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Introduction: Low-cardiac-output syndrome (LCOS) after cardiac surgerymay lead

to poor postoperative outcomes. The venous-to-arterial carbon dioxide partial

pressure difference (VACO2) showed association with poor outcomes in adults with

cardiac surgery, but it’s validity in pediatric population is uncertain. We evaluated

the association of VACO2 with LCOS-related outcomes and the correlation with

other surrogate markers such as lactate levels and oxygen extraction ratio.

Methods: This prospective cohort study was conducted at an intensive care unit

in a tertiary academic hospital. Children aged 1 day–18 years old undergoing

elective cardiac surgery with cardiopulmonary bypass between August 2021

and December 2023 were included. Arterial and venous blood gases were

collected at intensive care unit admission and at 6, 12, and 24 h

postoperatively. The LCOS-related outcomes were defined as at least two of

the following criteria being met within 24 h postoperatively: vasopressor-

inotropic score ≥20, ejection fraction <50% on echocardiography, need for

serious post-operative intervention, and death.

Results: Of the 127 included patients (median age: 44.4 months), 37 (29.1%) had

a Risk Adjustment for Congenital Heart Surgery score ≥3, and 26 (20.4%) had

LCOS-related outcomes. Linear mixed model regression analysis revealed that

the VACO2 did not significantly differ between patients with and without

LCOS-related outcomes at all four time points. VACO2 showed a fair-to-weak

correlation with the oxygen extraction ratio (R2= 0.58; p < 0.001, R2= 0.22;

p= 0.015, and R2= 0.19; p= 0.045, at 6, 12, and 24 h postoperatively,

respectively) but showed no correlation with lactate levels. A persistently high

VACO2 (≥6 mmHg) at 6 h postoperatively was significantly associated with

fewer 28-day inotrope-free and intensive care unit-free days.

Discussion: VACO2 was not significantly associated with LCOS-related

outcomes in children after cardiac surgery with cardiopulmonary bypass.

A persistently high VACO2 at 6 h postoperatively was correlated with

prolonged inotrope use and a prolonged intensive care unit stay.
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1 Introduction

Cardiopulmonary bypass (CPB) during open-heart surgery

constitutes a potent stimulus that induces a systemic

inflammatory response through the following mechanisms: blood

contact with the CPB circuit, ischemia–reperfusion injury,

heparin–protamine interaction, and surgical trauma (1). These

mechanisms aggravate complement cascade activation, endotoxin

release, and cytokine production, leading to low-cardiac-output

(CO) syndrome (LCOS), which occurs in 5%–55% (2) of

pediatric patients after cardiac surgery and frequently occurs

9–12 h postoperatively (3). Delayed recognition and treatment of

LCOS can lead to multiorgan system failure and even death.

Serum lactate level, central venous oxygen saturation (ScvO2),

and oxygen extraction ratio (O2ER) are commonly used to

monitor LCOS after cardiac surgery, however, these parameters

may be influenced by multiple factors that are unrelated to low

CO. For example, hyperlactatemia can occur due to the stress

response to surgery, use of beta-adrenergic agonists,

hyperglycemia, or acute liver and renal failure (4); furthermore,

normal or high ScvO2 values may be observed in the presence of

mitochondrial dysfunction or the peripheral shunting effect (5).

Some studies in sepsis population demonstrated unclear benefits

of lactate levels and ScvO2 for guiding therapy (6, 7). Recently, a

novel bedside biomarker, venous-to-arterial carbon dioxide

(CO2) partial pressure difference (VACO2), has emerged,

suggesting a potential utility as an adjunctive marker to facilitate

the guidance of therapeutic interventions in sepsis (5, 8).

The VACO2 theoretically measures the circulatory clearance of

tissue CO2 and is inversely correlated with CO (9). VACO2 is a

better surrogate indicator of stagnant dysoxia than of dysoxia

caused by hypoxia, anemia, or cytopathic pathology (9). A high

VACO2 at the time of sepsis diagnosis in adult patients exhibited

a significant correlation with both the cardiac index and other

tissue perfusion parameters such as lactate levels and ScvO2 (10).

A recent meta-analysis of 21 studies with 2,155 critically ill adult

patients with both surgical and medical conditions demonstrated

an association between high VACO2 and CO and linked this to

mortality (11). However, only four of these 21 studies focused on

cardiac surgery, and they all reported different associations with

unfavorable outcomes. Chen et al. (12) conducted propensity-

matched analysis in 228 individuals post cardiac surgery with

CPB and reported a significant influence of high VACO2 on

adverse outcomes with superior discrimination power than

arterial lactate. Furthermore, two prospective adult studies (13,

14) indicated that high VACO2 is an independent predictor of

major postoperative complication after multivariate analyses.

Owing to the limited data on VACO2 in pediatric patients after

cardiac surgery with CPB, the relevance of VACO2 as a predictor

of poor outcomes in this population remains unclear.

In this study, we aimed to evaluate the association between

VACO2 and LCOS-related outcomes in children undergoing

cardiac surgery with CPB and determine its correlation with

other bedside surrogate markers. The secondary objective was to

examine the association between VACO2 and postoperative

outcomes.

2 Materials and methods

2.1 Study design, setting, and participants

This prospective cohort study was performed in an eight-bed

pediatric intensive care unit (PICU) at Songklanagarind Hospital,

Hat Yai, Songkhla. Children aged 1 day–18 years with congenital

or acquired cardiac disease who underwent elective open cardiac

surgery with CPB and were admitted to the PICU

postoperatively were included in the study. The exclusion criteria

were as follows: preterm infants (gestational age <37 weeks),

weight <2 kg, inability to wean off CPB, requirement for

extracorporeal membrane oxygenation (ECMO) before leaving

the operating room, and absence of arterial and central lines

postoperatively. This study was approved by the Institutional

Review Board of the Faculty of Medicine, Prince of Songkla

University (Institutional Review Board approval number

64-299-1-1; date of approval: August 3, 2021). The study was

conducted in accordance with Good Clinical Practice and the

Helsinki Declaration of 1975.

2.2 Surgical procedures

Anesthesia was initiated according to our standardized

protocol. Following incision, heparin was administered

intravenously at a dosage of 3 mg/kg to achieve an activated

clotting time (ACT) exceeding 400 s. ACT was monitored at

30-min intervals throughout the procedure, with an additional

heparin dose of 3 mg/kg provided if the ACT fell below 400 s.

Intraoperative corticosteroids were administered intravenously,

based on individual anesthesiologist preferences. The priming

solution for the CPB circuit included either Ringer’s lactate or

normal saline with mannitol, along with 20% albumin for

patients weighing less than 10 kg. Leukocyte-depleted packed red

blood cells were utilized when the preoperative hematocrit was

below 30%. CPB was performed using a CAPIOX® FX05

Oxygenator and Stockert S5 pump, following the α-stat strategy

at a target temperature of 28°C. Hypothermia was induced to

varying degrees; depending on the surgical procedure. Antegrade

cold blood cardioplegia was administered at a volume of 20 ml/

kg to achieve cardiac arrest, with an additional 10 ml/kg given if

aortic cross-clamp time exceeded 20 min. Pump flow rates were

maintained between 100 and 150 ml/kg/min for infants and 2.5–

3.0 L/m2/min for older patients: adjusted according to age-

appropriate mean arterial pressure. Arteriovenous modified

Abbreviations

AUC, area under the curve; CPB, cardiopulmonary bypass; CI, confidence

interval; CO, cardiac output; CO2, carbon dioxide; ECMO, extracorporeal

membrane oxygenation; IFDs, ICU-free days; IQR, interquartile range; LCOS,

low-cardiac-output syndrome; O2ER: oxygen extraction ratio; PICU, pediatric

intensive care unit; RACHS, Risk Adjustment for Congenital Heart Surgery;

VACO2, venous-arterial carbon dioxide partial pressure difference; VFDs,

ventilator-free days; VIS, vasoactive-inotropic score.
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ultrafiltration was selectively applied, based on the consensus of the

surgical team and perfusionist, and performed for 5 min after

separating from CPB. At the conclusion of CPB intravenous

protamine sulfate was administered to reverse heparin

anticoagulation.

2.3 Data collection and measurement

After receiving written informed consent from the patients’

parents or legal guardians before operation, 0.3 ml blood samples

were simultaneously collected from both the arterial and internal

jugular central lines. This sampling was repeated at four different

time points after patient arrival in the PICU: at PICU arrival

(T0), 6-h (T6), 12-h (T12), and 24-h (T24) post operation.

Arterial and venous blood gas readings were accepted if the

samples were collected within 5 min of each other. A 1 h time

gap in the collection of blood samples from the research

schedule was allowed owing to unpredictable intensive care unit

occupancy. Blood samples were analyzed within 1 min of blood

collection using an arterial blood gas analysis machine (ABL 800

Basic Radiometer; Copenhagen, Denmark) located within the

PICU. The attending staff independently provided standard post-

cardiac surgery care, including fluid resuscitation, vasopressor

and inotropic medication, and steroid administration without the

researcher’s involvement. If either the central or arterial lines

were displaced within 24 h postoperatively, the remaining data

were recorded as missing.

Data, including general baseline characteristics, intraoperative

parameters, postoperative interventions, and outcomes, were

collected until the patient was discharged. The Risk Adjustment

for Congenital Heart Surgery tool (15) was used to classify the

risk of mortality after congenital cardiac surgery. The vasoactive-

inotropic score (VIS) was calculated using the formula by Gaies

et al. (16) as follows:

VIS ¼ Dopamine dose (mg=kg=min)

þ dobutamine dose (mg=kg=min)þ 100

� epinephrine dose (mg=kg=min) þ 10

�milrinone dose (mg=kg=min) þ 100

� norepinephrine dose (mg=kg=min) þ 10000

� vasopressin dose (U=kg=min)

Acute kidney injury was diagnosed according to the Kidney

Disease-Improving Global Outcomes guidelines, 2012 (17), based

on the presence of any of the following: a >0.3 g/dl increase in

the serum creatinine level within 48 h, >1.5 times increase in the

serum creatinine level from a known baseline value or one

recorded within the preceding 7 days, and urinary volume

<0.5 ml/kg/h for 6 h. The 28-day ventilator-free days (VFDs),

28-day inotrope-free days, and 28-day ICU-free days (IFDs) were

defined as the number of days that the patient survived without

invasive ventilation, inotropic drugs, or ICU admission during

the first 28 days postoperatively, with the day after the first

postoperative night considered as day 1. These variables were

counted as zero for non-survivors.

The independent variables studied included the bedside

surrogate markers (VACO2, O2ER, and lactate level) that were

measured postoperatively. ScvO2 was not evaluated because the

participants’ single-ventricle physiology might have interfered

with ScvO2 interpretation. VACO2 was calculated as the central

venous minus arterial CO2 level and O2ER as the ratio between

the difference in arterial and central venous oxygen saturation

divided by the arterial oxygen saturation.

The primary outcomes were LCOS-related outcomes, which

was consisted of at least two of the following criteria within 24 h

postoperatively: (1) VIS ≥20; (2) left ventricular ejection fraction

<50% on echocardiography; (3) any unplanned surgery or

intervention, cardiac arrest, or utilization of ECMO; and (4)

death. The secondary outcomes included: 28-day VFDs,

28-day inotrope-free days, 28-day IFDs, percentage of

morbidities (reintubation, significant arrhythmic events

requiring medication or intervention, acute kidney injury,

renal replacement therapy, and neurological complications),

and mortality rate.

2.4 Statistical analyses

Statistical analyses involved descriptive analysis of means

(standard deviations) for normally distributed continuous

data, medians (interquartile ranges) for non-normally

distributed continuous data, and percentages for categorical

data. The Student’s t-test or Mann–Whitney U test was used

for intergroup comparison of continuous data, depending on

the pattern of data distribution. Categorical data were

compared using the chi-squared or Fisher’s exact test, as

indicated. Correlation analysis between bedside parameters

was performed using Pearson’s and Spearman’s correlation

coefficients for parametric and non-parametric variables,

respectively. Linear mixed-model regression was used to

compare the postoperative laboratory (lactate, VACO2, and

O2ER) values between the LCOS and no-LCOS groups over

time with adjusted confounder variables that might affect

outcome (age, RACHS, type of repair, CPB time,

intraoperative corticosteroid, intraoperative fluid balance).

Receiver operating characteristic curves were used to evaluate

performance of VACO2 on discriminating LCOS-related

outcomes. Subgroup analysis was performed according to

patient’s age, type of repair, and RACHS score. Statistical

significance was set at p < 0.05. All analyses were conducted

using R version 4.3.1 (The R Foundation for Statistical

Computing, Vienna, Austria).

2.5 Ethics statement

Ethical approval for this study was obtained from the Ethics

Committee of the Faculty of Medicine, Prince of Songkla

University, Songkhla, Thailand.
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3 Results

3.1 Baseline characteristics of participants

Between August 2021 and December 2023, 136 patients

underwent open-heart surgery. Nine patients were excluded from

the study, which included five patients who could not be weaned

off CPB postoperatively and four patients who underwent

emergency operations. The final analysis included 127 patients,

of which 26 (20.4%) developed LCOS-related outcomes within

24 h postoperatively. Five patients (3.9%) required re-operation

or reintervention, seven (5.5%) required ECMO, three (2.4%)

developed cardiac arrest, and seven (5.5%) died. Factors

significantly associated with LCOS-related outcomes included

preoperative sepsis, a high Risk Adjustment for Congenital Heart

Surgery score, long CPB time, long aortic clamp time, high

amount of blood transfusion, and intraoperative corticosteroid

administration (Table 1). The rates of postoperative intervention,

including systemic steroid administration (60.4% vs.

24.3%, p < 0.01), blood transfusion [19.6 [10.0–34.6] vs. 6.4

[0–13.5] ml/kg, p < 0.01], and renal replacement therapy (13% vs.

0%, p = 0.002), as well as those of end-organ dysfunction and

death, were higher in the LCOS group than in the no-LCOS

group (Supplementary Table 1).

3.2 Association between VACO2 and
outcomes after cardiac surgery

The patterns of laboratory values at the four time points are

illustrated in Figure 1. The overall values of three parameters in

the LCOS group were higher than those in the non-LCOS group

at all four time points, with the exception for the VACO2 at 24 h

post operation. Univariate analysis performed to compare

bedside surrogate marker values between patients with and

without poor LCOS-related outcomes revealed that the LCOS

group had significantly higher VACO2 values at 12 h

postoperatively, higher lactate levels at all four time points, and

higher O2ER values at PICU admission and at 6 h

postoperatively than the no-LCOS group. Analysis of the overall

unadjusted area under the curve (AUC) of VACO2 was 0.58–0.64

which was inferior to serum lactate levels in predicting LCOS

events (Table 2).

After performing linear mixed-model regression analysis, the

relationship between lactate change and the LCOS occurrence

was significantly at 6 h and 12 h postoperatively (p < 0.05),

whereas the VACO2 change was significant at 24 h

postoperatively (p = 0.02) and there was no relationship between

O2ER change at all four time points (Figure 1).

To achieve the secondary study objective, we used a 6-mmHg

cut-off, as described previously (9), to categorize the 6-h

postoperative VACO2 values into two groups. The results revealed

significantly fewer 28-day inotrope-free days and 28-day IFDs in

patients with a VACO2 ≥6 mmHg than in patients with a VACO2

<6 mmHg (24.0 [22.0–27.0] vs. 26.5 [23.0–28.0] days, p = 0.03 and

23.0 [18.2–26.0] vs. 24.0 [22.0–27.0] days, p = 0.03, respectively)

(Table 3). Subgroup analysis in patients with biventricular

physiology and with aged more than one-month old revealed

insignificant different outcomes (Supplementary Tables 2, 3).

3.3 Correlations between VACO2 and other
parameters

The correlations between VACO2 and the other parameters

(lactate level and O2ER) at the four time points are shown in

Figures 2, 3. While VACO2 did not show a significant correlation

with lactate levels, it demonstrated a moderate correlation with

O2ER at 6 h postoperatively (r = 0.58; p < 0.001) and a weak

correlation with O2ER at 12 and 24 h postoperatively (r = 0.22;

p = 0.015 and r = 0.19; p = 0.045, respectively).

4 Discussion

This study explores the predictive value of VACO2 in children

undergoing cardiac surgery with CPB at four time points (PICU

admission and 6, 12, and 24 h postoperatively) and compares it

with that of other bedside indicators. The primary finding is that

VACO2 shows no association with LCOS-related outcomes and

has lower predictive capability than arterial lactate levels.

TABLE 1 Comparison of baseline characteristics and intraoperative
parameters between patients with and without LCOS-related outcomes
(n = 127).

Characteristic LCOS-
related

outcomes
(n = 26)

No LCOS-
related

outcomes
(n = 101)

p-value

Age (months), median

(IQR)

5.4 (0.8–74.7) 32.5 (11.9–69.7) 0.053

Genetic abnormalities,

n (%)

2 (7.7) 16 (15.8) 0.363

Preoperative sepsis,

n (%)

12 (46.2) 16 (15.8) 0.002

Previous cardiac surgery,

n (%)

7 (26.9) 32 (31.7) 0.817

Single-ventricle repair,

n (%)

5 (19.2) 18 (17.8) 1.000

RACHS score, n (%) <0.001

<3 8 (30.8) 82 (82.2)

≥3 18 (69.2) 19 (17.8)

Cardiopulmonary

bypass time (min),

median (IQR)

152.0 (136.8, 244.2) 84.0 (52.0, 140.0) <0.001

Aortic clamp time

(min), median (IQR)

111.5 (77.2, 164.2) 47.0 (22.0, 82.8) <0.001

Intraoperative blood

transfusion (ml/kg),

median (IQR)

60.4 (43.5, 91.9) 37.0 (23.6, 54.7) <0.001

Intraoperative fluid

balance (ml/kg), median

(IQR)

21 (2.3, 38.4) 18.2 (8.0, 37.7) 0.998

Intraoperative steroid

use, n (%)

6 (23.1) 6 (5.9) 0.016

IQR, interquartile range; LCOS, low-cardiac-output syndrome; RACHS, Risk Adjustment for

Congenital Heart Surgery.
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Specifically, an elevated VACO2 at 6 h postoperatively correlates

with fewer 28-day inotrope-free days and IFDs.

Our negative findings were similar to Akamatsu et al. (18)

regarding the correlation with other surrogates and the

association between a VACO2 ≥6 mmHg and unfavorable

outcomes (prolonged extubation, duration of hospitalization, and

mortality). That study was conducted retrospectively in 114

pediatric patients aged up to 18 years with single blood sampling

of the VACO2 at the time of admission. However, this is in

contrast with the findings of Rhodes et al. (19), who found a

high VACO2 at PICU admission was linked to LCOS-related

outcomes (high inotropic score, cardiac arrest, ECMO use, and

unplanned surgical interventions within 48 h of PICU

admission). They also found VACO2 to have a predictive ability

equal to that of lactate levels and superior to that observed in the

present study (AUC for VACO2, 0.69 and AUC for lactate levels;

0.64). Another prospective study, conducted in 69 China infants,

linked VACO2 >12.3 mmHg within 42 h postoperatively to

prolonged ventilator use and ICU stay (20). These contrast

results could be attributed to different age groups within the

targeted population, as these two studies were conducted in

infants, whereas our study and that of Akamatsu et al. (18) were

carried out in children aged up to 18 years. Studies in adults also

reflect variability in the predictive power of VACO2. No

association with outcomes was noted in some studies (21–23),

while significant links to mortality were reported in others (12,

FIGURE 1

Comparison of laboratory values (A) lactate level, (B) VACO2, (C) O2ER between patients with and without LCOS-related outcomes at four time points

(N= 127). *p < 0.05, in the linear mixed-model regression analysis. AVO2, arteriovenous oxygen saturation difference LCOS, low-cardiac-output

syndrome; VACO2, venous-to-arterial carbon dioxide partial pressure difference.

TABLE 2 Comparison of laboratory values between patients with and without LCOS-related outcomes (n = 127).

Characteristic LCOS-related
outcomes (n= 26)

No LCOS-related
outcomes (n= 101)

p-value AUC (95% CI)

VACO2 (mmHg)

T0 8.3 (3.2, 14.1) 6.8 (2.8, 10.2) 0.240 0.58 (0.43–0.72)

T6 9.4 (5.9, 12.0) 7.8 (5.3, 9.4) 0.175 0.59 (0.44–0.74)

T12 9.8 (6.4, 11.8) 7.2 (5.0, 9.8) 0.027 0.64 (0.52–0.77)

T24 5.8 (3.1, 11.8) 7.5 (5.8, 9.7) 0.078 0.62 (0.48–0.77)

Lactate level (mmol/L)

T0 3.2 (2.2, 5.8) 1.9 (1.4, 2.2) <0.001 0.74 (0.63–0.84)

T6 4.8 (2.5, 8.2) 1.4 (1.1, 2.2) <0.001 0.84 (0.75–0.93)

T12 3.8 (2.4, 5.7) 1.2 (0.8, 1.9) <0.001 0.83 (0.73–0.93)

T24 1.8 (1.3, 2.9) 1.3 (0.9, 1.7) 0.003 0.71 (0.58–0.83)

O2ER (%)

T0 33.7 (24.7, 52.0) 24.6 (19.7, 31.9) 0.006 0.68 (0.54–0.81)

T6 35.3 (28.5, 55.7) 30.4 (25.3, 37.6) 0.017 0.66 (0.52–0.80)

T12 36.1 (11.8) 31.6 (10.0) 0.058 0.61 (0.47–0.74)

T24 31.8 (28.3, 40.0) 30.3 (24.1, 35.7) 0.210 0.59 (0.45–0.73)

Data are presented as means with standard deviations or medians with interquartile ranges. AUC, area under the curve; CI, confidence interval; LCOS, low-cardiac-output syndrome; O2ER,

oxygen extraction ratio; ScvO2, central venous oxygen saturation; VACO2, venous-arterial carbon dioxide partial pressure difference.
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14, 24, 25). Overall, the discriminatory performance of VACO2 in

adults ranges widely, from 0.52 to 0.83; this is similar to

our findings.

The lack of significant association between VACO2 and LCOS-

related outcomes in this study may be attributed to several factors.

First, circulatory dynamics differ between children and adult’s

cardiac condition for operation. This study included all pediatric

patients across a wide range of ages and congenital cardiac

anomalies, encompassing both uni- and biventricular systems.

Although subgroup analysis was performed in biventricular

physiology group, residual lesion did not take into account.

Residual cardiac lesions following total correction or staged

TABLE 3 Comparison of outcomes between patients with a VACO2 <6 mmHg and ≥6 mmHg at 6 h after PICU admission (n = 124).

Characteristic VACO2 <6 mmHg (n= 38) VACO2 ≥6 mmHg (n= 86) p-value

LCOS-related poor outcomes, n (%) 7 (18.4) 18 (20.9) 0.938

VIS >20 18 (47.4) 46 (53.5) 0.664

Reintervention 3 (7.9) 2 (2.3) 0.167

ECMO 1 (2.6) 5 (5.8) 0.666

Cardiopulmonary arrest 0 (0) 3 (3.5) 0.552

Reintubation, n (%) 3 (7.9) 9 (10.5) 0.754

28-day ventilation-free days, median (IQR) 27.0 (25.2–28.0) 27.0 (24.0–28.0) 0.085

28-day inotrope-free days, median (IQR) 26.5 (23.0–28.0) 24.0 (22.0–27.0) 0.027

28-day ICU-free days, median (IQR) 24.0 (22.0–27.0) 23.0 (18.2–26.0) 0.031

Significant arrhythmias, n (%) 7 (18.4) 18 (20.9) 0.938

Acute kidney injury, n (%) 2 (5.3) 16 (18.8) 0.091

Renal replacement therapy, n (%) 1 (2.6) 6 (7.0) 0.437

Neurological complication, n (%) 1 (2.6) 4 (4.7) 1.000

Death, n (%) 1 (2.6) 6 (7.0) 0.437

ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; IQR, interquartile range; LCOS, low cardiac output syndrome; PICU, pediatric intensive care unit; VACO2, venous-to-

arterial carbon dioxide partial pressure difference; VIS, vasoactive-inotropic score.

N = 124 because three patients required ECMO or died at 6 h after PICU admission.

FIGURE 2

Correlation between venous-to-arterial carbon dioxide partial pressure difference and lactate at different timepoints; (A) at intensive care arrival, (B) at

6 h post operation, (C) at 12 h post operation, and (D) at 24 h post operation. VACO2, venous-to-arterial carbon dioxide partial pressure difference.
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reconstruction surgeries in children could influence VACO2 while

most cardiac surgery in adults are performed within the

biventricular system which do not interfere with mixing cardiac

lesions. This was supported by a study on pediatric participants

with sepsis who had biventricular systems demonstrated a

significant association between VACO2 ≥6 mmHg and

mortality (10).

Second, VACO2 measurements may be influenced by

conditions such as hyperventilation and hyperoxia in the post-

cardiac surgery setting. This might transiently widen the CO2

gap through acute decreases in arterial CO2 levels and increased

venous CO2 levels (26, 27), potentially limiting the utility of

VACO2 as a reliable marker for predicting LCOS-related outcomes.

Third, the clinical outcomes following pediatric cardiac surgery

are multifaceted and not solely attributable to low CO. Factors such

as anemia due to intraoperative blood loss or mitochondrial

dysfunction due to CPB effects may not necessarily result in an

abnormal VACO2, although they can significantly impact poor

outcomes (9). Fourth, the timing of the VACO2 evaluation in

previous studies differed from that in this study. Most of the

adult and pediatric studies in cardiac surgery assessed VACO2

values at the time of admission. In this study, we hypothesized

that the evaluation time point at the 6-h postoperative is

appropriate for identifying the consequences of LCOS after

patients received initial stabilization without the effect of

anesthetic in the operating room. Moreover, the inflammatory

response that leads to LCOS reaches peak effect at 9–12 h

postoperatively (2). Because of the rapid responsiveness of

VACO2 to a low circulatory flow state, persistently high VACO2

in a specific period might be better indicate outcomes than single

values at admission time.

Our findings for the correlation between VACO2 and other

parameters are similar to those of Rhodes et al. and Singh et al.

(19, 28); we observed a moderate correlation of VACO2 with

O2ER but no significant correlation with lactate levels. Similarly,

the results of two studies of post cardiac surgery in adults concur

with the findings in that VACO2 had weak or no correlation

with lactate levels (21, 29), despite there being a strong

correlation with CO (12, 20). Although Castanuela et al. (30)

reported a moderate correlation of VACO2 with lactate levels at

12 h postoperatively (R2 = 0.59, p < 0.001), the correlation became

weaker when analyzing the total number of sample collected

(R2 = 0.25, p < 0.001). The moderate correlation of VACO2 with

O2ER but not with lactate levels could be because O2ER and

VACO2 change faster than lactate levels in response to

circulatory flow changes.

To our knowledge, this is the first prospective study involving

rigorous VACO2, O2ER, and lactate level assessment at multiple

FIGURE 3

Correlation between venous-to-arterial carbon dioxide partial pressure difference and oxygen extraction ratio at different timepoints; (A) at intensive

care arrival, (B) at 6 h post operation, (C) at 12 h post operation, and (D) at 24 h post operation. O2ER, oxygen extraction ratio; VACO2, venous-to-

arterial carbon dioxide partial pressure difference.
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time points following open-heart surgery in a pediatric population.

Although this study involved only 127 pediatric patients, the

sample size was larger than previous studies. However, it has

some limitations. First, the study encompassed a wide variety of

patients in terms of age, cardiac abnormalities, and surgical

procedures, potentially diluting the significance of the results.

Subgroup analysis was performed and remained insignificant

different outcomes. The power could be enhanced by increasing

the sample size to perform subgroup analyses. Second, the

applicability of the gold standard method such as thermodilution

method via Swan–Ganz catheterization or transesophageal

echocardiography for diagnosing LCOS is limited to children,

especially in postoperative states. There has been no consensus

on the diagnostic criteria for LCOS in the pediatric population

yet. The composite criteria we had set would identify the closest

consequences from LCOS. Therefore, we are unable to endorse

utilizing the VACO2 as the bedside parameter in children who

have undergone cardiac surgery with CPB, as there has not been

strong evidence from the prospective study.

5 Conclusions

High level of VACO2 was not significantly associated with

LCOS-related outcomes in children who underwent cardiac

surgery with CPB. However, a persistently high VACO2 at 6 h

postoperatively was related to prolonged inotropic use and a

prolonged ICU stay. Further research on VACO2 as an

adjunctive diagnostic parameter by combining with lactate level

might improve diagnostic accuracy.
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