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Background: Children who are HIV-exposed uninfected (CHEU) are at increased

risk for neurodevelopmental impairments. Most studies report on

neurodevelopmental outcomes in the first 2 years of life, with limited data

available for school-aged CHEU. This interim study examined the intellectual

and language outcomes in school-aged CHEU compared to children who are

HIV-unexposed uninfected (CHUU).

Setting: CHEU and CHUU aged 6–10 years recruited at two sites in Ontario,

Canada.

Methods: Intellectual and language abilities were measured using the WISC-V

and CELF-5. Generalized linear models investigated associations of HEU-status

with each neurodevelopmental outcome. An interaction term with sex was

included to assess sex-specific effects. Gestational age, being small for

gestational age (SGA), and household income were investigated as covariates.

Results: 65 CHEU (35 female, median age 9.00 years) and 42 CHUU (18 female,

8.96 years) were included. HEU-status was associated with significantly lower

working memory and expressive language scores. In males, HEU-status was

associated with lower scores on working memory, processing speed, overall

intelligence, core, and expressive language abilities. No significant differences

were observed in females by HEU-status. Household income was associated

with all measures of intelligence and language. Lower working memory scores

persisted in male CHEU after adjusting for covariates.
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Conclusion: Male CHEU and those with lower household income were the most

vulnerable to cognitive and language deficits. Working memory deficits in CHEU

indicates a specific cognitive vulnerability due to HEU exposure status. Our

findings highlight the need for early interventions, including ensuring financial

security and close neuropsychological follow-up.

KEYWORDS

HIV-exposed uninfected, neurodevelopment, working memory, intellectual abilities,

language abilities, developmental trajectory

1 Introduction

Globally, there are more than 16 million children who are HIV-

exposed but uninfected (CHEU) (1). In Canada, between 200 and

250 CHEU are born each year (2). Most of these children are also

perinatally exposed to HIV antiretroviral therapy (ART). In utero

exposure to HIV (3), and HIV-related mechanisms such as

maternal immune activation and inflammation (4, 5), as well as

ART exposure (6), may place CHEU at a higher risk of perinatal

complications and developmental deficits (7). Developmental

vulnerabilities have been reported in CHEU, including

differences in early neuropsychological development compared to

children who are HIV-unexposed and uninfected (CHUU) (8).

Perinatal risk factors are known to influence the trajectories of

the developing brain (9, 10). However, there is a limited

understanding of the impact of the perinatal risk factors on the

neuropsychological development of CHEU in later childhood.

CHEU are at increased risk of being born small for gestational

age, having low birth weight, being born preterm, experiencing

neonatal jaundice, and being admitted to the neonatal intensive

care unit (NICU) (7, 11–13). While preterm birth, low birth

weight, and admission to NICU have been associated with an

increased risk of neurodevelopmental delays and cognitive

challenges in all children (9, 10, 14–16), reports of these

associations in CHEU are limited to the ages of 6–24 months, and

data in older CHEU are lacking (11, 17). In addition, CHEU are at

increased risk of intellectual (18) and language challenges (19, 20).

Despite these insights, the literature remains fragmented, with

studies suggesting no significant differences in the

neurodevelopmental trajectory and language development of

CHEU up to the age of 5 (11, 17, 18, 21), while longitudinal

studies suggest that differences in overall intellectual and expressive

and receptive language abilities between CHEU and CHUU may

become more prominent over time (8, 22, 23). Moreover, while sex

differences in the neurodevelopmental trajectory of CHEU have

been considered in younger age groups, little is known about the

emergence of sex differences in older age groups (24, 25).

The existing literature includes a combination of low- and high-

income countries, with limited published data from high-income

countries, such as Canada. Research examining sex differences in

the neurodevelopmental trajectory of CHEU remains limited.

Further, previous studies have explored these associations in

younger age groups. The cognitive outcomes of CHEU and the

role of perinatal, demographic, and socioeconomic factors on

intellectual and language abilities in school-aged CHEU remain

unclear. As part of a Canadian multidisciplinary study, this current

study examined the impact of HIV-exposed uninfected (HEU)

status on the cognitive outcomes in school-aged children. Our aim

was to compare the intellectual and language abilities of school-

aged CHEU and CHUU, while considering the differences in

demographic and socioeconomic characteristics and perinatal risk

factors to determine potential moderating factors influencing these

cognitive outcomes.

2 Methods

2.1 Study population

The findings of this study are an interim analysis of the Kids

Imaging and Neurocognitive Development (KIND) study, an

ongoing Canadian prospective cohort study of CHEU and CHUU

designed, with target sample size of 180 CHEU and 65 CHUU, to

assess the long-term neurodevelopmental health of these children,

at two time points across a two-year interval. The KIND study

enrolls children between the ages of 6–10 since 2020 across two

clinical sites—The Hospital for Sick Children (SickKids) in Toronto

and Children’s Hospital of Eastern Ontario (CHEO) in Ottawa.

The key inclusion criteria for the CHEU group were being born to

a mother living with HIV with a known exposure to ART, and

having negative HIV status (defined as two or more negative DNA

PCR assays performed at or after one month of age or negative

HIV serology at any age). The CHUU were recruited from the

community and school programs operating in areas of similar

socioeconomic status as the families of CHEU, and through word

of mouth from participants. Group matching criteria included age,

ethnic background, household income, caregiver education level.

The inclusion criteria for CHUU were having a mother with HIV-

negative status during pregnancy. Exclusion criteria for both groups

included a history of previous developmental or neurological

conditions (e.g., stroke, Down’s syndrome) that were not related to

HIV/ART exposure (in the CHEU group), exposure to maternal

smoking (>1 cigarette/day), regular alcohol consumption (>3 drinks/

week for >1 month), or any substance use during pregnancy.

2.2 Ethics statement

The Institutional Review Boards of The Hospital for Sick

Children, Children’s Hospital of Eastern Ontario, and University
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Health Network approved the protocol. All participating families

provided written informed consent, and children provided assent

to participate in the study.

2.3 Demographic and perinatal measures

Demographic and perinatal health information was collected

through structured parent interviews for both groups and a

review of hospital medical records for CHEU. Demographic and

perinatal information was self-reported by the mothers

throughout the structured interview. Information regarding

maternal HIV status and ART usage during the relevant

pregnancy for the CHEU group was collected from medical

records. The following demographic measures were obtained

through the structured interviews: family income, maternal race,

maternal education level, and languages spoken at home.

A translator was used, where needed, with parents who did not

primarily speak English.

Our primary exposure of interest was HEU-status (CHEU vs.

CHUU). Perinatal measures of interest included: birthweight,

birth weight centiles [determined using the INTERGROWTH-

21st calculator (26)], small for gestational age (SGA) status

(below the 10th birth weight centile), gestational age at birth,

prematurity (born at <37 weeks gestational age), NICU

admission, and birth complications (e.g., jaundice, infection,

induced delivery).

2.4 Neurodevelopmental outcomes

The primary outcome measures were scores from two

psychological assessment measures the Wechsler Intelligence

Scale for Children—Fifth Edition [WISC-V (27)] and the Clinical

Evaluation of Language Fundamentals- Fifth Edition [CELF-5

(28)]). These measures were administered by experienced

research staff under the supervision of a psychologist or directly

by psychologists. Indices of Verbal Comprehension, Visual-

Spatial, Fluid Reasoning, Working Memory, Processing Speed,

and Full-Scale IQ were obtained through the WISC-V. Indices of

Expressive Language, Receptive Language, and Core Language

abilities (combination of expressive and receptive language skills)

were obtained from the CELF-5. Standardized scores were

derived for each measure, with a population mean of 100

corresponding to the 50th percentile of typical development, and

a standard deviation (SD) of 15.

2.5 Statistical analyses

Chi-square (χ2 tests) were used to compare demographic

characteristics between CHEU and CHUU groups. The mean

standard scores and 95% confidence intervals of the intelligence

and language outcomes were calculated by HEU-status (CHEU

vs. CHUU), and stratified by sex. The proportion of children

scoring within the clinically impaired range (2 SD below the

mean standardized score, i.e., <70) on each measure was

calculated by HEU-status. Chi-squared tests were used to

compare the proportions of clinically impaired scores between

the two groups. Generalized linear models with robust standard

errors (29) were used to examine the associations between each

neurodevelopmental outcome and HEU-status. To investigate

sex-specific effects models including an interaction term of HEU-

status and sex were also used.

Exploratory Pearson’s correlation coefficients were first

calculated to examine relationships between demographic,

socioeconomic, and perinatal measures with each

neurodevelopmental outcome. Perinatal factors included in the

models were chosen a priori. Household income and maternal

education levels were considered to represent socioeconomic

status. To investigate how these perinatal factors and

socioeconomic factors modified the associations between HEU-

status with each neurodevelopmental outcome, subsequent

generalized linear regression models included chosen perinatal

factors and socioeconomic factors as independent variables.

Gestational age at birth and birthweight were considered due to

the significant differences in these factors between the CHEU and

CHUU, but to avoid collinearity due to their high correlation

(r = 0.70), gestational age at birth was selected. Birthweight centile,

prematurity, NICU admission, and birth complications were

excluded due to high correlations with gestational age at birth

(Supplementary Table 1). Being SGA at birth was retained based

on its association with neurodevelopmental outcome measures and

low correlation with gestational age at birth (r = 0.14). Two models

were evaluated to examine the impact of gestational age at birth

and SGA. The first model adjusted only for gestational age at

birth (Supplementary Table 2). The second model adjusted for

gestational age at birth and being SGA (Supplementary Table 3)

and was identified as having the best fit for perinatal factors. The

models also included a “HEU-status by sex” interaction term. To

account for socioeconomic status, household income was chosen

due to its correlations with the neurodevelopmental outcome

measures. Household income was included in the final model that

included the perinatal factors of gestational age at birth and SGA.

Model fit was compared using the Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC). All analyses were

performed using R (v4.2.1) (30), STATA (v13) (31), and Prism

(v9) (32), with statistical significance set at p < 0.05.

3 Results

3.1 Baseline demographic and perinatal
measures

A total of 114 children were enrolled between January 2020 and

April 2024. After excluding participants (n = 7) due to invalid

results on the neurodevelopmental measures, 107 children (65

CHEU and 42 CHUU) were available for the analysis.

Demographic and perinatal characteristics are shown in Table 1.

Both groups had similar age (median age of 9.00 years for

CHEU vs. 8.96 years for CHUU) and sex distribution (CHEU

Kahnami et al. 10.3389/fped.2025.1540420

Frontiers in Pediatrics 03 frontiersin.org

https://doi.org/10.3389/fped.2025.1540420
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 1 Demographic and perinatal characteristics.

Characteristics CHEU median
(IQR) or n (%)

CHEU n CHUU median
(IQR) or n (%))

CHUU n p-value

Child factors 65 42

Age (years) 9.00 (7.25, 9.92) 8.96 (7.17, 10.08) 0.57

Sex

Male 30 (46.2%) 24 (57.1%) 0.27

Female 35 (53.8%) 18 (42.9%)

Maternal and SES factors

Mother’s race 64 42

Black African Caribbean 45 (70.3%) 19 (45.2%) 0.11

Caucasian 12 (18.8%) 14 (33.3%)

Other 7 (10.3%) 9 (21.4%)

Language spoken at home 64 42

Primarily English 57 (89.1%) 39 (92.9%) 0.36

English and other 7 (10.9%) 3 (7.1%)

Maternal Education 63 42

Did not finish high school 6 (9.52%) 3 (7.1%)

High school degree 14 (22.2%) 5 (11.9%) 0.68

College degree 27 (42.9%) 20 (47.6%)

University undergraduate degree 8 (12.7%) 7 (16.7%)

Post-university undergraduate degree 8 (12.7%) 7 (16.7%)

Household Income 62 42

Less than $25,000 17 (27.4%) 5 (11.9%) 0.092

$25,000–$49,999 21 (33.9%) 11 (26.2%)

$50,000–$74,999 10 (16.1%) 13 (31.0%)

$75,000–$99,999 5 (8.06%) 2 (4.76%)

Over $100,000 9 (14.5%) 11 (26.2%)

Perinatal Factors

Birth Weight (kg) 2.90 (2.38, 3.42) 63 3.40 (2.94, 3.71) 39 0.0007

Birth Weight Centiles 47.4 (15.5, 81.5) 63 67.4 (38.0, 86.1) 39 0.092

Prematurity (<37 weeks gestation) 17 (27.0%) 63 2 (4.8%) 42 0.004

Small for Gestational Age (SGA) 10 (15.9%) 63 4 (10.3%) 39 0.42

Admission to NICU 11 (17.2%) 64 6 (14.3%) 42 0.69

Birth Complications 9 (14.1%) 64 7 (16.7%) 42 0.71

Gestational Age (weeks) 38 (36, 39) 63 40 (39, 40) 41 0.0001

TABLE 2 Neurodevelopmental outcomes in CHEU and CHUU: mean and confidence intervals of standard scores, and comparison of clinically
impaired proportions.

Measure CHEU mean
(95%CI)

CHEU n CHUU Mean
(95%CI)

CHUU n CHEU clinically
impaired1 n (%)

CHUU clinically
impaired1 n (%)

p-value2

Intellectual abilities

Verbal comprehension index 95.78 (92.19, 99.37) 64 100.5 (96.2, 104.8) 42 2 (3.12%) 0 (0%) 0.25

Visual spatial index 90.12 (86.19, 94.06) 65 93.60 (89.63, 97.56) 42 5 (7.69%) 0 (0%) 0.07

Fluid reasoning index 94.38 (90.67, 98.10) 65 96.76 (91.63, 101.9) 42 5 (7.69%) 3 (7.40%) 0.92

Working memory index 90.86 (87.23, 94.49) 64 97.76 (93.57, 102.0) 42 7 (10.94%) 0 (0%) 0.027

Processing speed index 92.06 (88.04, 96.09) 63 95.19 (91.29, 99.09) 42 6 (9.52%) 1 (2.38%) 0.15

Full scale IQ 90.63 (86.96, 94.29) 64 96.10 (91.47, 100.7) 42 5 (7.81%) 3 (7.14%) 0.90

Language abilities

Core language 92.69 (88.59, 96.79) 61 99.05 (94.75, 103.3) 41 6 (9.84%) 2 (4.88%) 0.36

Receptive language 90.70 (86.79, 94.62) 60 94.74 (89.87, 99.60) 38 4 (6.56%) 2 (5.26%) 0.79

Expressive language 94.43 (90.57, 98.30) 61 100.5 (96.15, 104.9) 38 2 (3.33%) 1 (2.63%) 0.84

1Clinically impaired is defined as a score less than 70.
2The p-value represents the comparison between the proportions of clinically impaired scores across groups.

Statistical comparisons by χ
2 test.

CHEU, child who is HIV exposed uninfected; CHUU, child who is HIV unexposed uninfected; CI, confidence interval.
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53.8% girls vs. CHUU 42.9% girls). CHEU and CHUU were similar

in maternal and socioeconomic characteristics. The majority of

mothers identified as African/Caribbean/Black (70.3% of CHEU

and 45.2% of CHUU). English was the primary language spoken

at home for the majority of participants (89.1% for CHEU vs.

92.9% for CHUU). The majority of mothers had a college degree

level education (42.9% of CHEU mothers vs. 47.6% of CHUU

mothers). There were no statistically significant differences

between groups in household income.

The median gestational age at birth was significantly lower for

CHEU (38 weeks) compared to CHUU (40 weeks; p < 0.0001), with

a greater proportion of CHEU being born prematurely (27% vs.

4.8%, p = 0.004). While the median birthweight for CHEU

(2.90 kg) was significantly lower than that of CHUU (3.40 kg;

p = 0.0007), the median birthweight centiles did not differ

significantly between groups (47.4 vs. 67.4 percentile; p = 0.092).

A similar proportion of children in each group were classified as

SGA at birth (CHEU: 15.9% vs. CHUU: 10.3%; p = 0.42). The

proportion of children experiencing birth complications (CHEU:

14.1% vs. CHUU: 16.7%; p = 0.71) was similar between groups,

as were the proportion of children admitted to NICU (CHEU:

17.2% vs. CHUU: 14.3%; p = 0.69). In the CHEU group, the

majority of NICU admissions were due to preterm birth (54.5%,

n = 6), with other reasons including maternal uterine

diverticulum, heart murmur, breastfeeding issues, low glucose

levels, and small size (each n = 1). In the CHUU group, reasons

for NICU admission included meconium aspiration, jaundice,

maternal diabetes (each n = 1), or other reasons (n = 3).

3.2 Univariate analyses of
neurodevelopmental outcomes

The mean scores for each measure were in the average range

for both the CHEU and CHUU (Table 2 and Supplementary

Figures 1, 2). Within the CHEU group, a higher proportion of

participants scored in the clinically impaired range (standardized

score <70) on all measures (Table 2) than expected in the

normative population, whereas 2% of individuals in the general

population are expected to fall within these ranges. The

proportion of CHEU falling in the clinically impaired range was

significantly higher for the Working Memory Index (10.9% vs.

0.0%, p = 0.027) and was marginally higher for the Visual Spatial

Index (7.7% vs. 0.0%, p = 0.07) as compared to CHUU.

In the univariate analyses, CHEU had significantly lower mean

standard scores for working memory (mean difference −6.90,

p = 0.012), core language (mean difference −6.36, p = 0.030), and

expressive language (mean difference −6.07, p = 0.035), and

FIGURE 1

Standard scores of intellectual abilities for male and female CHEU compared to CHUU. Dot plot illustrating the distribution of standard scores for

Verbal Comprehension (A) [CHEU (30 male, 34 female); CHUU (24 male, 18 female)], Visual-Spatial (B) [CHEU (30 male, 35 female); CHUU (24

male, 18 female)], Fluid Reasoning (C) [CHEU (30 male, 35 female); CHUU (24 male, 18 female)], Working Memory (D) [CHEU (30 male, 34

female); CHUU (24 male, 18 female)], Processing Speed (E) [CHEU (19 male, 34 female); CHUU (24 male, 18 female)], and Full-Scale IQ (F) [CHEU

(30 male, 34 female); CHUU (24 male, 18 female)] indices in CHEU and CHUU, stratified by sex. Data are shown as dots for each individual

participant with the mean and 95% confidence intervals indicated. Light dotted lines indicate ±1 standard deviation from the population mean of

100. The darker dotted line indicates 2 standard deviations below the population mean of 100. Dots falling below this line are classified as

clinically impaired. Males are shown in blue, and females in pink. Closed circles indicate CHUU, and open circles indicate CHEU. *p < 0.05,

**p < 0.01. Statistical comparisons by generalized linear models including an HEU-status*sex interaction term. CHEU, child who is HIV exposed

uninfected; CHUU, child who is HIV unexposed uninfected. HUU, HIV unexposed uninfected; HEU, HIV exposed uninfected.
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marginally lower for Full Scale IQ (mean difference −5.47,

p = 0.06), compared to CHUU (Supplementary Table 4).

Including sex as an interaction term in the models revealed that

male CHEU were more vulnerable than female CHEU (Figures 1

and 2). Male CHEU had significantly lower mean standard

scores for Verbal Comprehension (mean difference −8.72,

p = 0.018), Working Memory (mean difference −12.12,

p = 0.001), Processing Speed (mean difference −9.03, p = 0.017),

Full Scale IQ (mean difference −10.83, p = 0.005), Core Language

(mean difference −10.37, p = 0.007), and Expressive Language

(mean difference −9.48, p = 0.011), and marginally lower for

Receptive Language (mean difference −6.90, p = 0.092) (Figures 1

and 2, and Supplementary Table 5). Female CHEU had similar

scores to female CHUU for all outcomes.

3.3 Multivariate analyses of
neurodevelopmental outcomes- perinatal
exposures and socioeconomic status

We next investigated how birth outcomes modified associations

between HEU exposure status and the neurodevelopmental outcomes

in multivariate models. Due to high correlation between perinatal

variables (see methods) only gestational age at birth and being born

SGA were considered. After controlling for these two variables, the

differences in Verbal Comprehension were no longer significant in

male CHEU. Working Memory (mean difference −12.14, p= 0.002)

and Processing Speed indices (mean difference −9.17, p= 0.022), Full

Scale IQ (mean difference −8.97, p= 0.027), and Core (mean

difference −7.99, p = 0.041) and Expressive Language (mean

difference −7.72, p = 0.048) scores remained significantly lower in

male CHEU. Being SGA, regardless of HEU-status, was associated

with significant declines in Processing Speed Index (mean difference

−7.32, p = 0.047), Full Scale IQ (mean difference −9.03, p= 0.023),

and Core (mean difference −9.31, p = 0.041) and Receptive (mean

difference −9.97, p = 0.019) Language scores.

To account for socioeconomic status, we further controlled for

household income in addition to gestational age at birth and SGA

(Table 3). Household income was significantly associated with

performance on all the cognitive measures except working

memory. Including household income in the model led to a

reduction in magnitude of all coefficients associated with HEU

exposure status, with the exception of working memory (Table 3).

4 Discussion

In this study, school-aged CHEU had lower mean scores on

Working Memory and Expressive Language measures compared to

CHUU. This is in contrast to previous studies that did not find

these differences in infancy or early childhood (11, 17, 18, 21, 24,

25). Our results contribute to the understanding that cognitive

deficits in CHEU may become more observable at later stages of

childhood, as highlighted previously (23, 33–36). Importantly, our

findings identify sex-specific vulnerabilities, with significant deficits

being seen in male, but not female, CHEU in this cohort. Our

results also highlight a distinct and persistent area of intrinsic

challenge in working memory abilities, particularly for male

CHEU, even after accounting for perinatal (gestational age at birth

and SGA) and socioeconomic factors (income). Finally, our

findings highlight the importance of economic factors, with

household income being strongly associated with all

neurodevelopmental measures, apart from Working Memory Index.

The sex-specific vulnerability observed in our study, even after

controlling for perinatal risk factors, is a novel contribution to the

literature. The few studies on school-aged CHEU (33, 35) have

controlled for sex in their analysis rather than specifically

examining for sex differences, and the limited research

examining sex differences has not identified these discrepancies

in younger groups (24, 25). Further, studies suggesting male

vulnerabilities have not included comparisons with CHUU (37),

hindering the generalizability of the findings, as without a

FIGURE 2

Standard scores of language abilities for male and female CHEU compared to CHUU. Dot plot illustrating the distribution of standard scores for Core

Language (A) [CHEU (28 male, 33 female); CHUU (24 male, 17 female)], Receptive Language (B) [CHEU (27 male, 34 female); CHUU (21 male, 17

female)], and Expressive Language (C) [CHEU (27 male, 33 female); CHUU (21 male, 17 female)] indices in CHEU and CHUU, stratified by sex. Data

are shown as dots for each individual participant with the mean and 95% confidence intervals indicated. Light dotted lines indicate ±1 standard

deviation from the population mean of 100. The darker dotted line indicates 2 standard deviations below the population mean of 100. Dots falling

below this line are classified as clinically impaired. Males are shown in blue, and females in pink. Closed circles indicate CHUU, and open circles

indicate CHEU. *p < 0.05. Statistical comparisons by generalized linear models including an HEU-status*sex interaction term. CHEU, child who is

HIV exposed uninfected; CHUU, child who is HIV unexposed uninfected. HUU, HIV unexposed uninfected; HEU, HIV exposed uninfected.
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TABLE 3 Multivariate linear regression results for neurodevelopmental outcomes comparing groups, controlling for GA, SGA, and income.

Cognitive outcome Predictor Estimate 95% confidence interval Predictor p-value

Verbal comprehension index HEU status −2.02 −8.49, 4.45 0.54

Sex 2.92 −5.08, 10.92 0.47

HEU × Sex (female) 2.97 −7.24, 13.18 0.57

SGA −1.77 −9.12, 5.57 0.64

GA 0.68 −0.16, 1.53 0.11

Income 4.65 2.91, 6.39 <0.0001

Visual spatial index HEU status −2.25 −10.20, 5.70 0.58

Sex 1.31 −6.68, 9.31 0.75

HEU × Sex (female) 1.25 −9.71, 12.20 0.82

SGA −3.90 −13.5, 5.71 0.43

GA −0.40 −1.41, 0.61 0.44

Income 3.34 1.49, 5.20 <0.0001

Fluid reasoning index HEU status −1.20 −10.17, 7.77 0.78

Sex −0.59 −9.91, 8.72 0.90

HEU × Sex (female) 3.14 −8.54, 14.83 0.60

SGA 0.47 −11.09, 12.02 0.94

GA 0.51 −0.46, 1.50 0.30

Income 4.09 2.12, 6.05 <0.0001

Working memory index HEU status −10.80 −18.17, −3.44 0.004

Sex −1.13 −9.11, 6.84 0.78

HEU × Sex (female) 8.34 −2.22, 18.91 0.12

SGA −3.70 −11.97, 4.56 0.38

GA 0.21 −0.74, 1.18 0.65

Income 1.83 −0.10, 3.77 0.06

Processing speed index HEU status −6.59 −14.62, 1.43 0.11

Sex −0.22 −7.69, 7.25 0.95

HEU × Sex (female) 9.49 −1.16, 20.13 0.08

SGA −4.94 −12.38, 2.50 0.19

GA −0.03 −0.99, 0.93 0.95

Income 3.31 1.07, 5.54 0.004

Full scale IQ HEU status −4.96 −12.29, 2.36 0.18

Sex 1.05 −7.02, 9.12 0.80

HEU × Sex (female) 6.15 −4.16, 16.46 0.24

SGA −4.80 −12.70, 3.11 0.23

GA 0.44 −0.37, 1.24 0.20

Income 4.93 3.07, 6.78 <0.0001

Core language HEU status −3.84 −11.06, 3.37 0.30

Sex 4.83 −2.08, 11.74 0.17

HEU × Sex (female) 1.19 −8.64, 11.01 0.81

SGA −5.35 −14.68, 3.98 0.21

GA 0.76 0.05, 1.47 0.04

Income 4.62 2.97, 6.27 <0.0001

Receptive language HEU status −0.95 −8.92, 7.01 0.81

Sex 5.30 −3.02, 13.62 0.21

HEU × Sex (female) 0.65 −9.97, 11.27 0.90

SGA −5.00 −13.07, 3.07 0.23

GA 0.66 −0.18, 1.50 0.12

Income 5.46 3.85, 7.06 <0.0001

Expressive language HEU status −5.27 −12.81, 2.27 0.17

Sex 5.09 −2.60, 12.79 0.19

HEU × Sex (female) 2.43 −8.09, 12.95 0.65

SGA −5.69 −15.82, 4.43 0.27

GA 0.87 0.13, 1.61 0.02

Income 3.41 1.64, 4.19 <0.0001

HEU, HIV exposed uninfected; SGA, small for gestational age; GA, gestational age; Income, household income.

Note. AIC = 8.00; BIC = 14624.48 for Verbal Comprehension model. AIC = 8.27; BIC = 19366.93 for Visual Spatial Model. AIC = 8.32; BIC = 20429.85 for Fluid Reasoning Model. AIC = 8.15;

BIC = 17075.95 for Working Memory Model. AIC = 8.17; BIC = 17121.04 for Processing Speed Model. AIC = 8.03; BIC = 15103.00 for Full Scale IQ Model. AIC = 8.01; BIC = 14044.53 for Core

Language Model. AIC = 8.06; BIC = 14388.67 for Receptive Language Model. AIC = 8.07; BIC = 14341.71 for Expressive Language Model.
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comparison group, it can be speculated that males may be at a higher

risk of neurodevelopmental deficits, regardless of HEU-status (38).

These observed sex differences may indicate that male CHEU are

more susceptible to maternal HIV and potentially ART exposures

in the intrauterine environment. The intrauterine environment

tends to be more pro-inflammatory for male fetuses compared to

female fetuses (39, 40). Specifically, the male placenta has been

shown to be less protective against inflammatory and infectious

insults, which could make male fetuses more susceptible to in

utero exposure to HIV and ARTs (39, 40). Studies have also

shown that male and female fetuses respond differently to prenatal

adversities, with male fetuses prioritizing physical growth at the

expense of other organ processes. This may make male fetuses less

adaptable to in utero changes, increasing the risk for adverse

downstream effects, including on neurodevelopment (41).

However, it is important to consider that societal and gender

expectations may also contribute to the masking of more subtle

language or cognitive challenges in girls that may not be captured

through our standardized measures (42, 43).

Including perinatal factors (SGA and gestational age at birth) in

the analyses led to only minor attenuations in HEU group

differences. While factors such as prematurity and intrauterine

growth restriction are known to influence early neurodevelopment,

their long-term effects on cognition may be attenuated by other

environmental factors as the child develops (10). In our study,

household income had a substantial impact on intelligence and

language outcomes in both CHEU and CHUU groups, highlighting

the critical role of the broader socioeconomic environment in a

child’s development over time. Socioeconomic status can impact

neurodevelopment from conception through adulthood via direct

and indirect pathways, such as perinatal exposure (e.g., nutrition),

psychosocial stress, access to resources, educational opportunities,

and cognitive stimulation (44). Further, the household and

environmental context of CHEU is influenced by a series of

indirect risks for child development, such as caregiver illness and

hospitalization, and the mental health burden of HIV diagnosis (45,

46). These factors may limit social interaction and cognitive

stimulation during early development, further impacting children’s

cognitive, learning, and social development (47). The present

finding raises the possibility of considering policies such as

universal basic income, which is particularly relevant for the CHEU

population where lower household income is more prevalent and

income disparities are likely to compound neurodevelopmental

challenges (23, 48). Further, the findings on household income can

also indicate the impact of other related variables, such as single-

parent households and additional socio-demographic challenges.

Therefore, it is crucial to consider policies that address these

broader socioeconomic disparities.

The most consistent finding of our study is that working memory

deficits in CHEU persist even after controlling for perinatal risk

factors and also socioeconomic status. In addition, the number of

CHEU with clinically impaired Working Memory scores were

significantly higher compared to CHUU, reflecting disparities

between the groups (49). The observed working memory deficits

align with the findings of a previous study on verbal working

memory in school-aged CHEU (50). Working memory abilities

may be more susceptible to the impacts of HIV and ART

exposures in CHEU due to the prolonged development time of

prefrontal lobes, and differences may become more evident in older

children due to the later emergence of working memory and

executive functioning abilities in childhood (49). Working memory

is fundamental to learning and academic achievement (51),

attentional control (52), development of cognitive abilities such as

reasoning, problem-solving, decision-making (53), and social skills

(54). Working memory deficits are also associated with broader

executive functioning difficulties (55). These skills develop in later

childhood and can be better assessed beginning at school age and

into adolescence, when children have had more exposure to

external factors, such as social and cognitive stimulation and

learning environments. Working memory deficits may contribute

to academic challenges observed in CHEU (56). Future research

could further explore the association between working memory,

executive functioning skills, and academic development in CHEU.

Further, our findings suggest that a more extended follow-up

period into middle childhood and adolescence is essential. Close

follow-up of the CHEU population in the school-age period

provides an opportunity for early intervention to improve broader

executive functioning during these sensitive developmental stages.

Several limitations must be acknowledged. Our CHEU and

CHUU samples are relatively small, impacting the statistical

power to conduct between-sex analyses and the generalizability

of the findings. In addition, recruitment bias might have

impacted our findings, as parents suspecting neurodevelopmental

challenges may have been more inclined for their children to

participate in the study; however, this is unlikely to explain the

observed sex differences. Further, while our study revealed a

higher risk of working memory deficits in CHEU, we were

unable to provide a precise mechanism underlying this

association. Previous literature has identified associations between

specific ART regimens and language outcomes (19), however,

due to sample size limitations, we did not explore these

associations. Finally, we are only able to present findings from

assessment at a single time point. Tracking neurodevelopmental

trajectories longitudinally would be more informative and is

planned as part of the larger KIND study.

In conclusion, our study contributes to the growing body of

research on the neurodevelopmental outcomes of CHEU. We

found neurodevelopmental vulnerabilities in school-aged CHEU,

with male CHEU showing greater vulnerability for poorer

intellectual and language outcomes. Household income was

identified as a contributing factor for most of these

neurodevelopmental challenges, but even after controlling for

income, working memory deficits persisted in CHEU,

highlighting a poorer outcome due to HEU status. Our findings

emphasize the need for close neuropsychological follow-up in

this population beyond five years of age and potential early

interventions and supports, particularly for CHEU males and

those born into low-income households. Further, our findings

highlight the necessity for future research to continue to explore

the complex interplay between biological and psychosocial

factors, HIV and ART exposure, brain development, and

neurodevelopmental outcomes in CHEU.
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