptimal response, initiates

epinephrine while considering a transfer to the pediatric intensive care

unit (PICU) to continue treatment. The PICU informs the team that

there are no immediately available beds.

The main goal of this phase is fluid resuscitation, seeking to

optimize both macrocirculatory parameters (cardiac output

and/or arterial blood pressure) and microcirculatory parameters

(tissue perfusion and oxygenation). Streamlined fluid

resuscitation and early initiation of vasoactive drugs are

becoming more common in the initial management of pediatric

sepsis and septic shock (13, 14). Although the use of crystalloid
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TABLE 1 Objectives of the R.E.D. phases and monitoring strategies in septic shock.

Phase of R.E.D
concept

Targets Interventions Monitoring strategies

1. Resuscitation Macrocirculation
- Optimize AP
- Optimize CO
Microcirculation
- Optimize tissue perfusion

- Fluids bolus 10–20 ml/kg in patients with hypotension
- Hypoperfusion with PICU: fluids bolus

- Hypoperfusion without PICU: no fluids bolus
- Inotropes
- Vasopressors

- Clinical examination
- Respiratory mechanics
- Noninvasive or invasive arterial pressure/PP
- Heart rate
- CRT
- Urine output
- Lactate
- Echocardiography
- POCUS

2. Equilibrium Macrocirculation
- Provide organ support

Microcirculation
- Normalize tissue perfusion indices

- Fluids according to fluid responsiveness and tolerance.
- Vasopressors
- Inotropes
- Avoid fluid creep
- Monitor fluid balance

- Clinical examination
- Respiratory mechanics
- Arterial pressure/PP
- Heart rate
- Diastolic blood pressure (low in
vasodilatory shock)

- CRT
- Lactate
- Urine output
- Advanced hemodynamic monitoring
(minimally invasive CO)

- ScvO2 and ΔP(v-a)CO2

3. De-escalation Macrocirculation
- Decreased organ support.
Microcirculation
- Limit exposure to high doses of fluids
- Limit impact of accumulated fluids
and tisular edema

- Monitor fluid balance
- Fluid restriction in patients with fluid overload.
- Decrease dose of vasopressors/inotropes or suspend
- Fluid removal in case of tisular edema with positive fluid
balance: diuretics, albumin, CRRT.

- Maintain existing monitoring
- Clinical examination
- Respiratory mechanics
- Normal CRT prior to fluid removal.
- Urine output
- Lactate

AP, arterial pressure; CO, cardiac output; PICU, pediartric intensive care units; PP, pulse pressure; CRT, capillary refill time; POCUS, point-of-care ultrasonography; CRRT, continuos

replacement renal therapy. ScvO2 central venous oxygen saturation. ΔP(v-a) CO2 central venous-to-arterial CO2 difference.

FIGURE 1

The resuscitation, equilibrium and De-escalation (RED) strategy in hemodynamic interventions in pediatric sepsis. Hemodynamic interventions in
pediatric sepsis depend on the clinical presentation, time elapsed since identification and context. The RED strategy underscores the idea that
these interventions are dynamic, not static, and are tailored to the course of the disease (precision medicine) and the available resources. CRRT,
continuous renal replacement therapy.
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boluses in sepsis resuscitation has historically been considered a

cornerstone treatment, this strategy is not free of adverse effects.

However, despite these limitations, timely fluid resuscitation in

children with sepsis is a universally accepted strategy used in

almost all possible care settings.
Frontiers in Pediatrics 03
1.1 Fluid therapy

Fluid resuscitation is used to correct the actual and relative

hypovolemia caused by decreased fluid intake prior to

presentation, increased insensible losses, vasodilation, and
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increased capillary leak. The most recent pediatric sepsis

management guidelines recommend applying fluid boluses

according to the care context and the patient’s clinical condition

(3, 4). All hypotensive children, regardless of the availability

of resources, should receive balanced crystalloid boluses at

10–20 ml/kg/dose within the first hour of care (3). A rapid

administration of crystalloid loads has been associated with

greater endothelial injury, shock, and respiratory distress, while

slower administration has been associated with little or transient

cardiac output recovery (15–17). Studies are needed in children

to help clarify the most effective fluid bolus administration rate

according to the context, phenotype and severity of presentation.

For normotensive patients with hypoperfusion (prolonged

capillary refill, altered consciousness), a crystalloid bolus is only

recommended when critical care services are available. The

Surviving Sepsis Campaign (SSC) guidelines recommend only

using maintenance fluids, without crystalloid boluses, if critical

care services or support are not available (3, 4). However, this

recommendation should be integrated into the context and

capacity of the care setting. A patient may be severely

dehydrated, hypoperfused and require a fluid bolus despite the

lack of available critical care support. This is an example of how

each sepsis intervention should be aimed at personalization.

Recently, the Fluid Resuscitation for Suspected Septic shock in

Paediatric Emergency Departments (FRESSPED) study evaluated

the adherence to SSC guidelines in the pediatric emergency

rooms of various hospitals (18). The results showed high

adherence at the beginning of fluid resuscitation but moderate

adherence to the volume and type of crystalloids used. The main

barriers reported by physicians were difficult venous access, lack

of team training and missing or outdated protocols.

An important aspect to keep in mind is that improvements in

cardiac output after fluid boluses in children tend to be transient.

Long et al. (19) found an increased cardiac index in 63% of

patients five minutes after infusing crystalloid boluses, which

decreased to 14% after 60 min. Suchitra et al. (20) found that the

hemodynamic response to a fluid bolus was unpredictable in

children with sepsis. Patients tended to have an improvement in

mean arterial pressure (MAP) but not necessarily increased

cardiac output after a fluid bolus. In fact, in some patients, fluid

boluses were associated with a vasodilating effect, and those who

did not experience MAP recovery after a crystalloid bolus had

greater mortality (20). Rapid fluid redistribution and excretion in

children explains why up to 50% of the infused crystalloid

volume may leave the intravascular space within the first 30 min,

with significantly higher urinary excretion than in adults (21).

This physiological characteristic underscores the importance of

dynamic management in pediatrics, adjusting fluid resuscitation

to maintain perfusion without causing hypervolemia.

In patients with sepsis, the fluid redistribution mechanism is

influenced by several pathophysiological factors like the degree of

endothelial dysfunction, cardiac output status, and inflammatory

activation. Some patients may develop respiratory distress, greater

oxygen requirements, intra-abdominal hypertension and/or acute

kidney injury (AKI) after a fluid load, due to increased capillary leak

and tissue edema. These patients have been called “fluid intolerant”
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(22). This low tolerance to fluid boluses could be explained by

macrocirculatory dysfunction (heart failure) or worsening

endothelial activation related to fluid loads, which some authors

have termed resuscitation-associated endotheliopathy (RAsE). The

RAsE concept suggests that endothelial activation and

macrocirculatory dysfunction contribute to low fluid tolerance,

which limits the effectiveness of crystalloids in some patients.

Therefore, not all patients are simply “fluid responders” or

“nonresponders,” but rather may have a more complex combination

of factors that affect their response to fluid treatment (17, 23). One

of these factors is sympathoadrenal hyperactivation related to

endothelial activation, glycocalyx injury and altered perfusion, a

phenomenonknown as shock-induced endotheliopathy (SHINE) (24).

Pathophysiological aspects
a. Macrocirculation
The hemodynamic response to fluid boluses in children with sepsis

is associated with both macro- and microcirculatory changes

(Figure 2). The first change is expanded intravascular volume.

According to Guyton et al. (25), intravascular volume can be

divided into stressed and unstressed volume. Stressed volume is

that which distends the blood vessel walls with a simultaneous

increase in pressure, while unstressed volume fills the blood

vessels but does not generate any pressure. A 10–20 ml/kg fluid

bolus temporarily increases the stressed volume, thereby

increasing the mean systemic filling pressure (Pmsf), which is the

pressure in the vessels without blood flow or during circulatory

arrest (Figure 2A) (26). However, the hemodynamic response to

fluid boluses varies in pediatric septic shock, with evidence of no

increase in ejection volume with a fluid challenge (despite an

increased Pmsf) and even a decrease in blood pressure in some

cases (26).

Similarly, animal models of septic shock have shown that

recovery of the macrocirculatory variables with fluid boluses is

not necessarily associated with improved microvascular flow and

oxygen delivery to the tissues (27). This loss of hemodynamic

coherence has been associated with worse outcomes and greater

mortality (28). In observational studies in adults, improved

microvascular blood flow after a fluid bolus has been found to

occur only in the first 48 h after identifying sepsis (29). Persistent

microcirculatory dysfunction, especially low 4–6-micron capillary

density (known as functional capillary density), in children with

sepsis after fluid boluses was found to be associated with greater

mortality (17% vs. 6%) and worse outcomes, despite normalized

macrocirculatory variables, when compared to children with

sepsis and a normal functional capillary density (30).

b. Microcirculation
It has been generally accepted that normalization of tissue

perfusion and oxygen delivery are the ultimate endpoints for

fluid resuscitation in septic shock. Microcirculation changes after

fluid boluses are largely determined by the timing of the

interventions and the extent macrocirculatory abnormalities.

Oxygen is transported in the microcirculation through

convection and diffusion (Figure 2B). Convection depends on the

microcirculatory blood flow (determined by the arteriolar tone)
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FIGURE 2

Hemodynamic changes after fluid boluses in sepsis. (A) Macrocirculation. After fluid boluses, mean systemic filling pressure (Pmsf) increases due to
increased stressed volume, with the unstressed volume remaining constant. (B)Microcirculation. In hypovolemia (point A), there is an abnormal driving
pressure (DP) that determines the convective flow. The DP results from subtracting the venule blood pressure from the precapillary blood pressure.
Point B corresponds to euvolemia without microvascular abnormalities with a lower risk of worse outcomes. In fluid overload with tissue edema,
diffusive flow is altered (point C). The gas exchange distance increases and, due to microvascular heterogeneity, the functional capillary density
(number of perfused capillaries/tissue area) decreases in sepsis.
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and the oxygen content (which depends on the capillary

hematocrit). Diffusion depends on the exchange distance (greater

in tissue edema), the capillary/mitochondrial partial oxygen

pressure (PO2) gradient and, finally, the gas exchange area.

Under normal conditions, only 25%–30% of the capillaries are

perfused, and the cardiovascular system is extremely efficient in

adjusting blood flow to the metabolic demands of the tissues and

recruiting additional capillaries when necessary (31). This

ensures tissue perfusion without a high metabolic cost.

Microcirculatory changes during sepsis entail heterogeneity

in capillary perfusion, with slow-flow areas (approximately

100 µm/s) and others with normal flow (400–500 µm/s) (32).

Additionally, there is a lower density of vessels smaller than

10 µm, reducing the functional capacity of the microcirculation

(29). The red blood cell velocity in the perfused vessels does not

change according to the width of the vessel but is influenced by

the velocity of the larger capillaries, which suggests that small

capillaries (4–6 µm) do not respond appropriately to local

changes in oxygen demand, which translates into clinical

perfusion alterations (30). In patients with septic shock, the

disassociation between tissue oxygen demand and vascular

perfusion is thought to be responsible for the progression to

multiple organ dysfunction (MODS) (28, 31).

Mitochondrial dysfunction is one of the most important

consequences of this oxygen delivery imbalance in the cells.

Under normal conditions, mitochondria use approximately 98%

of the available cellular oxygen for energy production through

the Krebs cycle. Mitochondrial dysfunction in sepsis is associated

with the onset and severity of MODS (33). Interventions aimed

at improving mitochondrial activity with medications (thiamine)

or micronutrients (ascorbic acid, tocopherol, selenium and zinc)

have been termed “metabolic resuscitation” (34). Although these
Frontiers in Pediatrics 05
interventions have theoretical benefits, they do not have enough

evidence yet to support their widespread use. Genomic,

metabolomic and pharmacogenomic development is expected to

identify the specific groups of patients who would benefit from

the recovery of mitochondrial function with these

pharmacological measures.

After crystalloid boluses, there are changes in the capillary

driving pressure (the difference between precapillary and venule

pressure) with improved convection, and changes in diffusion

with more recruitment of capillaries and better functional

capillary density. However, these responses to fluid boluses have

been seen in adults only in the 48 h after sepsis diagnosis (29).

Pranskunas et al. reported that patients who had improved

microcirculation perfusion after fluid boluses had an associated

improvement in organ function (35). Furthermore, in children,

unbalanced fluid boluses have been associated with negative

microcirculatory changes, including glycocalyx degradation and

increased endothelial permeability (36). In this regard, the

volume of intravenous fluids administered during sepsis

resuscitation in adults has been found to be independently

associated with the degree of glycocalyx degradation (37). This

layer, that covers the endothelial cells, is essential for

microvascular homeostasis, mediates the vasorelaxation induced

by shear stress and prevents leukocyte adhesion to the

endothelial cells. In sepsis, tumor necrosis factor-α and

angiopoietin-2, among others, induce heparanase expression and

activation, which causes endothelial dysfunction and organ insult

mediated by damage to heparan sulfate, a component of the

endothelial glycocalyx (38). Heparanase and the inflammatory

response in sepsis also cause degradation of syndecan-1, another

structural component of the glycocalyx. These phenomena lead

to the loss of integrity of the protective layer of the endothelial
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cell, increase microvascular permeability and foster the onset of

capillary leak syndrome.
1.2 Vasoactive medications

In this initial resuscitation phase of the dynamic strategy it may

be necessary to begin vasoactive support. Pediatric sepsis guidelines

(3, 4) recommend initiating vasoactive support when signs of

hypoperfusion persist after fluid resuscitation or signs of fluid

overload appear. The SSC recommends considering beginning

vasoactive drugs after 40–60 ml/kg of crystalloid boluses.

However, a recent multicenter randomized pilot trial comparing

early initiation of adrenaline (after a 20 ml/kg crystalloid bolus)

vs. the treatment recommended by SSC found that there was a

lower total 24-hour fluid input in the intervention group, with

no differences in the frequency of organ dysfunction, pediatric

intensive care unit (PICU) admission or length of PICU stay

(13). Another open-label trial in children with sepsis found that

early initiation of adrenaline (after 40 ml/kg of crystalloids)

reduced the need for mechanical ventilation, as well as persistent

shock and mortality (39). In adults, observational studies have

shown that early administration of noradrenaline (less than one

hour after identifying shock) has been associated with a

reduction in the total volume of fluids administered and lower

28-day mortality (40, 41).

There are no studies in children specifically comparing

adrenaline (or epinephrine) with noradrenaline (or norepinephrine)

as a first-line vasoactive drug in septic shock. Banothu KK et al.

(42) conducted an open-label randomized controlled study at a

single center in India, comparing the effectiveness of two treatment

regimens in children with fluid-refractory septic shock. Two

approaches were studied: norepinephrine plus dobutamine vs.

epinephrine as a first-line vasoactive agent. The primary objective

was to determine which of these treatments offered better

outcomes in terms of hemodynamic stabilization and reduced

mortality. The results showed that both approaches were effective

for managing shock. However, there were differences in their side

effect profiles and the time required to recover cardiovascular

function, with the norepinephrine plus dobutamine group resolving

shock more rapidly (HR 1.84; 95% CI 1.11–3.08).

When there is evidence of low cardiac output, clinicians prefer

adrenaline or dobutamine, and when there is evidence of

vasodilation, noradrenaline is preferred. Both drugs stimulate the

beta 1 adrenergic receptors, with increased chronotropy and

inotropy, and the alpha-adrenergic receptors, with increased

peripheral vascular resistance (PVR) (10). By increasing the PVR,

some vasopressors also increase venous tone, increasing Pmsf and

adding to the effect of the crystalloid boluses (40).
2 Equilibrium

James develops respiratory failure, is intubated in the emergency

room, and an x-ray shows signs of pneumonia. The addition of
Frontiers in Pediatrics 06
peripherally administered noradrenaline is necessary to maintain

the target blood pressure. He is admitted to intensive care and the

team begins invasive monitoring and places a central venous

catheter, but prolonged capillary refill persists despite achieving the

macrocirculation goals. In light of the persistent signs of

hypoperfusion despite fluid resuscitation and vasoactive drugs, the

team decides to begin an inodilator.

The goal of this phase is to maintain a hemodynamic balance

in both the macro and microcirculation after the initial fluid bolus

and vasoactive support interventions. It often occurs within a few

hours of sepsis diagnosis. In this phase of hemodynamic

management, it is important to adjust the vasoactive drugs

and titrate fluid input to avoid unnecessary additional

crystalloid boluses, which can lead to fluid overload and worse

outcomes (43, 44).
2.1 Objectifying the need for additional
fluid boluses

Identifying children in septic shock who could benefit from

additional crystalloid boluses tends to be a significant clinical

challenge. According to the availability of resources, clinical

assessments and minimally invasive monitoring tools have been

used to determine the fluid response status in critically ill

patients (Table 1). A systematic review and meta-analysis of 62

pediatric studies that sought to evaluate the performance of

different tools in predicting response to fluids in critically ill

children found that the variables with a good capacity for

predicting the response to fluids were passive leg raising stroke

volume (PLR-SV), respiratory variation in aortic peak flow

(RVAF), and left ventricular velocity time integral (LVVTI)

measured using an ultrasound device (45). However, these tools

are often not available at the bedside. Furthermore, the

association between preload recovery as defined by ultrasound

techniques and actual clinical improvement is unclear and

requires further study. When these tools are not available, tissue

perfusion monitoring (i.e., capillary refill time) can guide the

clinician on the risks or benefits of administering additional fluid

boluses. A post-hoc analysis of the ANDROMEDA-SHOCK trial

(which included a systematic evaluation of the baseline response

to fluids prior to beginning the protocol) found that, in a

significant percentage of patients the fluid resuscitation could be

guided by clinical variables like capillary refill time (46). In

patients who did not respond to fluid resuscitation, fluid boluses

could be stopped with no negative impact on the relevant

clinical outcomes.
2.2 Monitoring fluid creep

Another important aspect in all the hemodynamic intervention

phases, especially in this equilibrium phase, is to consider the

volume administered that is not related to fluid boluses. The

amount of maintenance fluids, continuous infusions, nutrition,
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blood products, medication dilution fluids, and flushes to maintain

the patency of intravascular lines can contribute to hypervolemia in

the post-resuscitation phase. The contribution of these non-

resuscitation fluids to fluid overload has been termed “fluid

creep” (47, 48). Some studies have found that fluid creep

accounts for a third of the total daily administered fluid, with its

proportion gradually increasing throughout the PICU stay,

becoming the main source of fluids by the fourth or fifth day of

PICU stay (41). Barhight et al. (6) evaluated 14,483 PICU

patients in two hospitals and found that more than half of these

children received non-resuscitation fluid beyond hydration

requirements, which was associated with greater mortality (a 1%

increase in mortality for every 10 ml/kg of excess fluid)

regardless of age, Pediatric Risk of Mortality III score, study site,

acute kidney injury, resuscitation volume and volume output.

Excess maintenance fluids are a modifiable factor that can

contribute to hypervolemia and should be actively titrated,

particularly in the post-resuscitation phase. Performing proper

daily fluid balance monitoring, tracking inputs and outputs along

with the patient’s weight, can help the clinician prevent

overhydration and adverse outcomes which have been related to

hypervolemia (AKI, abdominal hypertension or greater mortality).
3 De-escalation

James is stabilized, but after 48 h of care, he has a positive

balance of 22% of his body weight, with significant generalized

edema, and he develops oliguria and mild azotemia. The team

decides to begin loop diuretics after confirming that James is on

low doses of vasoactives and is hemodynamically stable.

After the initial stabilization and reaching equilibrium, the

clinician should concentrate on gradually decreasing the

hemodynamic support, limiting exposure to unnecessary fluids and

facilitating the removal of excess fluids. During the resuscitation and

equilibrium phases there is often hypervolemia, positive balances

and soft tissue edema due to fluid administration often complicated

by AKI and increased endothelial permeability with fluid transfer

from the intravascular to the interstitial space.
Pathophysiological aspects

Under normal conditions, there is a close interaction between

microcirculation and the interstitial extracellular matrix. The

integrity of the endothelial barrier, the glycocalyx layer and

interstitial pressure help regulate transcapillary flow between the

intravascular and interstitial spaces (6). Interstitial space pressure is

kept within a narrow range (between −2 and −3 mmHg) by the

constant tension exerted by the fibroblasts on the collagen bundles

through the B-1 integrin transmembrane protein (49, 50). This

tension, coupled with appropriate functioning of the lymphatic

system, is essential for keeping the interstitial space free of excess

fluid (51). Under inflammatory conditions, increased cytokines

(mainly tumor necrosis factor alpha, interleukin-1B, and
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interleukin-6) and matrix proteases result in a loss of binding

between the B1 integrins and collagen fibers (52). Furthermore, the

endothelial activation, glycocalyx damage, loss of intercellular

binding and lymphatic system saturation that occur in patients with

sepsis lead to increased filtration pressure (capillary pressure –

interstitial pressure) with subsequent fluid accumulation in the

interstitial space (51, 52). Under inflammatory conditions, the

interstitial pressure has been found to reach up to −100 mmHg,

which progressively increases the amount of fluid accumulated in

the interstitium, a phenomenon that has been called interstitial

suction (53). The clinical expression of this condition is tissue edema

with hypoperfusion and associated organ failure, often found in

children with capillary leak and septic shock.
3.1 Active fluid removal

One way to reduce hypervolemia, sustain euvolemia and

optimize tissue perfusion is through active fluid removal. Very

often, the treatment measures used to decrease hypervolemia are

not planned and can lead to relative hypovolemia and new,

unnecessary fluid boluses. A survey by Aramburo et al. (5) in 48

countries showed that 93% of physicians employed active fluid

removal or fluid limiting practices for children in critical care.

The most common interventions were the use of loop diuretics

(93.3%), restriction or avoidance of maintenance fluids (86.6%),

minimizing drug diluents (72.4%) and the use of renal

replacement therapy to prevent or treat fluid accumulation

(55%), especially in children with poor response to diuretics or

evidence of severe AKI. In adults, active fluid removal has been

associated with a reduction in the duration of mechanical

ventilation, shorter ICU length of stay and lower mortality (54).

Another active fluid removal strategy employed commonly is

the use of hyperoncotic albumin (20 or 25% albumin fluid) in

conjunction with the diuretics. In adults being ventilated due to

lung injury, the use of hyperoncotic albumin with furosemide,

coupled with adjusted positive end-expiratory pressure, has been

associated with a negative cumulative fluid balance and decreased

lung water (55). Following initial resuscitation in adults with

sepsis, hyperoncotic albumin has been associated with improved

tissue hypoperfusion compared to 0.9% saline solution (55). In

patients with sepsis, plasma and albumin have also been found

to have a potential protective effect on the endothelium through

antioxidant and anti-inflammatory effects (56, 57). Likewise, in

children with sepsis, the correction of hypoalbuminemia has

been associated with improved functional capillary density,

endothelial glycocalyx damage recovery and lower levels of

angiopoietin-2 (58, 59). In addition, a multicenter observational

study of children with a sepsis phenotype characterized by

persistent hypoxemia, encephalopathy and shock -which is

associated with increased systemic inflammation and endothelial

activation- found that those who received 0.5 g/kg or more of

intravenous albumin within the first 24 h of care were associated

with a higher survival rate (75% vs. 66%) than those who did

not after adjusting for confounders (60).
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3.2 Renal replacement therapy

Another strategy used to remove fluids is renal replacement

therapy (RRT). Acute kidney injury is common in children with

sepsis and may require extracorporeal renal support therapies when

there is no response to diuretics (2, 4). In adults with sepsis, there

have been conflicting study results regarding the use of these

therapies to remove excess fluids (61). No differences have been

found in mortality, length of ICU stay or duration of AKI with early

vs. late RRT (62). In a recent multinational survey, 55% of the

physicians reported using RRT to prevent or treat hypervolemia

in critically ill children (6). In this phase of the RED strategy, one

of the most important aspects is AKI prevention, avoiding

overhydration or high doses of vasopressors. A recent systematic

review and meta-analysis in children found that a fluid overload

greater than 10% at any time during the PICU stay was associated

with a greater need for mechanical ventilation and mortality (44).
3.3 Tissue perfusion monitoring

Active fluid removal must be closely monitored and

individually adjusted to each case. The prerequisite for active

fluid removal is an achievement of hemodynamic stability with

resolved hypoperfusion and requirement for low (or no) doses of

vasoactive drugs. Furthermore, close tracking of fluid balance (as

well as daily weights when possible) is needed estimate the

amount of accumulated fluid. Close monitoring of serum lactate

and capillary refill time is useful for guiding this fluid

redistribution phase and can help determine the microcirculation

status of children with sepsis (46, 63). Pediatric randomized trials

are needed to evaluate the best strategy for performing active

fluid removal and the most appropriate monitoring tools (64).
Limitations

The RED strategy proposal has not yet been standardized or

validated in clinical studies. It clusters a series of updated

interventions for hemodynamic management in sepsis which

should be evaluated in prospective studies. We do not know if

reaching hemodynamic goals will translate into better

neurological and functional outcomes. In addition, the varied

hemodynamic response in the different pediatric sepsis

phenotypes and the challenges to clinical implementation in

different care settings are aspects that must be evaluated in the

RED strategy. However, the RED strategy brings a more

dynamic and practical perspective to the circulatory

management of pediatric shock, by unifying the optimization

and stabilization phases (from the ROSE strategy for adults)

under the concept of “equilibrium.” This better reflects the

clinical reality, where transitions between these phases are often

blurred, and continuous and adaptable management is needed

to achieve homeostasis without affecting perfusion or tissue

oxygenation. Moreover, by including the “de-escalation” phase
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as an explicit component, RED addresses the growing evidence

of the importance of minimizing hypervolemia and

withdrawing hemodynamic support in a controlled fashion,

which is associated with better clinical outcomes (44, 54, 63).

This simpler, action-oriented framework facilitates

implementation in pediatric scenarios, especially in settings

with limited resources.
Conclusion

Sepsis is one of the main causes of morbidity, mortality and

new functional disorders in children worldwide. The

cardiovascular system is one of the most frequently affected, with

both macro- and microcirculation abnormalities. Fluid

resuscitation and vasoactive drugs modify the clinical course of

the disease but are not free of adverse effects. The structured and

personalized use of these interventions during resuscitation, the

rational administration of non-resuscitation fluids, and the timely

removal of accumulated fluid have the potential to improve

outcomes in such a complex and dynamic syndrome. The

proposed RED strategy provides a holistic, phased approach to

the hemodynamic management of children with circulatory

involvement, anticipates potential complications associated with

these interventions, and aims at faster cardiovascular stabilization

and improved clinical outcomes.
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