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Introduction: Poor sleep quality in childhood can predict sleep quality

throughout the lifecourse and other health outcomes. Endocrine-disrupting

chemicals can affect adults’ sleep quality, and prenatal phenol exposure

impacts fetal development.

Objective: To assess associations between prenatal phenol concentrations and

child sleep outcomes.

Methods: We used data from the National Institutes of Health-funded

Environmental influences on Child Health Outcomes (ECHO) Cohort

(n= 1,198) that were collected from 2008 to 2019 at several sites across the

United States. The present analysis was conducted in 2023–2024. Using

single-pollutant and mixture models, we examined associations between

prenatal phenol concentrations and three key child sleep quality outcomes:

sleep problems, disturbance, and impairment. Child sleep outcomes were

assessed using the Child Behavior Checklist (CBCL) and the Patient-Reported

Outcomes Measurement Information System (PROMIS) Sleep Disturbance and

Sleep-Related Impairment scales. Unadjusted and multivariable-adjusted

models were examined, with stratified models and interaction terms used to

examine interactions with child sex.
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Results: Of the eight phenols assessed, higher prenatal methylparaben

concentrations were associated with lower child sleep-related impairment

scores (β=−4.79, 95% CI: −9.45 to −0.14). Sex modified the associations for

benzophenone-3 and PROMIS sleep disturbance T-scores, where the

association was stronger among boys (tertile 3 vs. 1, β= 3.20; 95% CI: 0.27–6.14;

p= 0.033) and did not persist among girls. Bisphenol A was associated with

sleep-related impairment among boys (tertile 2 vs. 1, β=−5.69; 95% CI: 0.55–

10.82; p= 0.031). Phenol mixtures were not associated with sleep outcomes

overall or by sex.

Conclusion: The findings suggest that phenol exposure during pregnancy may be

associated with child sleep quality and that child sex modifies this association.

KEYWORDS

child, environmental pollutants, phenols, sleep quality, pregnancy

1 Introduction

Childhood sleep quality is an understudied public health

concern, but existing research has shown that it can predict

continued sleep quality issues and other health outcomes

throughout life. Epidemiologic studies identify child sleep

problems, such as insufficient and disrupted sleep, to be

common and widespread (1–8), impacting an estimated 20%–

50% of infants and school-age children (9–11). According to a

report by the U.S. Centers for Disease Control and Prevention

(CDC), 1 in every 3 children from early infancy through

adolescence suffers from insufficient sleep, disproportionately

affecting racial and ethnic minorities with lower socioeconomic

status and special health care needs (12).

Sleep is vital for healthy development in childhood, as poor

sleep (in quantity and/or quality) can have detrimental physical,

neurocognitive, emotional, and behavioral impacts (8, 9, 13–18).

Sleep disruption in adolescents negatively impacts school

performance (1), mental health, and risk-taking behaviors (9, 13,

19). Sleep disturbances in childhood and adolescence can precede

sleep disorders in adulthood, affecting overall health and costing

hundreds of billions of dollars in the United States annually on

sleep healthcare and pharmaceutical intervention (13). Risk

factors for poor sleep quality in children include genetics,

nutrition, the caregiver-child relationship, and community/

socioeconomic (1, 12) and environmental (20) factors (10, 21).

Prenatal factors, such as maternal alcohol consumption (10,

22–24), maternal depression (25), and maternal sleep duration

(26, 27) can also play a role in childhood sleep quality.

A growing body of literature implicates in utero exposure to

endocrine-disrupting chemicals (EDCs) as having negative effects

on childhood neurobehavioral development (28–42), which may

manifest in both behavioral and sleep disturbances (43–45).

Endocrine-disrupting chemicals such as phenols present in

common household personal care and beauty products have been

found to be prevalent in the bodies of pregnant women in the

United States (46–51).

While previous studies implicate chemical exposure as affecting

adult (52–56) and adolescent (57) sleep quality, existing literature

examining whether chemical exposure during pregnancy may

affect offspring sleep quality is scarce. Phenol exposure in utero

has been shown to alter brain development; the endocrine-

disrupting properties of phenols affect brain masculinization,

having potential implications for a variety of neurodevelopmental

outcomes, including child circadian rhythms, potentially through

disruption of the suprachiasmatic nucleus or hormone-regulated

sleep pathways (58–62).

Several epidemiologic studies offer early-life insight into this

relationship. Zamora et al. found positive associations between

maternal prenatal exposure to the pesticide chlorpyrifos and later

sleep timing among adolescent offspring, wherein the highest

tertile of exposure was associated with a 0.6-hour later sleep

midpoint [95% confidence interval (CI): 0.01–1.3; p-trend = 0.01]

(45). Previous studies also shed light on differential sex impacts

of prenatal chemical concentrations. For instance, Geiger et al.

reported that sex modified the relationship between bisphenol A

(BPA) exposure and scores on the Child Behavior Checklist

(CBCL) sleep problems syndrome sale, where the association was

inverse among males with lower BPA concentrations and positive

(more reported behavior problems) among girls in the higher

BPA group (60). However, these studies primarily examined

general behavioral outcomes or sleep timing rather than validated

measures of sleep quality including sleep-related impairment.

The literature on prenatal phenol exposure and sleep outcomes

among children is limited, and findings are inconsistent (60, 63,

64). For instance, Geiger et al. (60) evaluated sleep problems

using the CBCL but did use not instruments exclusively designed

for sleep quality assessment. Two other studies have explored

prenatal phenol exposure in relation to behavior or circadian

timing (63, 64) but not using validated sleep outcomes. To our

knowledge, no prior studies have directly examined the

association between prenatal phenol exposure and sleep quality

outcomes in early childhood using CBCL or Patient-Reported

Outcomes Measurement Information System (PROMIS)

assessments. Additionally, no studies have evaluated prenatal

chemical exposure in relation to PROMIS sleep disturbance or

impairment outcomes. These gaps underscore the need for

research leveraging standardized sleep assessments.

Our study addresses the knowledge gap by examining the

association between prenatal environmental phenol exposure and
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offspring childhood sleep quality, which can interact and amplify

health effects, using single-pollutant and mixture models (48).

We hypothesized that higher maternal phenol exposure during

pregnancy would be associated with more offspring sleep

problems, disturbances, and related daytime impairments. We

explored this hypothesis using data from a large, racially/

ethnically, geographically, and socioeconomically diverse sample

of children across the United States who are part of the National

Institutes of Health-funded Environmental influences on Child

Health Outcomes (ECHO) Cohort, a nationwide consortium of

pediatric cohorts assembled with the aim of leveraging

demographic and geographic heterogeneity and a large sample

size to address research questions pertaining to children’s

environmental health (65, 66).

2 Materials and methods

2.1 Study population

Mother-child dyads from the ECHOCohort meeting the following

criteria were included: (1) phenols were measured in maternal urine at

least once during pregnancy; (2) the child had complete data for the

preschool CBCL sleep syndrome scale (for ages 1.5–5 years) (67),

the PROMIS Parent Proxy Short Form-Sleep Disturbance 4a

(PSD4a) measure (68, 69), or the PROMIS Parent Proxy Short Form

Sleep-related Impairment 4a measure (PSRI4a) (70, 71) at least once

between the ages of 4 and 8 years; and (3) the pregnancy was a

singleton gestation. For mothers with multiple births, the firstborn

child was selected. Supplementary Table S1 details cohorts and

sample sizes by child sleep outcome. Supplementary Figure S1

illustrates how analytical samples were derived. A total of 1,198

children contributed data to 1 or more of the 3 outcome measures.

2.2 Environmental phenols

The laboratory methods used to measure phenolic compounds

varied across cohorts (Supplementary Table S2). Phenols were

measured in maternal urine [in nanograms (ng) per milliliter

(ml)] at 3 laboratories: the California Department of Toxic

Substances Control, the CDC, and the Wadsworth Human

Health Exposure Analysis Resource Laboratory (72). We used

urine as the single matrix of chemical measurement because the

collection of urine biomarkers is recognized as “the most

common, reliable, and non-invasive method used to measure

BPA” (73). The number of phenols measured in each cohort

ranged from 8 to 14. Phenols were included in the analysis 75%

or more of the values were above the method limit of detection

(LOD). Detection rates for these compounds are presented in

Table 1. Eight phenols met these criteria: BPA, BPS,

benzophenone-3 (BP3), 2,4-dichlorophenol (DCP24),

2,5-dichlorophenol (DCP25), methylparaben, and propylparaben.

For those observations below the LOD, we imputed exposure

values as the LOD divided by the square root of 2 (74, 75).

Phenol concentrations were adjusted for urinary dilution using

the specific gravity (SG), or creatinine when the SG was not

available: {SG_adj = phenol value*(SG_median-1)/(SG-1);

creatinine_adj = phenol value*creatinine median/creatinine}.

Extreme phenol values over the 99th percentile were excluded

(76). For cohorts with phenols measured at multiple gestational

time points, concentrations above the LOD were averaged.

2.3 Sleep

Three sleep outcome measures were used to examine separate

aspects of sleep quality: sleep problems, sleep disturbance, and

sleep-related impairment.

Sleep problems were assessed with the Preschool CBCL, a

validated and commonly used parent-report of child behavior for

children aged 1.5–5 years (77, 78). The CBCL includes seven

items on a “syndrome scale” for measuring sleep problems: “does

not want to sleep alone”; “has nightmares”; “has trouble getting

to sleep”; “resists going to bed”; “sleeps less than most children”;

“talks during sleep”; and “wakes often”. Scores on the sleep

syndrome scale are calculated to determine how well the item

describes the child’s sleep in the past 2 months using a 3-point

scale. Higher scores correspond to more sleep problems, where

“not true” = 0 points, “somewhat true” = 1 point, and “often

true” = 2 points. CBCL sleep syndrome scores were converted to

T-scores according to the CBCL manual for the study analysis.

TABLE 1 Detection rate and distribution of urinary phenols (ng/ml).

Chemical CBCL outcome PSD4a outcome PSRI4a outcome

Detection rate
N (%)

Median (Range) Detection rate
N (%)

Median (Range) Detection rate
N (%)

Median (Range)

Benzophenone-3 650 (99) 84.68 (0.05–5,832.60) 368 (99) 75.85 (2.05–5,832.60) 141 (100) 66.84 (2.05–4,862.78)

Bisphenol A 899 (88) 1.02 (0.04–10.55) 344 (93) 1.12 (0.12–13.04) 139 (99) 1.65 (0.30–13.04)

Bisphenol S 800 (87) 0.49 (0.02–9.32) 270 (93) 0.57 (0.05–8.08) 125 (91) 0.48 (0.05–4.87)

2,4-Dichlorophenol 467 (97) 0.66 (0.08–58.37) 165 (98) 0.94 (0.10–52.72) 139 (98) 0.98 (0.10–52.72)

2,5-Dichlorophenol 467 (97) 2.11 (0.06–1,612.68) 167 (100) 6.71 (0.24–1,612.68) 141 (100) 7.13 (0.48–709.25)

Methylparaben 592 (100) 89.51 (1.43–1,442.89) 164 (99) 90.69 (2.45–1,211.27) 138 (99) 96.42 (2.45–1,166.51)

Propylparaben 589 (100) 15.62 (0.16–569.30) 166 (99) 15.26 (0.22–559.87) 140 (99) 15.0 (0.26–559.87)

Triclosan 661 (90) 11.67 (0.25–1,049.13) 315 (86) 12.30 (0.40–956.42) 118 (85) 20.10 (1.11–956.42)

CBCL, child behavior checklist; PSD4a, PROMIS parent proxy short form-sleep disturbance 4a; PSRI4a, PROMIS parent proxy short form sleep-related impairment 4a.

Values <limit of detection (LOD) were imputed as LOD/sqrt(2). Values were adjusted for specific gravity or creatinine, whichever was available.
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Sleep disturbance was evaluated with the PSD4a for children

aged 2 to <8 years [71]. On a 5-point scale (“never”, “almost

never”, “sometimes”, “almost always”, and “always”), parents

report how often in the past 7 days their child had difficulty

falling asleep, trouble sleeping through the night, a problem with

sleep, and trouble sleeping. We used the PROMIS T-score with a

mean of 50 and a standard deviation (SD) of 10.

Sleep-related impairment was measured using the PSRI4a for

5 to <8-year-olds. Sleep impairments are distinct from sleep

disturbances in that they are decrements in functioning during

waking hours due to sleep disturbances or other sleep quality

issues (70). On a 5-point scale (“never”, “almost never”,

“sometimes”, “almost always”, and “always”), parents report how

frequently over the past 7 days their child was sleepy during the

daytime, had trouble concentrating, had difficulty completing

tasks due to sleepiness, and had problems during the day due to

poor sleep. We used the PROMIS T-score as described above.

If any of the three sleep assessments was completed more than

once for a child aged 4–<8 years, the average score was used to

provide a smoothed assessment of sleep quality during early

childhood as opposed to a worst-case scenario assessment (79).

2.4 Covariates

Covariates included in this analysis were child age in years (at

outcome assessment), child gestational age at birth, highest level of

maternal education (<high school, high school or equivalent, and

some college or more), maternal age at delivery, and cohort. These

variables were selected based on their relevance in previous

epidemiologic studies of prenatal exposures and child sleep, as well

as theoretical causal pathways. We examined correlations between

each potential confounder and the key exposure and outcome

variables, which, together with the existing literature, informed our

models. We removed birth weight from the models since it was

moderately correlated with gestational age. Child sex was reported

by the parent/caregiver and dichotomized as male vs. female.

Child gestational age at birth (in weeks) was harmonized from

multiple sources (medical record abstraction or self-report). Child

race and Hispanic ethnicity were reported by the parent/caregiver,

and categories across cohorts were harmonized as Non-Hispanic

White, Non-Hispanic Black, Non-Hispanic Other, and Hispanic to

maximize the sample size within categories (80). Covariates with

missing data were imputed using multiple imputation by chained

equations, treating cohort as a cluster variable with 10 imputed

datasets and 5 iterations for each imputed dataset (80).

2.5 Analysis

2.5.1 Single pollutant models

We evaluated each sleep outcome using separate models due to

differing available data samples. For each outcome, analysis of

variance assessed differences by sex, education, race, and cohort.

For example, we tested whether there was a significant difference

in sleep problems (CBCL assessment) between female and male

children. We used unadjusted and adjusted linear mixed effect

regression models to estimate the association of prenatal

maternal phenol categories of increasing exposure (see

Supplementary Table S3 for ranges of tertile values) with child

sleep outcomes. We chose tertiles rather than linear or spline

terms due to the highly skewed distribution of most phenol

concentrations, and to explore a dose-response relationship.

Visual inspection indicated that categorical treatment improved

robustness and interpretability. In the adjusted models, we

included maternal age at delivery, maternal education, child sex,

child gestational age, and child age at the sleep outcome as

covariates, with random intercepts for cohorts to account for

within-cohort correlation. Where interaction terms (e.g.,

sex*exposure) were evaluated, we confirmed that main effects

remained stable compared to models excluding interactions. We

also conducted a sensitivity analysis for gestational age at birth

by running the multivariable-adjusted model without this variable.

2.5.2 Sex-stratified analyses
To evaluate potential effect modification by child sex, we

included multiplicative interaction terms between phenol exposure

tertiles and child sex (male vs. female) within our linear mixed-

effects models. Each model included cross-product terms

representing the interaction between exposure category and sex,

while accounting for covariates and random intercepts by cohort.

Statistical significance of interaction terms was assessed using a

p-value threshold of <0.10, which is commonly used in

epidemiologic research to identify potential effect modification

without overly conservative filtering. This approach allowed us to

examine whether the association between prenatal phenol

exposure and sleep outcomes differed meaningfully by child sex.

While we did not estimate additive interaction (e.g., using risk

differences or relative excess risk due to interaction), we recognize

that such approaches provide important complementary

information on public health impact. Although not implemented

here, future work could apply additive interaction frameworks to

more comprehensively assess sex-specific vulnerability.

2.5.3 Mixture models

Quantile g-computation (81) was used to model combined

exposure to all 8 phenols considered in this analysis and each of

the 3 aspects of sleep quality at ages 4–<8. In the quantile

g-computation, parametric, generalized linear model-based

computation was performed to estimate the effect of increasing

all phenols by 1 quartile on each of the 3 sleep outcomes. Each

exposure was assigned a positive or negative weight depending

on the direction of its association with the outcome. The weights

for each outcome, potentially both positive and negative,

summed to 1, representing the proportion of total effect

contributed by the individual partial effects (positive or negative)

of each phenol chemical. All analyses were conducted using

R Statistical Software (version 4.1.2, R Core Team, Vienna,

Austria), and the gcomp R package (version 2.9.0, R Core Team,

Vienna, Austria) was used for the mixture analysis (81, 82).
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TABLE 2 Descriptive characteristics of the study sample by sleep quality outcome.

Characteristic CBCL PSD4a PSRI4a

N= 1,123 p-valuea N= 374 p-valuea N= 142 p-valuea

Child age (years) 0.7 0.08 0.8

Mean (SD) 4.2 (0.4) 4.9 (0.8) 5.4 (1.0)

Median (IQR) 4.0 (4.0, 4.5) 4.7 (4.4, 5.1) 5.1 (4.9, 5.9)

Missing 0 0 0

Child sex, N (%) 0.7 0.6 0.4

Male 580 (52%) 185 (49%) 66 (46%)

Female 543 (48% 189 (51%) 76 (54%)

Child race/ethnicity, N (%) 0.7 0.8 0.3

Non-Hispanic White 385 (35%) 51 (14%) 23 (16%)

Non-Hispanic Black 91 (8.3%) <10 (<5%) <5 (<5%)

Non-Hispanic Asian 61 (5.5%) 44 (12%) <5 (<5%)

Non-Hispanic other 90 (8.2%) 36 (9.7%) 8 (5.6%)

Hispanic 476 (43%) 235 (63%) 110 (77%)

Missing 20 <5 0

Maternal age (years) 0.3 0.7 0.8

Mean (SD) 30.8 (5.5) 31.4 (4.9) 30.1 (5.1)

Median (IQR) 31.0 (27.0, 35.0) 32.0 (28.0, 35.0) 30.0 (27.0, 34.0)

Missing 0 0 0

Gestational age at birth (months) 0.7 0.9 >0.9

Mean (SD) 38.8 (1.7) 38.5 (2.0) 38.2 (2.1)

Median (IQR) 39.0 (38.0, 40.0) 39.0 (38.0, 40.0) 39.0 (38.0, 39.0)

Missing 0 0 0

Birth weight (grams) <0.001 0.009 0.02

Mean (SD) 3,313.3 (518.7) 3,293.9 (523.1) 3,227.2 (575.5)

Median (IQR) 3,340.0 (2,990.0, 3,651.2) 3,340.0 (2,977.8, 3,621.8) 3,232.0 (2,941.0, 3,607.2)

Missing 31 8 6

Maternal education, N (%) 0.5 0.4 0.4

Less than high school 88 (7.9%) <5 (<5%) <5 (<5%)

High school degree, GED/equivalent 178 (16%) 31 (8.3%) 11 (7.8%)

Some college, no degree, and above 848 (76%) 339 (91%) 129 (91%)

Missing 9 2 1

Annual household income, N (%) 0.14 0.2 0.4

<$30,000 219 (32%) 95 (29%) 65 (50%)

$30,000–$49,999 82 (12%) 56 (17%) 27 (21%)

$50,000–$74,999 84 (12%) 45 (14%) 16 (12%)

$75,000 or more 293 (43%) 136 (41%) 23 (18%)

Missing 445 42 221

Pre-pregnancy BMI category, N (%) 0.6 0.3 0.2

Underweight 27 (2.6%) 10 (2.7%) 6 (4.4%)

Normal weight 454 (44%) 148 (40%) 61 (45%)

Overweight 286 (28%) 96 (26%) 36 (26%)

Obese 267 (26%) 114 (31%) 34 (25%)

Missing 89 6 5

Sleep Quality 0.91 0.03 0.03

Mean (SD) 53.08 (5.36) 50.66 (9.07) 47.55 (8.87)

Median (IQR) 51 (50.0, 53.0) 49.64 (41.39, 57.14) 46.22 (39.95, 51.49)

BMI, body mass index; CBCL, child behavior checklist; GED, general educational development; IQR, interquartile range; PSD4a, PROMIS parent proxy short form-sleep disturbance 4a; PSRI4a,

PROMIS parent proxy short form sleep-related impairment 4a; SD, standard deviation.
aWelch’s two-sample t-test and Pearson’s chi-squared test for sex difference for continuous and categorical variables.
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TABLE 3 Results of linear mixed regression models assessing the association between tertiles of phenol exposure during pregnancy and child sleep
outcomes.

Phenol CBCL PSD PSRI4a

Tertile
(range)

Estimate 95% CI p-
value

Tertile
(range)

Estimate 95% CI p-
value

Tertile
(range)

Estimate 95% CI p-
value

BP3 BP3 BP3

Tertile 1

(0.05, 38.12)

Referent Tertile 1

(2.05, 32.23)

Referent Tertile 1

(2.05, 29.28)

Referent

Tertile 2

(38.12, 214.56)

0.39 −1.14, 1.92 0.62 Tertile 2

(32.23, 207.12)

0.58 −2.33, 3.49 0.70 Tertile 2

(29.28, 142.39)

2.80 −2.13, 7.73 0.26

Tertile 3

(214.56, 5832.60)

1.01 −0.57, 2.59 0.21 Tertile 3

(207.12, 5832.60)

2.08 −0.89, 5.05 0.17 Tertile 3

(142.39, 4862.78)

2.34 −2.42, 7.10 0.33

Tertile 2 X child

sex

0.48 −1.69, 2.64 0.67 Tertile 2 X child

sex

0.90 −3.24, 5.04 0.67 Tertile 2 X child

sex

−4.18 −11.09,

2.73

0.23

Tertile 3 X child

sex

0.07 −2.10, 2.23 0.95 Tertile 3 X child

sex

0.78 −3.31, 4.88 0.71 Tertile 3 X child

sex

−0.82 −7.81, 6.17 0.82

BPA BPA BPA

Tertile 1

(0.04, 0.70)

Referent Tertile 1

(0.12, 0.79)

Referent Tertile 1

(0.29, 1.30)

Referent

Tertile 2

(0.70, 1.44)

−0.04 −1.18, 1.10 0.94 Tertile 2

(0.79, 1.61)

−0.33 −3.22, 2.56 0.82 Tertile 2

(1.30, 2.04)

−0.97 −5.70, 3.76 0.68

Tertile 3

(1.44, 10.55)

0.56 −0.58, 1.71 0.33 Tertile 3

(0.79, 1.61)

−0.06 −3.27, 3.15 0.97 Tertile 3

(2.04, 13.04)

−0.08 −4.58, 4.43 0.97

Tertile 2 X child

sex

0.13 −1.45, 1.72 0.87 Tertile 2 X child

sex

−0.40 −4.47, 3.68 0.85 Tertile 2 X child

sex

7.70 1.21, 14.20 0.02

Tertile 3 X child

sex

0.46 −1.14, 2.05 0.57 Tertile 3 X child

sex

1.85 −2.27, 5.97 0.38 Tertile 3 X child

sex

4.06 −2.72,

10.84

0.24

BPS BPS BPS

Tertile 1

(0.02, 0.33)

Referent Tertile 1

(0.05, 0.41)

Referent Tertile 1

(0.05, 0.36)

Referent

Tertile 2

(0.33, 0.75)

−0.69 −1.84, 0.46 0.24 Tertile 2

(0.41, 0.91)

−0.60 −3.66, 2.46 0.70 Tertile 2

(0.36, 0.75)

−1.19 −6.45, 4.06 0.65

Tertile 3

(0.75, 9.32)

−0.93 −2.06, 0.21 0.11 Tertile 3

(0.91, 8.08)

−0.72 −3.73, 2.30 0.64 Tertile 3

(0.75, 4.87)

1.57 −3.02, 6.17 0.50

Tertile 2 X child

sex

0.67 −0.93, 2.27 0.41 Tertile 2 X child

sex

0.84 −3.60, 5.28 0.71 Tertile 2 X child

sex

3.44 −3.87,

10.75

0.35

Tertile 3 X child

sex

1.29 −0.32, 2.89 0.12 Tertile 3 X child

sex

−0.29 −4.73, 4.14 0.90 Tertile 3 X child

sex

0.36 −6.81, 7.52 0.92

DCP 24 DCP 24 DCP 24

Tertile 1

(0.08, 0.46)

Referent Tertile 1

(0.10, 0.63)

Referent Tertile 1

(0.10, 0.63)

Referent

Tertile 2

(0.46, 1.02)

−1.16 −2.88, 0.56 0.19 Tertile 2

(0.63, 1.37)

1.40 −2.57, 5.36 0.49 Tertile 2

(0.63, 1.40)

3.45 −1.10, 8.01 0.14

Tertile 3

(1.02, 58.37)

−0.31 −2.08, 1.46 0.73 Tertile 3

(1.37, 52.72)

−3.76 −7.84, 0.32 0.07 Tertile 3

(1.40, 52.72)

−3.40 −7.84, 1.04 0.13

Tertile 2 X child

sex

1.62 −0.83, 4.06 0.19 Tertile 2 X child

sex

0.63 −5.23, 6.50 0.83 Tertile 2 X child

sex

−0.55 −7.16, 6.05 0.87

Tertile 3 X child

sex

0.23 −2.21, 2.67 0.85 Tertile 3 X child

sex

4.07 −1.86,

10.01

0.18 Tertile 3 X child

sex

8.94 2.07, 15.82 0.01

DCP 25 DCP 25 DCP 25

Tertile 1

(0.06, 1.12)

Referent Tertile 1

(0.24, 3.97)

Referent Tertile 1

(0.48, 4.81)

Referent

Tertile 2

(1.12, 4.46)

0.97 −0.80, 2.73 0.28 Tertile 2

(3.97, 15.27)

1.20 −3.20, 5.61 0.59 Tertile 2

(4.81, 15.72)

0.67 −4.44, 5.79 0.80

Tertile 3

(4.46, 1612.68)

−0.82 −2.61, 0.97 0.37 Tertile 3

(15.27, 1612.68)

−4.45 −9.21, 0.31 0.07 Tertile 3

(15.72, 709.25)

−3.42 −8.69, 1.84 0.20

Tertile 2 X child

sex

−0.60 −3.06, 1.85 0.63 Tertile 2 X child

sex

1.36 −4.59, 7.31 0.65 Tertile 2 X child

sex

1.82 −5.09, 8.73 0.60

Tertile 3 X child

sex

0.39 −2.08, 2.86 0.75 Tertile 3 X child

sex

4.31 −1.61,

10.22

0.15 Tertile 3 X child

sex

10.21 3.36, 17.06 0.00

Methylparaben Methylparaben Methylparaben

Tertile 1

(1.43, 42.71)

Referent Tertile 1

(2.45, 43.56)

Referent Tertile 1

(2.45, 41.26)

Referent

Tertile 2

(42.71, 171.27)

−0.81 −2.41, 0.79 0.32 Tertile 2

(43.56, 183.16)

−3.37 −7.50, 0.76 0.11 Tertile 2

(41.26, 182.83)

−4.79 −9.45,

−0.14

0.04

(Continued)
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3 Results

3.1 Participant characteristics

Of the 1,198 total participants included in our analyses, the

CBCL sleep subsample was the largest (1,123), followed by the

PSD4a (374) and PSRI4a (352) subsamples (Table 2). Overlap

existed between analytical groups, which were based on the three

sleep quality outcomes. Overlaps were N = 299 between the

CBCL Sleep Problems and PSD4a subsamples, N = 107 between

the Sleep Problems and PSRI subsamples, and N = 142 between

the PSD4a and PSRI4a subsamples.

Child age ranged from amean of 4.2 (CBCL group) to 6.7 (PSRI4a

group) years, and child ethnicity was predominantly Hispanic,

followed by Non-Hispanic White. Mothers were overall highly

educated, with at least some college or above, and predominantly did

not have obesity pre-pregnancy. Sleep outcome scores (sleep

problems, sleep disturbance, and sleep-related impairment) did not

significantly differ by sociodemographic characteristics.

3.2 Single pollutant models

In analyzing maternal urinary phenols, the following chemicals

had a greater than 75% detection rate across the three sleep quality

outcome measure subsamples for children with available data: BP3,

BPA, BPS, DCP24, DCP25, methylparaben, propylparaben, and

triclosan (Table 1).

Both methylparaben and ethylparaben were detected in 99%–

100% of pregnant people across the subsamples, while BPA and

BPS were somewhat lower in prevalence. BPS had the lowest

concentrations in the urine of mothers of children with sleep

problems (CBCL: 0.49 ng/ml), sleep disturbance (PSD4a:

0.57 ng/ml), and sleep impairment (PSRI4a: 0.48 ng/ml). By

contrast, methylparaben had the highest concentrations, at

89.51 ng/ml, 90.69 ng/ml, and 96.42 ng/ml, respectively, followed

most closely by BP3. However, BP3 had a larger median range

between the sleep outcomes (highest for sleep problems, at

84.68 ng/ml, and lowest for sleep impairment, at 66.84 ng/ml).

DCP25 had a lower concentration but had the largest median

range across the sleep outcomes, from 2.11 ng/ml for sleep

problems to 7.13 ng/ml for sleep impairment.

We assessed direct associations of eight environmental phenols

with child sleep quality and their interactions with child sex by

including interaction terms in the regression models (Table 3).

The direction of the association between most of the chemicals

and sleep quality was positive, meaning that higher phenol

concentrations were associated with worse sleep outcomes. For

TABLE 3 Continued

Phenol CBCL PSD PSRI4a

Tertile
(range)

Estimate 95% CI p-
value

Tertile
(range)

Estimate 95% CI p-
value

Tertile
(range)

Estimate 95% CI p-
value

Tertile 3

(171.27, 1442.89)

−0.02 −1.66, 1.63 0.99 Tertile 3

(183.16, 1211.27)

−0.54 −4.86, 3.77 0.80 Tertile 3

(182.83, 1166.51)

−3.80 −8.73, 1.13 0.13

Tertile 2 X child

sex

0.73 −1.51, 2.97 0.52 Tertile 2 X child

sex

2.71 −3.41, 8.82 0.38 Tertile 2 X child

sex

1.55 −5.51, 8.62 0.66

Tertile 3 X child

sex

0.45 −1.80, 2.69 0.70 Tertile 3 X child

sex

0.72 −5.27, 6.70 0.81 Tertile 3 X child

sex

4.59 −2.37,

11.55

0.19

Propylparaben Propylparaben Propylparaben

Tertile 1

(0.16, 6.31)

Referent Tertile 1

(0.22, 5.69)

Referent Tertile 1

(0.26, 5.33)

Referent

Tertile 2

(6.31, 42.98)

−0.95 −2.51, 0.61 0.23 Tertile 2

(5.69, 36.69)

0.25 −3.80, 4.31 0.90 Tertile 2

(5.33, 34.61)

1.04 −3.67, 5.74 0.66

Tertile 3

(42.98, 569.30)

−0.27 −1.85, 1.31 0.74 Tertile 3

(36.69, 559.87)

1.46 −2.87, 5.80 0.51 Tertile 3

(34.61, 559.87)

−2.55 −7.44, 2.35 0.30

Tertile 2 X child

sex

−2.12 −4.33, 0.09 0.06 Tertile 2 X child

sex

1.33 −4.92, 7.58 0.68 Tertile 2 X child

sex

−0.36 −7.53, 6.81 0.92

Tertile 3 X child

sex

−1.52 −3.73, 0.68 0.17 Tertile 3 X child

sex

−1.42 −7.45, 4.62 0.64 Tertile 3 X child

sex

5.17 −1.88,

12.22

0.15

Triclosan Triclosan Triclosan

Tertile 1

(0.24, 5.76)

Referent Tertile 1

(0.40, 5.07)

Referent Tertile 1

(1.11, 5.71)

Referent

Tertile2

(5.76, 32.60)

−0.03 −1.53, 1.46 0.97 Tertile2

(5.07, 62.26)

−0.39 −3.43, 2.64 0.80 Tertile2

(5.71, 101.86)

1.71 −3.32, 6.75 0.50

Tertile3

(32.60, 1049.13)

0.01 −1.44, 1.46 0.99 Tertile3

(62.26, 956.42)

−0.27 −3.13, 2.59 0.85 Tertile3

(101.86, 956.42)

−2.69 −7.51, 2.14 0.27

Tertile 2 X child

sex

0.65 −1.37, 2.68 0.53 Tertile 2 X child

sex

1.25 −2.86, 5.36 0.55 Tertile 2 X child

sex

−4.42 −11.43,

2.58

0.21

Tertile 3 X child

sex

0.11 −1.92, 2.13 0.92 Tertile 3 X child

sex

1.24 −2.91, 5.40 0.56 Tertile 3 X child

sex

0.65 −6.48, 7.77 0.86

BP3, benzophenone-3; BPA, bisphenol A; BPS, bisphenol S; CBCL, Child Behavior Checklist; CI, confidence interval; DCP24, 2,4-dichlorophenol; DCP25, 2,5-dichlorophenol; PSD4a, PROMIS

Parent Proxy Short Form-Sleep Disturbance 4a; PSRI4a, PROMIS Parent Proxy Short Form Sleep-related Impairment 4a.

Model adjusted for child age in years (at outcome assessment), child gestational age at birth, highest level of maternal education (<high school, high school or equivalent, and some college or

more), and maternal age at delivery.

Bold text indicates significance at the p<0.10 level.

Higher scores on sleep measures indicate more sleep issues.
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TABLE 4 Results of linear mixed regression models assessing the association between tertiles of phenol exposure during pregnancy and child sleep
outcomes by child sex.

CBCL

Phenol Sample size (boys/girls) Urinary phenol level (Cutoff) Boys β (95% CI) Girls β (95% CI)

BP3 331/324 Tertile 1 (0.05, 41.76) 0 (ref) 0 (ref)

Tertile 2 (41.76, 246.12) 0.75 (−0.85, 2.35) 0.48 (−1.03, 2.00)

Tertile 3 (246.12, 4769.08) 0.92 (−0.66, 2.50) 1.21 (−0.37, 2.78)

BPA 525/502 Tertile 1 (0.04, 0.70) 0 (ref) 0 (ref)

Tertile 2 (0.70, 1.42) 0.11 (−1.01, 1.22) 0.09 (−1.06, 1.24)

Tertile 3 (1.42, 10.55) 0.99 (−0.16, 2.15) 0.66 (−0.50, 1.82)

BPS 463/456 Tertile 1 (0.04, 0.34) 0 (ref) 0 (ref)

Tertile 2 (0.34, 0.74) −0.16 (−1.28, 0.97) −0.67 (−1.85, 0.52)

Tertile 3 (0.74, 9.16) 0.26 (−0.91, 1.43) −1.04 (−2.22, 0.14)

DCP24 238/244 Tertile 1 (0.13, 0.45) 0 (ref) 0 (ref)

Tertile 2 (0.45, 1.06) 0.24 (−1.48, 1.96) −1.06 (−2.83, 0.72)

Tertile 3 (1.06, 45.78) −0.35 (−2.04, 1.35) −0.32 (−2.13, 1.49)

DCP25 238/241 Tertile 1 (0.15, 0.99) 0 (ref) 0 (ref)

Tertile 2 (0.99, 3.98) 0.55 (−1.13, 2.23) 0.91 (−0.92, 2.73)

Tertile 3 (3.98, 1612.68) −0.31 (−2.13, 1.51) −0.73 (−2.60, 1.14)

Methylparaben 302/289 Tertile 1 (1.43, 41.33) 0 (ref) 0 (ref)

Tertile 2 (41.33, 175.61) −0.03 (−1.61, 1.56) −0.95 (−2.56, 0.66)

Tertile 3 (175.61, 1176.74) 0.50 (−1.06, 2.06) −0.06 (−1.68, 1.56)

Propylparaben 299/290 Tertile 1 (0.22, 6.96) 0 (ref) 0 (ref)

Tertile 2 (6.96, 44.08) 1.10 (−0.48, 2.67) −0.89 (−2.44, 0.67)

Tertile 3 (44.08, 513.55) 1.31 (−0.27, 2.90) −0.31 (−1.88, 1.25)

Triclosan 377/358 Tertile 1 (0.24, 5.45) 0 (ref) 0 (ref)

Tertile 2 (5.45, 28.13) 0.71 (−0.72, 2.14) 0.06 (−1.40, 1.52)

Tertile 3 (28.13, 842.12) 0.03 (−1.45, 1.51) 0.05 (−1.37, 1.47)

PSD4a

Phenol Sample size (boys/girls) Urinary phenol level (Cutoff) Boys β (95% CI) Girls β (95% CI)

BP3 183/187 Tertile 1 (2.61, 31.49) 0 (ref) 0 (ref)

Tertile 2 (31.49, 227.19) 1.77 (−1.25, 4.79) −0.04 (−3.08, 2.99)

Tertile 3 (227.19, 4769.08) **3.20 (0.27, 6.14) ** 1.81 (−1.26, 4.88)

BPA 183/187 Tertile 1 (0.18, 0.83) 0 (ref) 0 (ref)

Tertile 2 (0.83, 1.70) −0.69 (−3.75, 2.36) −0.60 (−3.61, 2.41)

Tertile 3 (1.70, 8.83) 1.97 (−1.27, 5.20) −0.74 (−4.32, 2.84)

BPS 136/155 Tertile 1 (0.09, 0.42) 0 (ref) 0 (ref)

Tertile 2 (0.42, 0.91) −0.21 (−3.50, 3.09) −0.26 (−3.45, 2.94)

Tertile 3 (0.91, 8.08) −1.35 (−4.70, 2.01) −0.35 (−3.51, 2.81)

DCP24 79/89 Tertile 1 (0.14, 0.63) 0 (ref) 0 (ref)

Tertile 2 (0.63, 1.49) 2.57 (−1.70, 6.84) 1.21 (−3.11, 5.53)

Tertile 3 (1.49, 45.78) −0.27 (−4.60, 4.05) −3.78 (−8.24, 0.68)

DCP25 79/88 Tertile 1 (0.24, 3.16) 0 (ref) 0 (ref)

Tertile 2 (3.16, 17.88) 1.22 (−4.41, 6.86) 1.34 (−3.88, 6.56)

Tertile 3 (17.88, 1612.68) −1.88 (−7.48, 3.71) −4.36 (−10.05, 1.33)

Methylparaben 78/87 Tertile 1 (2.45, 45.15) 0 (ref) 0 (ref)

Tertile 2 (45.15, 219.97) −0.56 (−4.88, 3.76) −3.12 (−7.76, 1.53)

Tertile 3 (219.97, 1211.27) −0.21 (−4.32, 3.90) −0.30 (−5.12, 4.51)

Propylparaben 78/89 Tertile 1 (0.22, 8.55) 0 (ref) 0 (ref)

Tertile 2 (8.55, 47.21) 2.22 (−2.24, 6.67) 0.74 (−3.78, 5.27)

Tertile 3 (47.21, 513.55) −0.24 (−4.34, 3.86) 1.68 (−3.15, 6.51)

Triclosan 183/185 Tertile 1 (0.72, 5.12) 0 (ref) 0 (ref)

Tertile 2 (5.12, 39.37) 1.24 (−1.59, 4.08) −0.22 (−3.40, 2.96)

Tertile 3 (39.37, 842.12) 1.21 (−1.77, 4.20) −0.33 (−3.31, 2.65)

PSRI4a

Phenol Sample size (boys/girls) Urinary phenol level (Cutoff) Boys β (95% CI) Girls β (95% CI)

BP3 66/75 Tertile 1 (4.29, 29.30) 0 (ref) 0 (ref)

Tertile 2 (29.30, 104.57) −0.38 (−5.34, 4.59) 3.01 (−2.12, 8.14)

Tertile 3 (104.57, 4769.08) 1.27 (−4.02, 6.56) 2.63 (−2.41, 7.67)

BPA 66/74 Tertile 1 (0.35, 1.33) 0 (ref) 0 (ref)
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BP3, the strength of the association increased across tertiles in the

CBCL and PSD4a samples, suggesting a dose-response trend. For

the PSRI4a outcome, the estimate was slightly higher in tertile 2

(β = 2.80; 95% CI: −2.13–7.73) than in tertile 3 (β = 2.34; 95% CI:

−2.42–7.10). Several chemicals were inversely related to sleep

outcomes, but only methylparaben reached statistical significance,

with each unit increase associated with a 4.79-point decrease in

PSRI4a score (95% CI: −9.45 −0.14; p = 0.04).

3.3 Sex-stratified analyses

Chemical × sex interaction terms were significant for BPA,

DCP24, DCP25, and PRPB (Table 3). The main effects in

Table 3 are from models that include interaction terms.

Sensitivity checks showed consistent beta estimates when

excluding interaction terms. The sensitivity analysis for

gestational age at birth yielded results that were very similar with

and without the variable included in the model. Since the

multiplicative interaction terms in Table 3 suggested sex to be an

effect modifier, we then assessed the association between tertiles

of phenol exposure during pregnancy and child sleep outcomes

by child sex (Table 4). Exposure tertile ranges are now included

in Table 4. There were two statistically significant associations

among boys, but these associations were null among their female

counterparts. Specifically, boys in the highest category of BP3

concentration had 3.20-point higher PSD4a scores on average

compared to their counterparts in the referent category (95% CI:

0.27–6.14), and those in BPA tertile 2 had higher PSRI4a scores

than those in the referent category (β = 5.69; 95% CI: 0.55–

10.82). Among the relationships that were not statistically

significant, the direction and strength of associations were mixed.

3.4 Mixture models

Table 5 and Figure 1 show the null results of the models

assessing the eight phenols as a mixture and child sleep quality.

Using quantile g-computation, each simultaneous 1-quartile

increase in all phenols together was associated with an increase

of 0.47T-score points on the CBCL sleep problems syndrome

scale (indicating more sleep problems), but this association was

not significant (95% CI: −0.61–1.54). The mixture was slightly

TABLE 4 Continued

CBCL

Phenol Sample size (boys/girls) Urinary phenol level (Cutoff) Boys β (95% CI) Girls β (95% CI)

Tertile 2 (1.33, 1.96) **5.69 (−0.55, 10.82) ** −0.61 (−5.57, 4.36)

Tertile 3 (1.96, 8.83) 2.85 (−2.82, 8.51) 0.18 (−4.62, 4.98)

BPS 64/74 Tertile 1 (0.09, 0.38) 0 (ref) 0 (ref)

Tertile 2 (0.38, 0.66) 1.95 (−3.15, 7.05) −0.77 (−6.20, 4.66)

Tertile 3 (0.66, 2.19) 2.27 (−3.35, 7.88) 1.77 (−2.93, 6.47)

DCP24 66/76 Tertile 1 (0.14, 0.64) 0 (ref) 0 (ref)

Tertile 2 (0.64, 1.37) 1.78 (−3.41, 6.97) 3.88 (−0.76, 8.53)

Tertile 3 (1.37, 17.61) 5.15 (−1.63, 10.94) −2.92 (−7.46, 1.63)

DCP25 66/75 Tertile 1 (0.57, 4.87) 0 (ref) 0 (ref)

Tertile 2 (4.87, 16.00) 1.85 (−4.87, 8.57) 0.91 (−4.82, 6.65)

Tertile 3 (16.00, 709.25) **6.45 (−0.16, 13.06) ** −2.83 (−8.78, 3.12)

Methylparaben 65/74 Tertile 1 (2.45, 44.31) 0 (ref) 0 (ref)

Tertile 2 (44.31, 206.99) **−4.61 (−10.01, 0.79) ** −3.91 (−8.92, 1.10)

Tertile 3 (206.99, 1014.06) −0.73 (−5.72, 4.26) −2.55 (−7.88, 2.77)

Propylparaben 65/76 Tertile 1 (0.38, 8.53) 0 (ref) 0 (ref)

Tertile 2 (8.53, 38.41) 0.11 (−5.33, 5.55) 1.44 (−3.50, 6.38)

Tertile 3 (38.41, 513.55) 1.36 (−3.88, 6.61) −1.32 (−6.54, 3.89)

Triclosan 65/74 Tertile 1 (1.11, 4.99) 0 (ref) 0 (ref)

Tertile 2 (4.99, 40.36) −2.67 (−7.64, 2.30) 1.27 (−4.07, 6.61)

Tertile 3 (40.36, 636.41) −3.41 (−8.87, 2.06) −2.25 (−7.36, 2.85)

BP3, benzophenone-3; BPA, bisphenol A; BPS, bisphenol S; CBCL, Child Behavior Checklist; CI, confidence interval; DCP24, 2,4-dichlorophenol; DCP25, 2,5-dichlorophenol; PSD4a, PROMIS

Parent Proxy Short Form-Sleep Disturbance 4a; PSRI4a, PROMIS Parent Proxy Short Form Sleep-related Impairment 4a.

Model adjusted for child age in years (at outcome assessment), child gestational age at birth, highest level of maternal education (<high school, high school or equivalent, and some college or

more), and maternal age at delivery.

Bolding indicates significance at the p<0.05 level.

Higher scores on sleep measures indicate more sleep issues.

TABLE 5 Quantile g-computation estimates and 95% confidence intervals
for the change in sleep quality outcomes per one-quartile increase in the
phenol mixture.

Overall mixture effect

Sleep quality β 95% CI

CBCL 0.47 −0.61–1.54

PSD4a −0.28 −3.12–2.57

PSRI4a −0.07 −3.23–3.10

CBCL, Child Behavior Checklist; CI, confidence interval; PSD4a, PROMIS Parent Proxy

Short Form-Sleep Disturbance 4a; PSRI4a, PROMIS Parent Proxy Short Form Sleep-

related Impairment 4a.
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negatively associated with PSD4a (β = 0.28, 95% CI: −3.12–2.57)

and PSRI4a (β =−0.07, 95% CI: −3.23–3.10) scores, but the CIs

for these associations included the null. We also examined the

weights assigned to individual chemicals in the quantile

g-computation model. BP3 and methylparaben contributed the

largest positive weights for CBCL and PSD4a, consistent with the

strongest associations in single-pollutant models. In contrast, BPS

and DCP24 contributed minimally or had negative weights,

aligning with their weaker individual associations.

4 Discussion

Chemical exposures during pregnancy can impact brain

development and hormone levels, adversely affecting health

outcomes from infancy into adulthood. However, the link between

these chemicals and childhood sleep, an important predictor of

childhood and long-term health, is less understood (60, 63, 64).

The present analysis helps to address this gap by examining

whether exposure to endocrine-disrupting chemicals during

pregnancy was associated with parent-reported child sleep measures

among a nationally representative, multiethnic cohort sample.

Our sample showed sleep problems and disturbances slightly

higher than the US-normed population (mean score of 50) (71),

particularly with the largest subsample, CBCL, with a score of

53; this difference could be due in part to the predominance of

Hispanic children in our sample. Hispanic children in the U.S.

are disproportionately affected by shorter sleep duration and

poorer sleep quality, as supported by prior research (72, 73).

These disparities may be linked to cultural sleep practices,

socioeconomic factors, or environmental stressors that deserve

further investigation in future studies.

We found that the direction of the association of prenatal phenol

concentration and child sleep quality was positive for most of the

single chemicals and for cumulative chemical exposure, indicating

that higher phenol exposure was associated with higher child sleep

problems, disturbances, and impairments. Findings were somewhat

mixed in terms of directionality and dose-response trend, meaning

that some associations were inverse and that higher categories of

exposure did not always result in stronger effect measures.

Interactions with child sex were not consistently significant but

suggested that child sex may modify the effect of developmental

exposure on child sleep quality.

BP3, a UV-filter commonly used in sunscreens and cosmetics,

was the most consistently associated chemical in both single-

pollutant and mixture models. BP3 can cross the placental

barrier and has been shown to act as an endocrine disruptor,

with emerging literature suggesting it may influence thyroid

hormone function and neurodevelopmental outcomes in children

(74–77). These potential hormonal and neurodevelopmental

disruptions may contribute to the altered sleep quality we

observed, particularly among boys, though additional sex-

stratified research is needed to clarify mechanisms.

We are aware of no prior studies on the association between

prenatal environmental phenol exposure and child sleep quality

using a chemical mixture method. While several studies have

assessed the impact of single chemical exposures on behavioral

or neurodevelopmental outcomes, none, to our knowledge, have

examined prenatal phenols and sleep-related impairment using

mixture models in a national pediatric cohort. Chemical mixture

methods approximate real-world exposure more accurately than

single-exposure methods, providing a basis for practical

implications in relation to a significant public health concern.

The cumulative impacts of developmental phenols on childhood

sleep are not well understood. Although we hypothesized an effect of

combined exposure to the phenols considered in this analysis on the

three sleep quality outcomes, we found no statistically significant

associations between prenatal phenol concentrations and child

sleep quality. It is possible that of the hundreds of phenols in

existence, the limited set analyzed in this study cannot

FIGURE 1

Association between phenol mixture and three child sleep quality outcomes. (A) PSD4a (PROMIS Parent Proxy Short Form–Sleep Disturbance 4a); (B)

CBCL (Child Behavior Checklist Sleep Problems Syndrome Scale); (C) PSRI4a (PROMIS Parent Proxy Short Form–Sleep-Related Impairment 4a). Bars

represent the weights from quantile g-computation models for each phenol in the mixture; positive and negative weights reflect direction and relative

contribution to the sleep outcome.
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approximate the real-world cumulative effect of exposure and its

association with child sleep. Alternatively, it is possible that the

differing directions of single-pollutant associations with sleep

cancel one another out when considered cumulatively in the

mixture model or that residual confounding may be at play.

This study also used parent-reported sleep quality measures,

which have the potential for recall bias and bias due to

secondhand, rather than direct, reporting. Previous studies have

found parent-reported child sleep measures to be reliable; while

self-reports can overestimate child sleep duration (83), parents on

average overestimate child sleep by only 14 min (84). In pediatric

primary care, research shows that parents under-report child

sleep problems due to a lack of knowledge about appropriate

sleep durations or cultural beliefs about what counts as a medical

concern (85). Future studies can seek to mitigate those factors

using direct measures of empirical sleep data, such as actigraphy

and electroencephalogram, and/or child self-report. Another

limitation is the possibility of residual confounding from

unmeasured or unavailable variables.

Subsequent studies are needed to further characterize

cumulative maternal chemical exposures and their association

with sleep quality among children and to explore effect

modification by child sex. Better understanding of the

developmental (in utero) risk factors of poor child sleep is a first

step toward developing critical public health and policy

interventions to reduce and avoid chemical exposures in

pregnant people and mitigate the long-term detrimental health

impacts of poor childhood sleep.
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