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Background: Cholestatic hepatopathy is common in infants. While many studies
link gut microbiota to liver and gallbladder diseases, the relationship between
infantile cholestatic hepatopathy (ICH) and gut microbiota remains unclear.
Methods: We collected stool samples from 19 healthy controls and 33 infants
with ICH aged ≤3 months, then determined the intestinal microbiota by 16S
rDNA sequencing. The differences of microbiota structure and functional
between the two groups were analyzed.
Results: Alpha-diversity analysis showed that the Chao1 and ACE indexes were
significantly higher in the ICH group than control group (p < 0.05). LEfSe
analysis showed that 18 bacteria taxa, including Streptococcus,
Streptococcaceae, and Staphylococcales, enriched significantly in the ICH
group, and 3 bacteria taxa were enriched in the control group. At the genus
level, the relative abundance of Streptococcus, Escherichia-Shigella, and
Lactobacillus in ICH group was higher than control group (p < 0.05). The
Receiver Operating Characteristic (ROC) analysis demonstrated that
Streptococcus was highly valuable in distinguishing ICH from healthy controls.
Moreover, functional prediction analysis identified 59 metabolic pathways
potentially associated with ICH.
Conclusion: Gut microbiota dysbiosis is associated with infantile cholestatic
hepatopathy, and Streptococcus can be used as an essential biomarker to
identify ICH.
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1 Introduction

Infantile cholestatic hepatopathy (ICH) is a group of hepatobiliary diseases that occur

within the first 3 months of life (1). It is primarily manifested by yellowish staining of the

skin, darkened urine color, and lightened stool color, among other symptoms, gradually

progressing to hyperbilirubinemia. It may even result in cirrhosis and liver failure,

ultimately causing death. Currently, ICH is a leading cause of death and disability

during infancy. The etiology of infantile cholestasis is complex and mainly includes

obstructive causes (such as biliary atresia), infections (such as hepatitis viral infection),

endocrine disorders (such as hypothyroidism), drug poisoning (such as parenteral

nutrition-related liver disease), genetics (such as familial intrahepatic cholestasis and

congenital bile acid synthesis defects), metabolism (such as abnormal amino acid
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2025.1547958&domain=pdf&date_stamp=2020-03-12
mailto:jmnba@163.com
mailto:1354015698@qq.com
https://doi.org/10.3389/fped.2025.1547958
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2025.1547958/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1547958/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2025.1547958
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Zou et al. 10.3389/fped.2025.1547958
metabolism and abnormal lipid metabolism), idiopathic infantile

cholestasis, and others (2). However, cholestasis caused by

different reasons is clinically manifested as abnormal bilirubin

levels, so what exactly causes this phenomenon?

Research studies have demonstrated that there is a tight

affiliation between the composition of the gut microbiota and

serum bilirubin levels (3). The gut microbiota participates in the

metabolic process of bilirubin. Dysbiosis may impede bilirubin

metabolism, leading to intestinal bilirubin accumulation and

contributing to hyperbilirubinemia. Notably, specific gut

microbiota, including Clostridium, Bifidobacterium, and members

of the Firmicutes can convert bilirubin into metabolites that are

prone to excretion through specific enzymatic reactions, thereby

maintaining the homeostasis of bilirubin within the body (4).

Furthermore, an imbalance in the gut microbiota may also lead

to the disruption of the intestinal mucosal barrier, augmenting

the likelihood of bilirubin entering the blood circulation via the

intestinal mucosa and further exacerbating the accumulation of

bilirubin (5). In pathologies such as neonatal jaundice, dysbiosis

of the gut microbiota are also regarded as one of the crucial

factors contributing to elevated bilirubin levels. Studies have

ascertained that maternal supplementation with probiotics during

pregnancy can facilitate the metabolism of neonatal bilirubin,

lower neonatal bilirubin levels, and thereby reduce the incidence

of neonatal jaundice (6). These research findings imply that high

bilirubin in ICH is associated with abnormal gut microbiota, yet

the role of gut microbiota in ICH still demands further exploration.

This study utilized 16S rDNA sequencing to compare gut

microbiota profiles between healthy infants and ICH patients,

aiming to identify microbial biomarkers linked to ICH

pathogenesis thereby further exploring the potential role through

which the gut microbiota induces ICH.
2 Materials and methods

2.1 Research subjects

Healthy control individuals and infants with ICH were enrolled

from The Central Hospital of Enshi Tujia and Miao Autonomous

Prefecture (Enshi, China) spanning from June 2021 to December

2023. The diagnostic criteria for infants with cholestatic

hepatopathy were in accordance with the regulations stipulated

in the guidelines for the assessment of infantile cholestatic

hepatopathy of the North American Society for Pediatric

Gastroenterology, Hepatology and Nutrition (7, 8). The infants

with cholestatic hepatopathy in this study satisfied the following

inclusion criteria: (1) Infants aged less than 3 months; (2) All

diagnostic criteria for cholestasis were met at admission; (3) No

antibiotics or probiotics were administered during the preceding

2 weeks; The control group comprised infants aged less than 3

months with normal health as indicated by physical

examinations in the Department of Pediatrics; infants with no

comorbidities (e.g., cholestasis or congenital developmental

abnormalities) no antibiotics or probiotics were administered in

the preceding 2 weeks. This study complied with the Declaration
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of Helsinki. It has been meticulously examined and approved by

the Human Ethics Committee of The Central Hospital of Enshi

Tujia and Miao Autonomous Prefecture (Approval Number:

2024-084-01). Moreover, we have ensured the attainment of

explicit and written informed consent from the parents of each

child involved in the research.
2.2 Clinical information and stool samples
collection

We recorded the age of each inclusion population stool samples

were collected from patients in the ICH group within the first 3

days after admission. Meanwhile, the stool samples of the control

group were obtained from healthy individuals undergoing

physical examinations. Each fecal sample weighed approximately

10 g. All samples were stored at −80°C immediately after

collection and subsequently processed for batch analysis.
2.3 DNA extraction, library construction
and sequencing

Genomic DNA was extracted using Omega E.Z.N.A. Stool

DNA Kit (MoBio Laboratories, USA) per manufacturer’s

protocol. Subsequently, the quality of the extracted DNA samples

was inspected in 1% agarose gel electrophoresis. The V3-V4

regions of 16S rDNA were amplified with primers 338F (5′-
ACTCCTACGGGAGGC AGCA-3′) and 806R (5′-GGACTA
CHVGGGTWTCTAAT-3′). PCR products were separated by gel

electrophoresis, purified by E.Z.N.A.® Gel Extraction Kit

(Omega, USA), quantified by NanoDrop 2000 (Thermo

Scientific, USA), and then used for library preparation with the

NEB Next® UltraTM II DNA Library Prep Kit (New England

Biolabs, USA). Finally, sequencing was performed on Illumina

MiSeq PE250 platform (Illumina, San Diego, CA, USA).
2.4 Taxonomical annotation

Raw data were filtered to remove sequences less than 200 bp in

length, and chimeric sequences were removed by comparing with

the Gold Database using the UCHIME method (9). High-quality

sequences were processed for Amplicon Sequence Variants

(ASV) determination using the VSEARCH (v2.7.1) software and

the DADA2 algorithm (v1.16), with a sequence similarity

threshold of 100% (10). Comparison with the Silva 132 rRNA

gene database using the RDP Classifier algorithm was performed,

and a confidence threshold of 80% was set to obtain the species

classification information corresponding to each ASV.
2.5 Statistical analysis

SPSS (v23.0) (IBM Corp., USA) was used for statistical analysis

of infant ages. Based on species annotation and relative abundance
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results, the Venn diagram visualized by QIIME2 was employed to

exhibit the richness and similarity of the gut microbiota

composition among the groups, the species composition and the

cluster analysis of species abundance were performed using

R Studio R(v3.5.1) software (11). The alpha-diversity analysis

(including Shannon, Chao1, ACE and Simpson indices) was

performed using QIIME2 (v2020.11.0) software. The beta-

diversity analysis (Bray-Curtis distance) was performed basing on

standardized ASV abundance tables to evaluate the community

composition and structure of gut microbiota. Linear discriminant

analysis Effect Size (LEfSe) analysis was employed to identify the

features that contributed the most to the variation between the

control and ICH groups. The disparities in the relative

abundance of gut microbiota at phylum and genus levels were

exploited to assess the differences in gut microbiota composition

between the control and ICH groups. The Receiver Operating

Characteristic (ROC) curve calculated and displayed by

R software (v4.1.3) was utilized to evaluate effective biomarker

for ICH. Predictive functional analysis (PICRUSt) was utilized to

predict the functional composition of the microbial community

based on its 16S profile. The KEGG database was utilized to

acquire KO pathway. The STAMP (v2.1.3) software package was

exploited for analyzing KEGG pathway profiles (12).
3 Results

3.1 Characteristics of population

A total of 52 infants aged no more than 3 months were

included in this study, among whom 19 infants (10 males and 9

females) were in the healthy control group, with a mean age of

2.02 ± 0.65 months; within the ICH group, 33 infants (17 males

and 16 females) were enrolled, with a mean age of 1.74 ± 0.69

months. The feeding patterns in the healthy control group were
FIGURE 1

Diversity analysis of gut microbiota between the control group and the ICH
abundance of ASV among the two groups. (C) Cluster analysis of species
cholestatic hepatopathy group; ASV, amplicon sequence variants.
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as follows: 10 infants were breastfed, 3 were formula-fed, and 6

were mixed-fed; in the ICH group, 15 infants were breastfed, 5

were formula-fed, and 11 were mixed-fed. The etiologies of ICH

included cholestatic hepatitis (n = 20), cholestatic hepatitis with

cytomegalovirus infection (n = 3), biliary atresia (n = 4), metabolic

genetic syndromes (n = 5), and progressive familial intrahepatic

cholestasis type 2 (n = 1). No significant differences in age, sex,

or feeding patterns were observed (p > 0.05).
3.2 Clusters in infant gut microbiota

This 16S rDNA sequencing generated 83,983 ± 23,676 reads

per sample. Cluster analysis identified 5,210 ASVs, with 139

shared between groups, 4,760 unique to ICH, and 311 unique to

controls (Figure 1A). Sequencing data disclosed significant

differences in the relative expression levels of ASVs between the

healthy control group and the ICH group (Figure 1B). The depth

of the orange color in the figure represents the abundance level

of each ASV among the group, the more intense the orange hue

is, the relatively higher the abundance of the ASV. The results

indicated that ASV_30, ASV_28, and ASV_9, among others, had

a higher abundance in the ICH group, whereas ASV_14,

ASV_25, and ASV_27 showed a higher abundance in the control

group (Figure 1C).
3.3 Fecal alpha and beta diversity

Alpha-diversity analysis showed that the Chao1 and ACE

indexes were significantly higher in ICH (p < 0.05) (Figure 2A),

whereas Shannon index and Simpson index showed no

significant differences (p > 0.05) (Figure 2B). Beta-diversity

analyses (Bray-Curtis distance, NMDS1, PCA, PCOA) revealed

no group separation (p > 0.05) (Supplementary Figures S1A–D).
group. (A) Venn diagram of ASVs among the two groups. (B) Relative
abundance among the two groups. Ctrl, control group; ICH, infantile
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FIGURE 2

Differences of α-diversity between the control group and the ICH group. (A) Chao1 index. (B) ACE index. (C) Shannon_e index. (D) Simpson index. Ctrl,
control group; ICH, infantile cholestatic hepatopathy group.
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3.4 Lefse analysis

Based on the threshold of Linear discriminant analysis (LDA)

>3.0, it was ascertained that there existed significant disparities in

21 features between the control group and the ICH group. Of

those, 18 bacteria taxa (o, f, and g, respectively, representing

order, family, and genus level) were more prevalent in the ICH

group, while 3 bacteria taxa were more prevalent in the control

group (Figure 3A). From the LEfSe cladogram, we also found

that these important bacteria were significantly abundant in the

different groups (Figure 3B). Additionally, it was found that the

relative abundance of Streptococcaceae in ICH samples was

significantly higher than that in healthy controls (Figure 3C).
3.5 Difference expression analysis of
gut microbiota between the ICH and
control groups

We also explored in the gutMDisorder database whether the

aforementioned gut microbiota related to ICH exhibited the same
Frontiers in Pediatrics 04
alteration patterns in other diseases (13), and the outcomes are

presented in Table 1, or the opposite pattern of change with

intervention measures, and the outcomes showed that the increase of

Streptococcaceae and Streptococcus were correlated with Crohn’s

disease, and the reduced abundance was observed by intervention

with Infliximab.

We mainly compared the differences of taxa at the phylum and

genus levels. At the phylum level (Supplementary Figure S2),

compared with the control group, the relative abundance of

Actinobacteriota and Bacteroidota increased in the ICH group, while

the relative abundance of Firmicutes and Proteobacteria decreased,

but there were no statistical differences (p > 0.05). At the genus level,

compared with the control group, the relative abundance of

Escherichia-Shigella, Streptococcus, and Lactobacillus was significantly

elevated in the ICH group (p < 0.05) (Figures 4A–C). The

abundance of Veillonella and Bacteroides increased in the ICH

group (Figures 4D–E), while the relative abundance of

Clostridium_sensu_stricto_1, Bifidobacterium, Lachnoclostridium,

and Enterococcus was lower in ICH group (Figures 4F–I), but the

differences were not statistically significant (p > 0.05). The ROC

curve was used to evaluate the effective biomarkers of ICH. The

results showed that Streptococcus [Area Under the ROC Curve
frontiersin.org
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FIGURE 3

LEfSe analysis results of the control group and the ICH group. (A) Bar plot of the LDA Score between two groups. LDA scores on the log 10 scale are
indicated at the bottom. (B) Evolutionary branching diagram of LEfSe analysis based on taxonomic information between groups. (C) Histogram of the
Streptococcaceae relative abundances between groups. Ctrl, control group; ICH, infantile cholestatic hepatopathy group; LDA, linear discriminant
analysis; LEfSe analysis, linear discriminant analysis effect size analysis.
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(AUC) = 0.772, clearly distinguish ICH from healthy control] was the

effective biomarker of ICH (Figure 4J). Additionally, the AUC values

of Lactobacillus and Escherichia-Shigella were 0.748 and 0.705,

respectively (Supplementary Figure S3).
3.6 Predictive functional analysis

PICRUSt functional analysis predicted that 59 metabolic

pathways associated with ICH, including Biosynthesis,

Metabolism, and Signal pathway (Figure 5). Compared with

the control group, the ICH group exhibited increased

Lipopolysaccharide biosynthesis and Biotin metabolism, alongside

reduced Secondary bile acid biosynthesis, Bacterial chemotaxis,

Biosynthesis of ansamycins, and Flagellar assembly processes.
4 Discussion

The enterohepatic circulation, serving as a crucial link in the

pathogenesis of cholestatic liver diseases, has garnered extensive
Frontiers in Pediatrics 05
scientific attention. Among these, alterations in the intestinal

microbiota are regarded as a potential element in the

pathogenesis of ICH. This study analyzed the composition and

changes of gut microbiota in healthy control group and ICH

group using high-throughput 16S rDNA sequencing technology.

The research findings indicate that there are substantial

differences in the composition of the intestinal microbiota

between ICH patients and healthy controls, while alpha-diversity

indices (Chao1 and ACE) were significantly elevated in the ICH

group. Additionally, both the ICH group and the control group

possess unique characteristic bacterial strains, and Streptococcus

could be used as an essential biomarker to identify ICH. This

discovery offers new leads for us to further comprehend the

pathogenesis of ICH.

Alpha-diversity provides indispensable statistical information

for microbial communities, and its high-level index highlights the

traits of species diversity and even distribution within the

community. In this study, alpha-diversity indices (Chao1 and

ACE) were significantly elevated in the ICH group, reflecting

increased microbial richness. However, no significant differences

were observed in Shannon and Simpson indices, suggesting
frontiersin.org
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TABLE 1 The gut microbes associated with ICH have the same pattern of change as other diseases searched in the gutMDisoeder database.

Gut microbe Altertion Disorder PMID
Streptococcaceae UP Colorectal Neoplasms 28153960

UP Hospital admission; Anorexia Nervosa 26428446

UP Acute viral gastroenteritis without complication 28397879

Streptococcus Up Diarrhea 24803517

Up Diabetes Mellitus; Type 2 27151248

Up B. bifidum PRL2010; Colitis; Ulcerative 27604252

Up Depressive Disorder; Major 27741466

Lactobacillales Up Autoimmune liver disease 29969462

Bacilli Up Colitis; Ulcerative 22170749

Up Colorectal conventional adenoma 28038683

Lactobacillaceae Up Lactobacillus casei 29264969

Lactobacillus Up Colitis; Ulcerative 17897884

Up Crohn Disease 17897884

Up Irritable Bowel Syndrome 21330412

Up Colorectal Neoplasms 22622349

Faecalibacterium Up Hospital admission; Anorexia Nervosa 26428446

Up Hepatolenticular Degeneration 30075590

Pasteurellaceae Up First-degree relatives of children with Crohn’s disease 28222161

Haemophilus Up Pediatric ulcerative colitis 27217061

Up Arthritis; Rheumatoid 34721377

Faecalibacterium prausnitzii Up Colitis;Ulcerative 17265126

Up Obesity 19849869/24292154

Up Dermatitis; Atopic 26431583

Up Eczema 27812181

Blautia Up Diarrhea 24803517

Up Constipation 25073603

Up Hospital admission; Anorexia Nervosa 26428446

Up Cholangitis; Sclerosing 26857969

Up Diabetes Mellitus; Type 1 27231166

Up Parkinson Disease; Cholinergic Antagonists 28195358

Up Non-alcoholic Fatty Liver Disease 28823367/29948900

Up Obesity 29214176

Up Diarrhea 24803517

Up Constipation 25073603

Ruminococcus gnavus Up Colorectal Neoplasms 22622349

Up Colitis; Ulcerative 20648002

Up Crohn Disease; No Inflammation/Inflammation 20648002

Up Eczema 27812181

Up Colitis; Ulcerative 28039159

Pseudomonas Down Colorectal Neoplasms 28600626

Down Pancreatic head carcinoma 29653723

Down Ulcerative colitis at exacerbated stage 29796862

Down Depressive Disorder; Major 33421868

Zou et al. 10.3389/fped.2025.1547958
comparable evenness between groups. The species richness of gut

microbiota in infants with ICH has considerably increased, and

this alteration may stem from the increase of potentially

pathogenic species (14). Contrary to our findings, studies on

primary biliary cholangitis (PBC) and cirrhosis reported reduced

alpha-diversity indices (e.g., Shannon and Simpson) and

depletion of commensal taxa such as Faecalibacterium and

enrichment of pathogenic Enterobacteriaceae (15). Similarly,

cirrhotic patients exhibited decreased beneficial Bifidobacterium

and increased pro-inflammatory Escherichia/Shigella species,

correlating with disease severity (16, 17). Liu et al. (18) further

confirmed through a meta-analysis that gut microbiota diversity

inversely correlates with Child-Pugh scores in cirrhosis,

highlighting the ecological collapse of symbiotic networks. The
Frontiers in Pediatrics 06
significant difference in alpha-diversity between the two groups

sets the stage for the next search for pathogenic strains of ICH.

Beta-diversity analysis revealed a high similarity of the

intestinal microbiota between the two groups in our study.

Dong et al. (19) employing 16S rRNA gene sequencing

technology, discovered that there was no significant disparity

in the beta-diversity of the intestinal microbiota between

jaundiced children and non-jaundiced children. Likewise,

Zheng et al. (20) disclosed, via 16S rDNA gene sequencing, the

non-difference in the beta-diversity of the intestinal microbiota

between children with pathological jaundice and those with

physiological jaundice. This finding might imply that the beta-

diversity of the intestinal microbiota is not directly associated

with the cholestatic.
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FIGURE 4

Difference relative expression of gut microbiota between the control group and the ICH group. (A–I) Differences in relative abundance between
control group and ICH group at the genus level. (J) ROC curve of steptococcus, Lactobacillus and Escherichia-Shigella for distinguishing ICH. Ctrl,
control group; ICH, infantile cholestatic hepatopathy group; ROC, receiver operating characteristic.

Zou et al. 10.3389/fped.2025.1547958
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FIGURE 5

The KEGG orthologs predicted to be related to the occurrence of ICH. Ctrl, control group; ICH, infantile cholestatic hepatopathy group.

Zou et al. 10.3389/fped.2025.1547958
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In our research, no significant differences in abundance were

demonstrated between the two groups at the phylum level; however,

at the genus level, the ICH group exhibited significantly increased

Streptococcus and Escherichia-Shigella abundance, alongside reduced

Lactobacillus levels (p < 0.05). Additionally, LEfSe analysis further

confirmed that Streptococcus as the dominant taxon in ICH. It is

notable that the increase of Streptococcus in stool samples of infants

with cholestasis is not mentioned for the first time. Zhang et al.

(21) discovered through 16S rRNA gene sequencing technology that

compared with healthy infants, Clostridium, Gemella, Streptococcus,

Veillonella, and Enterobacteriaceae were significantly enriched in the

ICH group, and these alterations were positively correlated with

serological indicators of impaired liver function. The study by

Zhong et al. (22) also disclosed similar results through 16S rRNA

gene sequencing, they found that the quantities of Veillonella,

Streptococcus, and Clostridium spp in the intestinal microbiota of

the infant cholestasis group were higher compared to the healthy

infant group (p < 0.05). The relationship between the Streptococcus

and cholestasis, especially certain species of Streptococcus, such as

beta-hemolytic Streptococcus, may lead to biliary duct infections. The

toxins and metabolites produced by these bacteria can stimulate the

liver, which resulting in local inflammatory responses and fibrotic

processes. Chronic and recurrent inflammation can cause thickening

of the bile duct wall and scar formation, thereby impairing the

normal excretion of bile. Therefore, the excessive presence of

Streptococcus may pose a potential threat to the intestinal and

hepatobiliary health of infants.

In addition to Streptococcus, the association of Veillonella with

cholestasis (20–22), primary cholangitis and biliary cirrhosis

(23, 24) has been affirmed by numerous studies. Our study also

discovered that, compared with the control group, the abundance

of Veillonella in the ICH group exhibited an ascending tendency.

Nevertheless, due to the limited sample size, the disparity between

the two groups did not attain statistical significance (p > 0.05). The

Veillonella genus, being a sort of Gram-negative anaerobic

micrococcus, predominantly resides in the oral cavity, intestine and

respiratory tract of humans and animals. They frequently cause

inflammation as a result of mixed infections, and this mixed

infection may be linked to the generation of endotoxin. Given this

potential pathogenicity of the Veillonella genus, the elevated

abundance undoubtedly deserves close attention from clinicians.

The LEfSe analysis results of this study indicated that Ruminococcus

gnavus was the predominant strain in the ICH group. Although there

are no reports to date regarding the direct relationship between the

abundance of Ruminococcus gnavus and cholestasis, the study by Lee

et al. (25) disclosed that a specific subtype within this strain (such as

Ruminococcus gnavus 53) encodes 7β-hydroxysteroid dehydrogenase

(7β-HSDH) and is capable of generating Ursodeoxycholic acid

(UDCA). UDCA, as a secondary bile acid under the influence of

intestinal flora, has been proposed for use in patients with cholestatic

liver disease (26). Nevertheless, the results of this study revealed that,

in comparison with the healthy control group, the abundance of the

Ruminococcus gnavus_group in the ICH group increased significantly.

We hypothesize that this might be closely related to the body’s

intrinsic immune regulatory mechanism. Additionally, although

previous studies have substantiated that the purified Ruminococcus
Frontiers in Pediatrics 09
gnavus 53 has the property of generating UDCA, the Ruminococcus

gnavus_group involved in this study might have variations at the

species level. In light of the current technical constraints, we are still

unable to precisely identify the specific types of bacteria within the

Ruminococcus gnavus_group. Therefore, we will closely monitor to the

development of related technologies and conduct in-depth

explorations of the potential role of Ruminococcus gnavus_group in

ICH patients, with the aim of providing novel ideas and approaches

for future treatment.

In addition to Ruminococcus gnavus, other significantly enriched

bacteria, such as Streptococcus and Escherichia-Shigella, may also play

critical roles in the pathogenesis of ICH. For instance, Streptococcus has

been implicated in biliary tract infections and inflammation, which can

lead to bile duct obstruction and impaired bile flow (21, 22). The toxins

and metabolites produced by Streptococcus may further exacerbate

hepatic inflammation and fibrosis, contributing to the progression of

cholestasis. Similarly, Escherichia-Shigella, known for its role in gut

inflammation, may disrupt the intestinal barrier, leading to increased

translocation of bacterial products and subsequent hepatic

inflammation (23, 24). These findings suggest that the enrichment of

these bacteria in ICH infants could significantly influence the

disease’s pathogenesis through multiple mechanisms, including

inflammation, bile acid metabolism, and immune regulation.

Functional prediction analysis identified 59 metabolic pathways

potentially closely related to ICH. Among these pathways, the

synthesis of ansamycin showed pronounced effects on the ICH

group. Ansamycin, being a helical piperidine derivative of rifamycin

(27), holds a prominent position in the medical domain. It is

primarily utilized for the treatment of pulmonary mycobacterial

infections, exhibits antibacterial potency approximately fourfold

higher than that of rifampicin and is also efficacious against

tuberculosis strains resistant to rifampicin. Its adverse reactions are

comparable to those of rifampicin, and the exposure is positively

correlated with bilirubin concentration as well (28). However, such

antibiotics would significantly inhibit Streptococcus, which is

inconsistent with this expectation and is worth for further

exploration (29). In addition, secondary bile acid biosynthesis and

lipopolysaccharide biosynthesis emerged as key pathways with

significant implications for disease pathogenesis. The marked

reduction in secondary bile acid biosynthesis (p < 0.05) suggests

impaired microbial conversion of primary bile acids to secondary

forms (e.g., deoxycholic acid and lithocholic acid), which may lead

to the accumulation of cytotoxic primary bile acids in the liver,

exacerbating cholestatic injury (30). Conversely, the upregulation of

lipopolysaccharide (LPS) biosynthesis pathways suggest activation

of the TLR4/NF-κB pathway, inducing hepatic inflammatory

responses. Chronic stimulation may lead to bile duct fibrosis and

impaired bile excretion (31). These findings align with previous

studies demonstrating that LPS-induced inflammation disrupts bile

acid transporters (e.g., BSEP and NTCP), further impairing bile

acid homeostasis (5). The results predicted by this function

prediction analysis undoubtedly offer valuable references for further

in-depth investigations in the future and also indicate the direction

for the clinical treatment of ICH.

This study has two key strengths. Firstly, this research significantly

augmented the number of samples, thereby substantially enhancing the
frontiersin.org

https://doi.org/10.3389/fped.2025.1547958
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Zou et al. 10.3389/fped.2025.1547958
reliability of the analytical results. Secondly, aside from conducting an

in-depth exploration of the variations in intestinal flora among

different groups, we specifically analyzed the diseases that exhibited a

similar pattern of changes to the differential strains in this study.

This provides critical insights for comprehending the potential

association between intestinal flora and cholestatic liver diseases.

Nevertheless, this study also presents certain limitations. Firstly, this

study mainly analyzes the characteristics of intestinal flora based on

cross-sectional data and lacks follow-up tracking and observation of

the changes in intestinal flora after treatment. Thus, causal inferences

cannot be drawn from these findings. Secondly, due to the limited

sample size of the ICH, subgroups such as cholestatic hepatitis with

cytomegalovirus infection, biliary atresia, and metabolic genetic

syndromes each had fewer than 5 cases; therefore, subgroup analysis

based on ICH etiology was not performed. Looking ahead, we will

endeavor to compensate for the shortcomings of the existing

research by expanding the sample size, conducting in-depth studies

on the intestinal microbiota of infants at multiple time points, and

analyzing the characteristic gut microbiota of ICH caused by

different etiologies.
5 Conclusion

The richness and diversity of the intestinal microbiota in the

ICH group exhibited significant dissimilarities compared to those

in the control group. Through LEfSe analysis and ROC curve

analysis, Streptococcus, an essential biomarker with notable

differences, was identified. The functional prediction analysis of

16S revealed that 59 metabolic pathways may be linked to the

occurrence of ICH, among which the synthesis of ansamycin had

a particularly prominent influence on the ICH group.
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Differences of beta-diversity between the control group and the ICH group.
(A) NMDS1 analysis. (B) PCA analysis. (C) PCOA analysis. (D) Kruskal-Wallis’s
test. Ctrl, Control group; ICH, Infantile cholestatic hepatopathy group; NMDS1
analysis, non-metric multidimensional scaling 1 analysis; PCA analysis,
Principal Component Analysis; PCOA analysis, principal co-ordinates analysis.

SUPPLEMENTARY FIGURE S2

Difference relative expression of gut microbiota between the control group
and the ICH group at the phylum level. (A) Firmicutes. (B) Proteobacteria.
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(C) Actinobacteriota. (D) Bacteroidota. Ctrl, Control group; ICH, Infantile
cholestatic hepatopathy group.
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SUPPLEMENTARY FIGURE S3

ROC curve of (A) Lactobacillus and (B) Escherichia-Shigella for distinguishing
ICH. ICH, Infantile cholestatic hepatopathy; ROC, Receiver Operating
Characteristic.
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