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Background: Childhood obesity is a growing problem worldwide, leading to

non-alcoholic fatty liver disease (NAFLD), which is the most common liver

disease in children. Liver biopsy is the gold standard for NAFLD diagnosis.

Machine learning algorithms could assist in an early diagnostic approach and

leading to a favorable prognosis.

Objective: This study aimed to identify predictive factors for NAFLD in children

and adolescents using machine learning models, focusing on liver biopsy

outcomes such as fibrosis, infiltration, ballooning, and steatosis.

Methods: Data from 659 children suspected of NAFLD, who underwent liver

biopsy at Mofid Children’s Hospital between 2011 and 2023, were analyzed.

The dataset included categorical and numerical variables, which were

processed using one-hot encoding and standardization. Several machine

learning models were trained and evaluated, including CatBoost, AdaBoost,

Random Forest, and others. Model performance was assessed using cross-

validation with accuracy, precision, recall, F1 score, and ROC-AUC metrics.

Feature importance was determined through permutation analysis.

Results: Among NAFLD patients, the CatBoost Classifier achieved the highest

accuracy (91.8%) and ROC-AUC score (92.3%) in cross-validation. In addition,

the adjusted models showed better results. That is, the F1 for the CatBoost

raised from 83% to 89% (AUC: 0.86–0.92), for the GradientBoosting from 76%

to 81% (AUC: 0.81–0.85), and for Bernolli Naive Bayes from 78% to 82% (AUC:

0.82–0.85).

Conclusion: Machine learning models, particularly CatBoost, demonstrated

strong predictive capabilities for NAFLD diagnosis in children.
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Introduction

Childhood obesity is a growing problem worldwide, leading to

various comorbidities, including non-alcoholic fatty liver disease

(NAFLD), which is currently the most common liver disease in

children (1). Non-alcoholic fatty liver disease (NAFLD) has a

worldwide prevalence of 25%, with a prevalence of approximately

≥34.0% in the US population, and is a leading cause of cirrhosis

and hepatocellular carcinoma (2).

Among Iranian children with obesity, 42% will develop NAFLD,

and by sex, NAFLD will develop in 44% and 33% of boys and girls

with obesity (3). This substantial prevalence becomes more

important when NAFLD progresses to more complicated

situations, including NASH, cirrhosis, hepatocellular carcinoma,

and even mortality. NAFLD is influenced by several risk factors,

such as genetics, obesity, insulin resistance, type 2 diabetes

(T2DM), hypertension, hyperlipidemia, and metabolic syndrome.

As the vast majority of people with NAFLD are primarily

asymptomatic, early diagnosis and timely intervention in the early

stages of the disease can prevent progression to more serious

complications and mitigate the health and economic consequences

(4). NAFLD can be diagnosed through a comprehensive approach

that includes clinical laboratory findings, radiologic modalities, and

biopsy. Despite the availability of various diagnostic methods for

NAFLD in this era, biopsy remains the gold standard (4). In

recent years, significant advances in the field of artificial

intelligence (AI) and machine learning have created new

opportunities for disease identification, diagnosis and treatment.

Machine learning algorithms are able to analyze vast amounts of

clinical, laboratory and imaging data to identify complex and

hidden patterns, enabling more accurate prediction of disease (5).

Machine learning algorithms, particularly deep neural networks,

are showing unprecedented capabilities in analyzing complex

hepatology data and detecting intricate interactions between

genetic, environmental and lifestyle factors (6). Given the

importance of the topic and the great potential of artificial

intelligence in the diagnosis and treatment of NAFLD, the aim of

this study is to investigate the predictive factors for NAFLD in

children and adolescents using machine learning methods. In this

study, we used a large dataset including children suffering from

NAFLD and healthy patients to train machine learning algorithms.

Then we evaluated their performance in predicting the NAFLD.

Our results could assist in a disease diagnostic approach for early

disease identification, which could lead to a favorable prognosis

and a decreased disease burden.

Methods

Study design and population

This cross-sectional study investigated the data of 659 pediatric

patients with possible diagnosis of NAFLD hospitalized at Mofid

Children’s Hospital between 2011 and 2023. A liver biopsy was

performed on all of them. Out of these, 120 were confirmed with

fatty liver and included in model development.

Data acquisition and preprocessing
procedures

All data were extracted from the Registry System for Evaluation

and Therapeutic Interventions of Childhood Fatty Liver in Iran.

This dataset comprised several variables, including gender,

obesity status, Type 2 diabetes mellitus, abdominal pain, and

liver injury indicators. This study was approved by the ethical

committee of Shahid Beheshti University of Medical Sciences

(Ethical code: IR.SBMU.RICH.REC.1398.029). For analysis, we

used one-hot encoded for classified variables and Z-score

StandardScaler for numerical variables.

Missing data management protocol

We used a systematic approach to handle the missing data and

preserve the data integrity at the same time. Missing values in

numerical variables were replaced using the median, which better

maintains central tendency for continuous data without assuming

normality, while categorical variables were filled with the most

frequent category to ensure class balance wasn’t disrupted. We

focused on liver pathology markers—fibrosis, infiltration, ballooning,

and steatosis—as key features. For each of the binary variables, we

used a system of 1 and 0 to indicate the presence or absence of a

feature, respectively, such as fibrosis. To handle missing data, we

performed a sensitivity test by comparing pre- and post-data

replacement model performance, aiming to assess the impact of this

process on the model performance. The consistent results across

these tests suggest our approach introduced minimal bias,

reinforcing the dataset’s suitability for machine learning predictions.

Class imbalance mitigation techniques

We divided the dataset into 80% for training and 20% for testing,

and used the classification for a balanced target category. To ensure

class ratio consistency, we utilized a classified K-fold with 5 folds in

cross-validation. If imbalance persisted, methods such as class

weighting or Synthetic Minority Over-Sampling (SMOTE) were

used. In addition, class imbalance was assessed by examining the

distribution of features such as the presence or absence of fibrosis.

We used stratified sampling during dataset splitting to counter

potential bias in model performance, ensuring training and

validation sets reflected the full range of classes. Additionally, we

applied class weighting during model training and tested

oversampling with SMOTE where needed. Comparing models with

and without these adjustments, we saw improved recall and

F1-scores when imbalance was addressed, leading us to select the

approach that balanced sensitivity and specificity best (Figure 1).

Model selection and algorithm
implementation

To predict fibrosis, cellular penetration and ballooning, we tried

several different algorithms, each with its own characteristics and
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benefits. Initially, we used logistics regression with L2 adjustment and

up to 6,000 repetitions as a base model to examine linear relationships.

To identify more sophisticated and nonlinear patterns, we went to the

decision tree that can better identify such patterns with consistent

divisions. We also used the Linear SVC classroom with a high

number of repetitions (1,000) because it works well in managing

high—dimensional data. On the other hand, we used the multilayer

neural network to understand the more complex interactions

between the data, and the K algorithm was the closest neighbor,

taking into account the local patterns in the data. The simple but

functional model of the Bernouli Naïve Bayes was also used for

binary outputs because of its probabilistic view. To increase

prediction accuracy, we used reinforcement algorithms such as

Gradient Boosting (with 2 trees, low learning rates and low depth).

We also used Random Forest because it can prevent it by combining

different trees. We also tested the AdaBoost model by combining the

random forest and examined the CatBoost because of its ability to

manage class variables with its own settings (2 trees, learning rates of

0.8 and depth 1). To evaluate the performance of these models, we

kept the logistics regression as a comparative criterion and taught it

both by simply and by applying weight (to compensate for data

imbalances, especially the small number of fibrosis). In the weight

model, we tried to increase prediction sensitivity by giving more

weight to less classes. Finally, the results showed that the weight

version has a better performance in identifying rare cases (such as

fibrosis) and at the same time maintaining good specificity or

specificity. This model performed better in criteria like the F1-Score

and Recall, which means that it was more successful in correctly

diagnosing patients with certain conditions.

Figure 2 Shows machine learning pipeline for pediatric

NAFLD prediction.

Statistical analysis and data robustness
assessment

We performed a comprehensive statistical analysis to ensure

the reliability of our study. To achieve this goal, we used

FIGURE 1

This figure depicts a machine learning pipeline for predicting pediatric NAFLD, starting with data assessment and class adjustment using weighted

techniques and SMOTE. It progresses through stratified data splitting, model training with algorithms like CatBoost, and validation using 5-fold

cross-validation, tracking metrics like F1-score and ROC-AUC. The process culminates in optimal strategy selection and clinical interpretation for

screening and biopsy guidance. Diagram created with MermaidChart (https://www.mermaidchart.com/).
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descriptive statistics, including the mean + SD, median, standard

deviation, and interquartile range of quantitative variables. The

relationship between the independent variables measured by

performing the correlation matrix and variance inflation index,

which there was no association. As a result, the findings were

reliable and not affected by statistical bias.

Machine learning pipeline and model
training

Before starting the machine learning pipeline, initial data

processing was performed. Missing values were imputed as

described in the method. Numeric data were normalized, and

FIGURE 2

Machine learning pipeline for pediatric NAFLD prediction. Diagram created with MermaidChart (https://www.mermaidchart.com/). Illustrates the end-

to-end workflow including: (1) Internal data processing (n= 659, 120 NAFLD+) with median/mode imputation and SMOTE-based class balancing; (2)

CatBoost/AdaBoost model training (5-fold CV); (3) External validation with Jensen-Shannon divergence checks. The feedback loop enables automatic

recalibration when performance drift >5% is detected.
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categorical variables were one-hot coded. After that, we split the

dataset into two parts, using 80% of the data for training and the

remaining 20% for testing the model. For validation, we used a

5-layer k-fold method such that the distribution of the target

variable was maintained in each layer. The models were trained

on the first 4 layers, and the fifth layer was used for validation.

Finally, we used an external independent dataset to test the

performance of the final model and calculated the F1 score,

accuracy, precision, sensitivity, and ROC-AUC. In addition, we

investigated which variables contributed more to the

performance of the superior model using the feature importance

with the displacement method.

External validation and overfitting control

To ensure that the datasets were separate and to avoid

information leakage, analyses were performed to examine the

similarity between the training and validation data. These

included Jensen-Shannon divergence with a mean of 0.08 ± 0.03

(less than the threshold of 0.15), Kolmogorov–Smirnov test with

p-values greater than 0.05 for all features, and PCA-based

distribution overlap analysis that revealed only 3.7% of the

shared variance. These findings indicate the statistical

independence required for valid external validation according to

the criteria of Cabitza et al. (20). Also, the performance

indicators of the models were similar to the results from the

internal validation, confirming the stability of their performance

outside the original training data (Supplementary Table S1).

Results

Statistical analysis and missing data
management

To ensure the validity and reliability of the results, a thorough

statistical analysis was performed on the dataset. To preserve the

integrity, the missing data were recognized and replaced by the

median and most frequent value in quantitative and qualitative

variables, respectively. This approach prevented the loss of

critical information and maintained the dataset’s structure for

subsequent analysis. Ultimately, the dataset encompassed 659

records, including 120 NAFLD patients confirmed with liver

biopsy. To ensure an equitable comparison of ML models, the

standardization of data was performed, and the conducted

statistical tests showed a balanced distribution.

Data imbalance and class distribution

Due to the diverse prevalence of the NAFLD histological

features, a substantially imbalanced class was seen. Among 120

NAFLD cases, the most prevalent feature was steatosis with 90%

(108 cases), followed by edema in 50% (60 cases), and

inflammation in 41.67% (50%). Finally, the least part has

belonged to fibrosis in 15.8% (19 cases). Professional handling

was needed to prevent algorithmic bias due to this special

distribution, particularly the low prevalence of fibrosis. In the

reduction strategy, we used the combination of classified

sampling with algorithm-level modification in prioritized models

(CatBoost and AdaBoost). In all classifications, the prevalence of

fibrosis remained 15.5%. After optimization, a notable result was

displayed in diagnosis capability. The CatBoost model displayed

an exceptional performance in the detection of fibrosis with an

F1 of 0.89 and a recall of 0.91. Whereas, the GradientBoosting

demonstrated an F1 of 0.81. The Bernoulli Naive Bayes model

maintained its expected high-recall profile (0.88) though with a

moderated precision trade-off (0.80)—a 33% improvement over

its unadjusted state. Notably, these metrics represent a 14%–22%

absolute increase over baseline performance for rare classes,

though the remaining 8%–12% precision gap for fibrosis

detection underscores the need for further refinement in

minority-class prediction.

The model performance was compared pre- and post-

modification of SMOTE and class weighting. In the results, all

models showed significant improvement. The largest

improvement occurred in the CatBoost with a 6% increase in F1

from 0.83 to 0.89 and recall from 0.85 to 0.91. Next was the

GradientBoosting model, which had a 5% increase in F1 from

0.76 to 0.81, and a 6% increase in recall from 0.79 to 0.85. while

Bernoulli Naive Bayes maintained its high-recall profile

(0.83→ 0.88) despite a precision trade-off (0.77→ 0.80).

Generally, these developments are clinically substantial, especially

in rare features such as fibrosis, which modified models have

reached 88%–91% recall. However, achieving higher precision

remained challenging in such a way that the highest fibrosis

precision of 0.85 was obtained from post-categorized random

forest. The persistent 8%–12% gap between recall and precision

for rare outcomes highlights the need for hybrid approaches

combining SMOTE with cost-sensitive learning. These findings

confirm that while current techniques effectively boost sensitivity

(average +7.2%), further innovations are needed to achieve >90%

precision for rare classes. The 86%–89% F1-scores support using

these models for initial screening, though biopsy confirmation

remains necessary for definitive diagnosis (Table 1).

Training and testing pipeline

First, we prepared data by transforming the classified variable to

numbers using one-hot encoding and normalization of the

numerical variable. Afterwards, the dataset has been divided into

training (80%) and test parts. To ensure the confidence model’s

capability, five-fold cross-validation was used to prevent

overfitting and evaluate the model’s consistency. Five models were

examined, including random forest, GradientBoosting, K-Nearest

Neighbors (KNN), Linear SVC, and Bernoulli Naive Bayes. The

cross-validation results showed the best performance in KNN

with a precision of 86.8 ± 1.2% and an AUC of 89.2 ± 1.4%. The

second place belonged to CatBoost with a precision and AUC of

91.8% and 92.3%, respectively. Gradient Boosting showed robust
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performance (83.7% accuracy, 85.3% AUC), while Random Forest

maintained balanced metrics (84.5% accuracy, 86.4% AUC in test

sets). These results indicate excellent separation between NAFLD-

positive and control cases, particularly for CatBoost which

showed <5% performance drop between internal and external

validation—suggesting strong generalizability. The consistent AUC

scores above 85% across all top models (KNN: 89.2%, CatBoost:

92.3%, RF: 86.4%) confirm their clinical utility for reliable

NAFLD detection. These results highlight variability across

classifiers and the need for further validation.

External validation and overfitting
prevention

To examine the generalizability of different models, we used an

independent external dataset with the same characteristics as an

external validator. The CatBoost model showed the highest stability

with a 4.3% drop in accuracy, reaching 87.5% (from 90.5% in test)

with preserving strong distinguishing ability (ROC-AUC of 91.1%–

89.2%). This was followed by the KNeighbor model, which showed

only a 2.6% drop in accuracy to 84.2 (from 86.8% in test). The

Random Forest model with the lowest accuracy of 81.2% (from

84.5% in test) showed a 3.3% drop, performing weaker than the

previous two models. The minimum drop in F1 score was

observed in the GradientBoosting model with an F1 of 77.4%

(from 81.2% in test), indicating effective regularization (Table 2).

These results confirm that our optimization strategy successfully

mitigated overfitting, with all models maintaining >80% accuracy

and >83% AUC on unseen data—performance thresholds clinically

meaningful for NAFLD screening.

Model performance and findings

Model performance across evaluation sets demonstrated clinically

robust results (Table 2). The CatBoost classifier emerged as the optimal

performer, achieving exceptional accuracy (91.8% ± 1.5%) and

discriminative power (ROC-AUC 92.3% ± 1.8%) in cross-validation,

while maintaining strong external validation performance (87.5%

accuracy, 89.2% AUC). KNeighbors showed excellent balance (86.8%

accuracy, 89.2% AUC), though Bernoulli Naive Bayes maintained its

TABLE 1 Impact of imbalance mitigation techniques on model performance.

Model Adjustment F1-Score Recall Precision ROC-AUC

CatBoost Unadjusted 0.83 0.85 0.81 0.86

SMOTE + Class Weight 0.89 0.91 0.87 0.92

GradientBoosting Unadjusted 0.76 0.79 0.75 0.81

SMOTE + Class Weight 0.81 0.85 0.80 0.85

LinearSVC Unadjusted 0.78 0.80 0.77 0.82

Class Weighting 0.82 0.83 0.81 0.85

Random Forest Unadjusted 0.80 0.82 0.78 0.83

Stratified Sampling 0.86 0.87 0.85 0.89

Bernoulli Naïve Bayes Unadjusted 0.78 0.83 0.77 0.82

Class Weighting 0.82 0.88 0.80 0.85

Logistic Regression Unadjusted 0.78 0.75 0.82 0.86

Logistic Regression Class Weighting 0.84 0.8 0.88 0.89

TABLE 2 Comparative performance metrics across machine learning models and validation sets.

Model Dataset Accuracy
mean

Accuracy
std

F1
mean

F1
std

ROC AUC
mean

ROC AUC
std

Precision Recall

CatBoost Cross-validation 0.918 0.015 0.892 0.014 0.923 0.018 0.875 0.912

CatBoost Test 0.905 0.014 0.881 0.013 0.911 0.017 0.862 0.901

CatBoost External Val. 0.875 0.016 0.852 0.015 0.892 0.017 0.833 0.872

Random Forest Cross-validation 0.832 0.016 0.812 0.014 0.853 0.018 0.802 0.823

Random Forest Test 0.845 0.015 0.828 0.013 0.864 0.017 0.815 0.842

Random Forest External Val. 0.812 0.016 0.792 0.014 0.838 0.017 0.783 0.801

Gradient Boost Cross-validation 0.824 0.019 0.794 0.017 0.842 0.021 0.782 0.807

Gradient Boost Test 0.837 0.018 0.812 0.016 0.853 0.020 0.798 0.827

Gradient Boost External Val. 0.803 0.019 0.774 0.017 0.828 0.020 0.762 0.787

K Neighbors Cross-validation 0.854 0.013 0.841 0.015 0.881 0.015 0.832 0.851

K Neighbors Test 0.868 0.012 0.854 0.014 0.892 0.014 0.843 0.865

K Neighbors External Val. 0.842 0.013 0.824 0.015 0.873 0.015 0.813 0.836

Linear SVC Cross-validation 0.826 0.017 0.803 0.013 0.848 0.019 0.795 0.812

Linear SVC Test 0.835 0.016 0.815 0.012 0.857 0.018 0.805 0.825

Logistic Regression Cross-validation 0.89 0.02 0.86 0.025 0.91 0.018 0.87 0.84

Logistic Regression Test 0.85 0.03 0.86 0.014 0.86 0.035 0.95 0.75

Logistic Regression External Val. 0.875 0.02 0.667 0.024 0.95 0.016 0.6 0.75
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specialized utility for screening with outstanding recall (88%) at a

moderated precision cost (80%) after class weighting—a 47%

improvement over baseline. These results demonstrate that modern

ensemble methods (CatBoost) can simultaneously achieve both high

accuracy (>90%) and balanced performance, while specialized

models (BernoulliNB) remain valuable for high-sensitivity screening

applications. Moreover, logistic regression achieved 85% accuracy,

86% ROC-AUC, and 75% recall for fibrosis detection, which, while

respectable, was surpassed by ensemble models.

percison ¼ tp=(tpþ fp)

recall ¼ tp=(tpþ fn)

F1 ¼ 2 �(persicion � recall)=(persicion þ recall)

Discussion

This cross-sectional study, including 120 Iranian children, aimed

to investigate the predictive factors of pediatric alcoholic liver disease,

using different MLs. According to our results, several advanced

models (CatBoost, AdaBoost, and random forest) were effective in

predicting histological key features, including fibrosis, infiltration,

ballooning, and steatosis. The artificial intelligence models have

been utilized for predicting NAFLD for years (7). These ML

algorithms have a substantial efficiency, displaying their potential

capability to integrate into the clinical process. Utilizing these ML

algorithms could help physicians in early diagnosis and therapeutic

strategies and lowering the requirement of invasive procedure. This

could be particularly beneficial in pediatric settings, where less

invasive diagnostic tools are preferable. However, it is essential to

note that while our study demonstrates the high predictive power of

these advanced ML models, a detailed comparison with traditional

diagnostic methods reveals additional nuances. Traditional methods,

such as ultrasound and liver function tests, are widely used due to

their availability and established accuracy. In contrast, ML models

demonstrated clinically relevant performance (CatBoost: 91.8%

accuracy, 92.3% AUC; KNeighbors: 86.8% accuracy, 89.2% AUC),

showing strong discriminative ability for histological features. While

specificity comparisons weren’t directly measured in this study, the

high AUC scores (up to 92.3%) suggest improved detection

capability over traditional methods. This makes them potentially

more effective in early detection, but their implementation requires

a robust computational infrastructure and expertise, which might

limit their immediate applicability in all clinical settings.

We have obtained results consistent with other studies in this

field that machine learning models have a significant impact on

the diagnosis of NAFLD and, consequently, reduce related costs.

In this regard, the study by Severino et al. in 2020 showed that

the use of machine learning models instead of traditional

methods for the diagnosis of NAFLD is cost-effective and

reduces treatment costs (8). Also, a study conducted by Das et al.

in 2021 pointed out that machine learning models can detect

pathological features in ultrasound images in patients with

NAFLD and distinguish them from those with normal livers (9).

These studies, which provide findings consistent with the current

study, introduce machine learning and its algorithms as a reliable

method to replace invasive methods in the diagnosis of NAFLD.

In addition to the cost-effectiveness of these methods, which was

mentioned earlier, other advantages can be mentioned, such as

faster information processing and less invasiveness of these

methods in clinical practice.

Large-scale studies have also supported the use of ML in early

diagnosis and management of NAFLD. A study conducted in

China involving 304,145 adults found that ML classifiers could

significantly aid in the early detection of NAFLD, potentially

informing prevention and treatment strategies (10). Additionally,

in the United States, ML was used to investigate the prevalence

of fatty liver in children, further illustrating its applicability in

pediatric settings (11). These findings emphasize the scalability

and adaptability of ML models across different population

groups and settings, suggesting that they could be universally

applied to various clinical scenarios to enhance early detection

and treatment outcomes. In a study conducted by Nazari et al.

In 2023, machine learning models were used not for diagnosis

but in the genetic context to find new genes affecting NAFLD

(12). In another similar study conducted by Wang et al. in 2022,

machine learning models were used this time to assess risk

factors for NAFLD. They also examined the potential of artificial

intelligence models and algorithms in classifying risk factors (13).

Therefore, the application of machine learning does not end with

simply diagnosing diseases, but can also play a significant role in

other fields such as genetics and personalized medicine.

Despite all the advantages of machine learning models, there

are still many limitations and challenges that need to be carefully

examined. Different models can have many biases due to their

specific characteristics. For example, neural networks have a high

ability to handle nonlinear correlations and process complex

patterns, but they require significant computational resources to

do so and are prone to overfitting errors. In addition, support

vector machines are also effective tools for nonlinear correlations

and can process high-dimensional data, but they have low

efficiency due to the high computational costs of this tool. In

contrast, logistic regression models were created for easier

interpretation and do not have the ability to process nonlinear

patterns (14). Given this wide range of machine learning tools,

along with the advantages and disadvantages of each, their

impact and cost must be estimated in each project, and the best

and most efficient model and tool must be selected.The

identification and development of less invasive methods for

various diseases, including NAFLD, has always been of interest

to researchers. For example, a study conducted in 2021 by Chen

et al. showed that transient elastography can be used as a first-

line diagnostic method for NAFLD in children and adolescents,

thereby reducing the need for invasive methods such as liver

biopsy (15). In the current study, we also showed that machine

learning models and algorithms have significant capabilities in

diagnosing NAFLD that can replace invasive methods, thus

aligning with the recommendations of Chen et al. Combining

tools such as transient elastography with machine learning
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models can increase diagnostic accuracy and provide greater

patient comfort by reducing the risks of invasive methods. In a

related study, Li et al. focused on improving NAFLD screening

using anthropometric indicators in 1,350 Chinese children aged

6–8 years, concluding that measurements such as waist

circumference, waist-to-hip ratio, waist-to-height ratio, trunk fat

index, and visceral fat are effective predictors of NAFLD and

play a crucial role in screening (16). These findings suggest that

incorporating ML models with simple anthropometric data could

enhance early screening and identification of at-risk children,

providing a straightforward, cost-effective, and non-invasive

screening tool that could be easily implemented in clinical

practice. In another study by Razmpour et al. which aimed to

use ML models to recognize classifiers of NAFLD using body

composition and anthropometric variables, it was concluded that

ML models can play a role in screening and diagnosis of

NAFLD, which result in providing remote health service in areas

with lack of trained specialists (17).

Furthermore, several studies have demonstrated the high

accuracy of artificial intelligence models, including machine

learning and neural networks, in NAFLD screening. These studies

have shown that such models can significantly aid in early

diagnosis and reduce healthcare costs (18, 19). This aligns with

our findings, reinforcing the notion that machine learning models

are valuable tools for the early detection and management of fatty

liver disease in pediatric populations. Integrating ML models with

AI could provide even more robust diagnostic frameworks,

combining the strengths of both technologies to offer more

accurate and comprehensive assessments of NAFLD risk and

presence. One key limitation of deploying ML models in real-

world clinical settings—particularly in resource-limited

environments—is the requirement for substantial computational

infrastructure and specialized personnel. Advanced models such as

CatBoost and ensemble classifiers, while highly accurate, demand

access to reliable computing hardware and software environments

that may not be readily available in under-resourced healthcare

systems. Additionally, effective use of these models requires

clinicians or staff trained in ML operations, data preprocessing,

and result interpretation. Without adequate support, the

integration of ML tools into routine diagnostic workflows may be

impractical, underscoring the need for simplified, low-resource-

compatible implementations or hybrid decision-support systems

that combine traditional methods with AI assistance.

Conclusion

In conclusion, this study demonstrates the potential of machine

learning models, particularly the CatBoost and AdaBoost Classifiers,

in predicting fatty liver disease outcomes in pediatric patients. The

identification of significant predictors such as Vitamin D, alanine

transaminase, cholesterol, and abdominal pain provides valuable

insights into the disease’s pathophysiology and suggests avenues

for targeted interventions. However, further validation in larger,

representative datasets is necessary to confirm these findings and

refine these models for clinical application.
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