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Development of a neural network
model for early detection of
creatinine change in critically Ill
children
Celeste G. Dixon*, Eduardo A. Trujillo Rivera, Anita K. Patel and
Murray M. Pollack

Department of Pediatrics, Division of Critical Care Medicine, Children’s National Hospital, George
Washington University School of Medicine and Health Sciences, Washington, DC, United States
Introduction: Renal dysfunction is common in critically ill children and increases
morbidity and mortality risk. Diagnosis and management of renal dysfunction relies
on creatinine, a delayed marker of renal injury. We aimed to develop and validate a
machine learning model using routinely collected clinical data to predict 24-hour
creatinine change in critically ill children before change is observed clinically.
Methods: Retrospective cohort study of 39,932 pediatric intensive care unit
encounters in a national multicenter database from 2007 to 2022. A neural
network was trained to predict <50% or ≥50% creatinine change in the next
24 h. Admission demographics, routinely measured vital signs, laboratory tests,
and medication use variables were used as predictors for the model. Data set
was randomly split at the encounter level into model development (80%) and
test (20%) sets. Performance and clinical relevance was assessed in the test
set by accuracy of prediction classification and confusion matrix metrics.
Results: The cohort had a male predominance (53.8%), median age of 8.0 years
(IQR 1.9−14.6), 21.0% incidence of acute kidney injury, and 2.3% mortality. The
overall accuracy of the model for predicting change of <50% or ≥50% was
68.1% (95% CI 67.6%−68.7%). The accuracy of classification improved
substantially with higher creatinine values from 29.9% (CI 28.9%−31.0%) in
pairs with an admission creatinine <0.3 mg/dl to 90.0–96.3% in pairs with an
admission creatinine of ≥0.6 mg/dl. The model had a negative predictive value
of 97.2% and a positive predictive value of 7.1%. The number needed to
evaluate to detect one true change ≥50% was 14.
Discussion: 24-hour creatinine change consistent with acute kidney injury can
be predicted using routine clinical data in a machine learning model,
indicating risk of significant renal dysfunction before it is measured clinically.
Positive predictive performance is limited by clinical reliance on creatinine.

KEYWORDS
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Introduction

Approximately one quarter of children admitted to a pediatric intensive care unit (PICU)

will develop acute kidney injury (AKI) during the course of their illness (1). Renal

dysfunction can cause fluid overload, electrolyte derangements, altered drug metabolism, and

uremia. It is associated with higher risk of mortality and morbidity, prolonged PICU and

hospitalization stays, and longer duration of mechanical ventilation (1–4). Children
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2025.1549836&domain=pdf&date_stamp=2020-03-12
mailto:dixonc5@chop.edu
https://doi.org/10.3389/fped.2025.1549836
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2025.1549836/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1549836/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1549836/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1549836/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2025.1549836
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Dixon et al. 10.3389/fped.2025.1549836
diagnosed with AKI are at higher risk for chronic kidney disease

(CKD), hypertension, and cardiovascular disease (5–7). Current

diagnosis and management of AKI relies on creatinine as the

primary indicator of renal function, yet creatinine is a delayed

marker of renal injury (8). It can take 24 h or more from an initial

insult for creatinine to significantly rise depending on the extent of

renal injury, metabolic rate, degree of fluid overload, and underlying

pathology such as shock, infection, or toxin exposure (9–12).

Measurement is also limited by the accuracy of creatinine laboratory

tests, which depending on the assay used may have as much as 20%

error at normal adult creatinine values and up to 50% error at lower

values (13–16). This is particularly noteworthy in infants who may

have a baseline creatinine of 0.3–0.4 mg/dl; Kidney Disease

Improving Global Outcomes (KDIGO) Stage 1 AKI (a 50% increase

in serum creatinine) may be within the laboratory margin of error

for this population (8, 17). Several novel biomarkers of renal injury

have been described, but their use has so far been limited by low

specificity for AKI, variable performance in different etiologies of

AKI, and limited adoption in clinical practice (18).

Accurate prediction of renal dysfunction could benefit at-risk

patients. Earlier recognition of risk of renal dysfunction prior to

creatinine change could prompt treatment strategies to reduce the

risk of ongoing renal injury and to prevent adverse clinical

consequences by limiting nephrotoxic medication exposure, avoiding

electrolyte derangements, and adjusting fluid management. It could

also reduce time to initiation of renal replacement therapy (RRT),

which has been associated with improved outcomes (19). However,

the same factors that make renal dysfunction challenging to diagnose

in real time also contribute to the difficulty predicting its

development and clinical course. Previous pediatric efforts to predict

renal dysfunction using traditional statistical methods have been

limited by relatively small sample size, reliance on expert consensus

for selection of variables, prediction only at time of admission, and

variable performance of the prediction models (20–22). There is

growing interest in using big data with machine learning techniques

to predict risk of renal dysfunction in critically ill children (23–25).

We aimed to develop and validate a clinically relevant machine

learning model using routinely collected clinical data from a large,

multi-center database to predict 24-hour creatinine change in

critically ill children during their acute illness. Primary outcome was

creatinine change of ≥50%, consistent with KDIGO Stage 1 AKI (8).
Methods

This study was approved by the Children’s National Hospital

Institutional Review Board with requirement for informed consent

waived. Transparent reporting of a multivariable prediction model

for individual prognosis or diagnosis (TRIPOD) guidelines were

followed (26).
Database

Data were collected from Real-World DataTM (RWD) (Oracle

Corporation, Austin, TX), a national, de-identified database of US
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hospital admissions. Hospitals do not have to use Cerner EHR to

contribute data to RWD. Available data includes demographic

information, admission information (location, hospital unit),

clinical variables (vital signs, respiratory support, and diagnostic

codes), laboratory values, medications administration records, and

hospital outcome. All data are time- and date-stamped.

All pediatric encounters (age >1 month to ≤18 years) with an

inpatient intensive care unit (ICU) designation were extracted from

2007 to 2022. If repeated ICU admissions occurred within one

hospital admission, up to 4 ICU admissions were included

(Appendix Table 1). Primary inclusion criteria were a creatinine

measured within 24 h of ICU admission (admission creatinine),

and at least 2 creatinine values measured within 24 ± 6 h of each

other during the ICU admission. Encounters were excluded if

ICU length of stay was <6 h, if there were associated diagnostic

codes for CKD, congenital renal anomalies, dialysis dependence,

or renal transplant, less than 2 records of vital signs, or if there

were absent urine output (UOP), weight, or temperature records

(Figure 1). Diagnostic codes for CKD, renal anomalies, dialysis

dependence, and renal transplant are shown in Appendix

Table 6. Other database details are given in Appendices A–E.
Variables

Demographic and descriptive variables included age, sex, date

and time of admission, length of stay, diagnostic codes, and

hospital discharge outcome. Clinical event variables included

vital signs, respiratory support (fraction inhaled oxygen, positive

end-expiratory pressure, peak inspiratory pressure, tidal volume),

and urine output. Urine output was expressed as ml/kg/hr

computed over 12-hour periods. Laboratory variables included

time, date, and result of 43 routinely measured chemistries, blood

gases, and hematologic variables (Appendix Table 2). Drug levels

were included for gentamicin and vancomycin. Medications

included fluids, vasoactives, diuretics, and nephrotoxic

medications and were included based on known associations

with renal function (27–29). Medications were included as binary

variables (received, not received). Missing data was imputed with

physiologic normal data until a measurement was recorded

(Appendix Tables 3, 4). Variables recorded in less than 500

encounters were excluded. International Classification of Diseases

(ICD) −9 and −10 codes were categorized into the following:

cardiovascular disease, infection, malignancy, neurologic disease,

respiratory disease, trauma/ingestion, other, and not specified,

based on respective ICD classifications (30, 31). AKI was defined

by KDIGO criteria (8). Detailed descriptions of all variables are

given in Appendices B–E.
Outcome

The primary outcome was a binary prediction of <50% or

≥50% increase in creatinine in the subsequent 24 ± 6 h. The

classification threshold of ≥50% was selected to focus on

creatinine change meeting AKI criteria (8). This outcome was
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FIGURE 1

CONSORT diagram of encounter selection. aintensive care unit; bneonatal intensive care unit; cpediatric intensive care unit; dcreatinine; echronic
kidney disease; furine output.
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evaluated for all creatinine pairs occurring in days 1–5 of ICU

admission in order to capture changes in renal function in the

acute illness phase.
Model development and performance

Inclusion criteria for data points were that creatinine values

had to occur in pairs, with the second value measured 24 ± 6 h

after the first. The admission creatinine could serve as the first
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creatinine of a pair. The second creatinine of a pair could also

serve as the first creatinine value for a subsequent pair. All

model variables that occurred in the 48 h preceding the first

creatinine of a pair were included. These 48 h were divided into

4 12-hour time periods. If there was no recorded value for a

variable, the last known result was imputed. The maximum,

minimum, average, range, and number of measurements for each

variable in each 12-hour period were included. The maximum

and minimum value of each variable from the entire admission

period preceding the first creatinine of the pair were also
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TABLE 1 Cohort description.

Variable Total
(n= 39,932)

≥50% creatinine
change (n = 3,637)

Male (n) (%) 21,500 (53.8%) 1,922 (52.9%)

Median age (years) (IQR) 8.0 (1.9, 14.6) 4.6 (1.0, 12.1)

Mortality (n) (%) 813 (2.3%) 239 (6.57%)

Median length of stay (days)
(IQR)

7.9 (4.1, 16.3) 14.2 (7.2, 28.0)

AKI any stage (n) (%) 8,393 (21.0%) 3,637 (100%)

Associated diagnosisa (n) (%) 35,143 (88.0%) 3,181 (87.5%)

Cardiovascular disease 9,572 (24.0%) 1,059 (29.1%)

Infection 9,539 (23.9%) 1,095 (30.1%)

Malignancy 6,077 (15.2%) 634 (17.4%)

Neurologic disease 9,119 (22.8%) 785 (21.6%)

Respiratory disease 15,176 (38.0%) 1,554 (42.7%)

Trauma/ingestion 8,283 (20.7%) 771 (21.2%)

Otherb 30,221 (86.0%) 2,623 (72.1%)

No diagnosis associated 4,789 (12.0%) 456 (12.5%)

aDiagnostic category associated with encounter.
bAssociated diagnosis not included in other diagnostic categories; encounters could have

multiple associated diagnoses.
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included, regardless of when they occurred. If two variables were

highly correlated (Pearson correlation value ≥0.9 or ≤−0.9), the
most reliable, earliest occurring, directly measured variable was

kept and the other removed (see Appendix F).

The data set (141,658 creatinine pairs) was divided randomly

into 64% training set, 16% validation set and 20% test set.

Random selection was done at the patient level. The training set

was used for model development while the validation set was

used to avoid overfitting or underfitting during model training.

The test sample was used to evaluate model performance. The

final model was the result of sequential experimentation using

fully connected neural networks. The data were weighted such

that positive outcome pairs (≥ 50% increase in creatinine) were

weighted 23.6 × the negative outcome pairs. Model parameters

used for experimentation were number of hidden layers, number

of nodes per hidden layer, smoothing parameter values for L1

and L2 regularizations on the nodes values at each layer,

proportion of node dropout per hidden layer, and variable

sample weight during training. The validation set mean absolute

error was the target for minimization at each training epoch. The

mean absolute error and median absolute errors curves for both

the training and validation set were used to monitor for

overfitting and underfitting. Each model could be trained for 500

epochs, but training was stopped if no reduction on the mean

absolute error was observed. The final model had eight hidden

layers, with nodes between 114 and 484 per layer. Dropout rates

for each layer ranged from 0.01 to 0.19, and L1/L2 smoothing

parameters ranged from 0.0001 to 0.002.

Model performance was assessed with accuracy for both the

total test sample and compared across groups by admission

creatinine, first creatinine of the pair, and age. Performance was

further evaluated with confusion matrix metrics and the clinical

relevance was assessed with the number needed to evaluate

(NNE ± 1/Positive predictive value), the number of cases that

need to be screened to identify one at risk case. Accuracy was

also compared between predictions made in hours 0–47 and

hours 48–120 of PICU admission. The absolute creatinine

change was also assessed for all test set creatinine pairs.

Feature importance was evaluated using a Local Interpretable

Model-Agnostic Explanation (LIME) approach, which treats each

prediction locally as a linear model and assigns covariate

importance (32). A random sample of 1000 creatinine pairs

where change was ≥50% and 1000 creatinine pairs where change

was <50% were used for this analysis. For each case, the 15 most

important variables were determined using LIME. The frequency

with which each variable appeared in the top 15 variables for the

sample cases determined the overall importance.

All model development and analysis was done using R, version

4.3.1 (https://www.r-project.org).
Results

There were 39,932 encounters in the cohort from 59

unique hospitals (Figure 1), with a male predominance

(53.8%), and median age of 8.0 years (IQR 1.9–14.6).
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Descriptive data are shown in Table 1. Median length of

stay was 7.9 days (IQR 4.1–16.3). Overall mortality was

2.3%. There was an associated diagnosis for 88.0% of

encounters. The most common categories of diagnoses were

respiratory disease (38.0%), cardiovascular disease (24.0%),

and infection (23.9%) (Table 1). Incidence of AKI of any

stage was 21.0% (8,393 encounters) (Table 1). There were

141,658 paired creatinine measures meeting criteria for

model training and testing, of which 5,753 (4.1%) had ≥50%
change in creatinine during the 24-hour period. These 5,753

pairs represented 3,637 unique encounters (Table 1). These

encounters had a lower median age (4.6 years, IQR 1.0–

12.1), higher mortality (6.57%), and longer length of stay

(14.2 days, IQR 7.2–28.0).

The accuracy of the neural network model is shown in Table 2.

Since inclusion of diagnostic code did not improve performance,

the final model did not include diagnostic information. The

overall accuracy of the model for predicting change of <50% or

≥50% was 68.1% (95% CI 67.6%−68.7%). In the subset of

creatinine pairs where the measured change was <50%, the

accuracy was 68.7% (CI 68.1% - 69.2%) and for pairs where the

measured change was ≥50%, the accuracy was 55.1% (CI 52.2%

−57.9%). The accuracy of classification improved substantially

with higher creatinine values, from 29.9% (CI 28.9%–31.0%)

accuracy in pairs with an admission creatinine <0.3 mg/dl to an

accuracy of 90.0%–96.3% in pairs with an admission creatinine

of 0.6–≥1.2 mg/dl. Categorized by the first creatinine value of the

pair, the accuracy increased from 56.0% (CI 54.9%−57.2%) for

creatinine values <0.3 mg/dl to 86.0%–88.9% for those with

creatinine 0.6–≥1.2 mg/dl. The accuracy in age groups increased

from 51.4% (CI 49.1%–53.7%) in those 1–2 months of age to

85.9% (CI 84.2%–85.6%) for those ≥12 years. Accuracy was

higher for predictions made after the first 48 h (73.2%, CI 72.3%

−74.0%) than for predictions made in hours 0–47 (65.1%, CI

64.4%−65.8%) of PICU admission.
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Table 3 shows expanded performance metrics based on

admission creatinine. Specificity overall was 68.7% (CI 68.1%–

69.2%), with increasing specificity at higher admission creatinine

values (92.1%–98.3% when creatinine ≥0.6 mg/dl). Negative

predictive value (NPV) was high for all creatinine values (96.5%–

98.1%), while positive predictive value (PPV) was low (5.4%–

9.3%). The NNE was 14 overall, and ranged from 11 to 19

depending on admission creatinine.

There were seven predictor variables that were among the most

important for over 99% of all creatinine pairs (Figure 2). These

were present creatinine value (first creatinine value of the pair),
TABLE 2 Model performance in the test set.

Group Paired creatinine
values count (%)

Accuracy of model
(95% CIa)

All 27,967 (100) 68.1% (67.6–68.7)

By creatinine change
<50% Crb change 26,711 (95.5) 68.7% (68.1–69.2)

≥50% Cr change 1,256 (4.5) 55.1% (52.2–57.9)

By admission creatininec

<0.3 mg/dl 7,071 (25.3) 29.9% (28.9–31.0)

0.3–0.59 mg/dl 10,603 (37.9) 69.3% (68.4–70.2)

0.6–0.89 mg/dl 5,480 (19.6) 90.0% (89.1–90.8)

0.9–1.19 mg/dl 2,233 (8.0) 94.9% (94.0–95.6)

≥1.2 mg/dl 2,580 (9.2) 96.3% (95.5–96.9)

By first creatinine of prediction pair
<0.3 mg/dl 6,886 (24.6) 56.0% (54.9–57.2)

0.3–0.59 mg/dl 11,442 (40.9) 71.4% (70.6–72.2)

0.6–0.89 mg/dl 5,767 (20.6) 86.0% (85.1–86.9)

0.9–1.19 mg/dl 1,859 (6.6) 88.1% (86.6–89.6)

≥1.2 mg/dl 2,013 (7.2) 88.9% (87.5–90.2)

By age
1–2 months 1,753 (6.3) 51.4% (49.1–53.7)

3–5 months 1,563 (5.6) 53.7% (51.2–56.1)

6–11 months 1,689 (6.0) 56.8% (54.4–59.2)

12–17 months 1,249 (4.5) 55.9% (53.1–58.6)

18 months–4 years 4,586 (16.4) 65.3% (63.9–66.7)

5 years–7 years 2,661 (9.5) 76.3% (74.6–77.9)

8 years–11 years 3,641 (13.0) 76.8% (75.4–78.1)

≥12 years 10,825 (38.7) 85.9% (84.2–85.6)

aConfidence interval.
bCreatinine.
cFirst creatinine measurement, within ± 24 h of admission.

TABLE 3 Expanded model performance.

Group Sensitivity
(95% CIa)

Specificity
(95% CIa)

Negativ
value

All 55.1% (52.2–57.9) 68.7% (68.1–69.2) 97.2%

By admission creatininec

<0.3 mg/dl 85.5% (81.9–88.5) 26.2% (25.2–27.3) 96.5%

0.3–0.59 mg/dl 49.5% (45.0–54.0) 70.2% (69.3–71.1) 96.8%

0.6–0.89 mg/dl 15.4% (10.3–22.5) 92.1% (91.3–92.9) 97.4%

0.9–1.19 mg/dl 16.1% (9.0–27.2) 96.6% (95.9–97.2) 98.1%

≥1.2 mg/dl 5.4% (1.8–14.6) 98.3% (97.7–98.7) 97.9%

aConfidence interval.
bNumber needed to evaluate = 1/positive predictive value and indicates the number of patients t
cFirst creatinine measurement, within ± 24 h of admission.
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maximum creatinine value 0–12 h before prediction, admission

creatinine value, crystalloid fluid administration, dopamine

administration, vasopressin administration, and age. Several other

variables were important for over 50% of predictions, including

blood glucose level, creatinine 12–24 h before prediction,

furosemide administration, and milrinone administration.

The absolute creatinine change by admission creatinine and the

initial creatinine in the creatinine pairs is shown in Table 4. For all

groups, the median change for those < 50% creatinine change was

no change or a creatinine decrease while there was a substantial

absolute change for the creatinine values in all ≥50% creatinine

change groups, ranging from 0.16 mg/dl in the lowest admission

creatinine group to 0.90 mg/dl in the highest group.
Discussion

Our results demonstrate that 24-hour creatinine change in

critically ill children can be predicted with routine clinical data

using a machine learning model. In patients with admission

creatinine values of 0.6 mg/dl or higher, this model accurately

classified a ≥50% change in creatinine in 90% of cases. The

clinical suspicion of renal dysfunction in this sample was,

presumably, relatively high since all patients had at least two

creatinine values measured. Yet even in this population, only

4.1% of creatinine pairs in the data set had a creatinine change

≥50% in a 24-hour period. This likely contributed to the high

NPV and low PPV. Low prevalence of the primary outcome may

result in models that can accurately predict negative cases but

have low PPV. However, the NNE indicates this model could still

be clinically useful. The NNE averaging 14 patients and the high

NPV could improve clinical care by identifying most of the low

risk patients and isolating a relatively high risk population with a

manageable NNE to be screened to detect one true positive.

Given the potential clinical impact of renal dysfunction, this

model would still be effective in identifying a high risk, but

uncommon outcome.

Attempts to predict AKI in critically ill children have been

limited by small sample size, restricted variable inclusion, and

single time point prediction. The Renal Angina Index (RAI)

relies on 5 variables to predict AKI 72 h after admission (20).

In validation, only 30% of patients who developed AKI had a
e predictive
(95% CIa)

Positive predictive
value (95% CIa)

Number needed
to evaluateb

(97.0–97.5) 7.1% (6.6–7.6) 14

(95.5–97.2) 7.1% (6.4–7.8) 14

(96.4–97.2) 7.1% (6.3–8.0) 14

(96.9–97.8) 5.4% (3.6–8.1) 19

(97.6–98.6) 9.3% (5.2–16.4) 11

(97.3–98.4) 6.5% (2.2–17.5) 15

hat need to be evaluated to detect one true positive.
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FIGURE 2

Feature importance. Variables with highest frequency in 15 most important variables for sample predictions. Importance expressed as percent with
95% confidence interval represented by error bar. aLocal Interpretable model-agnostic explanation; b

first creatinine of prediction pair.
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positive RAI score (21). The Pediatric Early AKI Risk Score uses 7

variables to predict the same outcome, with good negative

predictive performance but lower positive prediction (22). Both

studies had less than 10,000 patients. In contrast to these

traditional approaches a recent machine learning model was

developed in 16,863 patients, which predicted 41% of AKI

episodes occurring in the first 48 h of admission with a true

positive to false positive of 1:1 (29). Our model had

larger sample size, more complete variable inclusion, and better

predictive performance with predictions at any point in the first

five days of ICU admission. The use of a neural network and

outcome of creatinine change also distinguish our model from

most other pediatric machine learning applications (33).

Renal dysfunction is challenging to predict due to the complex

physiology of renal failure and the limitations of current

mechanisms for its evaluation. Renal function is a dynamic

process that is impacted by perfusion, oxygenation, systemic

inflammation, fluid balance, and nephrotoxin exposure. These

parameters may change rapidly in critically ill patients, leading to

significant changes in renal function over time. Creatinine is also

a delayed marker of renal injury, is confounded by fluid

overload, and can have a variable baseline in patients with low

muscle mass or chronic illness (9, 34, 35). However, clinical

practice still relies on serum creatinine, for monitoring renal

function. Several biomarkers of renal injury show promise as

better indicators of renal function, but have limited availability

and lack consensus on their use in the diagnosis or staging of

AKI (36). None were measured with sufficient frequency to be

included in our model. Ideally, model performance could be

improved in the future by incorporating biomarkers of renal

injury. A biomarker that can be measured with more precision

and reflect more immediate changes in renal function than

creatinine would result in an improved model.
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Creatinine assays are particularly unreliable in pediatric patients,

which adds to the challenge of an accurate prediction model in

infants and young children. Assays may have up to 50% error in

samples with creatinine <0.4 mg/dl, and there remains significant

inter-assay variability (15, 16). In children with a baseline

creatinine of 0.4 mg/dl, a 50% change in creatinine is an absolute

change of only 0.2 mg/dl, which makes the detection of true AKI

vs. artifact difficult for infants and young children (37). This may

account for lower performance metrics, especially the low

specificity in the subset of our cohort with low creatinine values.

Given the inaccuracy of measured creatinine <0.4 mg/dl, a model

that relies on creatinine measurement may be inaccurate at these

values. It is possible that the observed difference in model

performance is due to the limits of creatinine assays. Indeed, renal

dysfunction models developed in adult populations have better

performance than pediatric models, which may be a result of

higher baseline creatinine values with more reliable laboratory

measurements (38–40).

Our model was specifically designed as a dynamic prediction

model with multiple variables to account for the complex,

rapidly changing physiology during acute illness. This model has

the potential to be clinically useful if integrated into the EHR so

that predictor variables could be directly used to alert providers

to predicted 24-hour creatinine change. The model performs well

to predict patients with <50% creatinine change, which may be

clinically useful. Identifying patients with low risk of developing

renal dysfunction may impact decision making for nephrotoxic

therapies such as empiric vancomycin or escalation of diuretics.

Additionally, the model can identify cases with risk of ≥50%
creatinine change with a NNE of 14. Predicting a rise in

creatinine in this context, before it is measured clinically, could

give clinicians a window of opportunity in which to mitigate

renal damage, adjust fluid and electrolyte management, and
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TABLE 4 Creatinine change in outcome groups by admission creatinine or
first creatinine in the test set.

Group Count
(n = 27,967)

Median actual creatinine
change (IQRa) (mg/dl)

Admission creatinineb and outcome group
<0.3 mg/dl

<50% Crc change 6,618 0.00 (−0.04, 0.02)
≥50% Cr change 453 0.16 (0.10, 0.20)

0.3–0.59 mg/dl

<50% Cr change 10,109 −0.01 (−0.10, 0.03)
≥50% Cr change 494 0.25 (0.19, 0.40)

0.6–0.89 mg/dl

<50% Cr change 5,293 −0.03 (−0.11, 0.02)
≥50% Cr change 187 0.32 (0.19, 0.59)

0.9–1.19 mg/dl

<50% Cr change 2,182 −0.10 (−0.20, 0.00)
≥50% Cr change 51 0.43 (0.27, 1.12)

≥1.2 mg/dl

<50% Cr change 2,509 −0.17 (−0.48, 0.00)
≥50% Cr change 71 0.90 (0.21, 1.60)

First creatinine of prediction paird and outcome group
<0.3 mg/dl

<50% Cr change 7,941 0.00 (−0.02, 0.03)
≥50% Cr change 763 0.17 (0.11, 0.20)

0.3–0.59 mg/dl

<50% Cr change 10,576 −0.01 (−0.10, 0.02)
≥50% Cr change 291 0.30 (0.26, 0.41)

0.6–0.89 mg/dl

<50% Cr change 4,872 −0.09 (−0.18, 0.00)
≥50% Cr change 96 0.59 (0.47, 0.92)

0.9–1.19 mg/dl

<50% Cr change 1,562 −0.20 (−0.35, −0.05)
≥50% Cr change 36 0.88 (0.66, 1.23)

≥1.2 mg/dl

<50% Cr change 1,759 −0.37 (−0.77, 0.00)
≥50% Cr change 69 1.33 (1.00, 1.74)

aInterquartile range.
bFirst creatinine measurement, within ± 24 h of admission.
cCreatinine.
dFirst creatinine of creatinine pair
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reconsider the use of nephrotoxic medications. While working

within the limitations of creatinine as a delayed indicator of renal

function, it could still be possible to make proactive changes in

management to protect the kidneys. The feature importance

analysis revealed several medication exposures that were

significant in the prediction model, which may indicate

opportunities changes in management. It is also notable that

performance of our model was not improved with the addition

of diagnosis, implying that renal dysfunction can be predicted

based on routine clinical measures, independent of the

mechanisms of disease. EHR model integration would be an

important future direction for this study to evaluate real-time

clinical utility.

Our model has several limitations. First, it was developed and

tested in a retrospective cohort which spanned a 15-year time

period, in which there likely was variation in clinical practice and

reliability of measured creatinine. Presumably, there was

significant variability in the laboratory measurement techniques
Frontiers in Pediatrics 07
by institution and over time, especially influencing the model in

the lower creatinine ranges. This extended time period may also

explain why dopamine exposure had strong feature importance,

as it was used frequently in the past but its use has declined

more recently. Second, there are limitations common to the use

of large, retrospective database studies. We were restricted to

previously collected data, which may bias the study toward sicker

patients who are more likely to have creatinine measured. Third,

as required for many machine learning models, imputation was

required for missing data. Fourth, there are additional limitations

inherent to a neural network, including limited interpretability of

variable importance. Lastly this model was optimized for

predictive performance but has not been implemented clinically.

As this model was created on a multicenter database,

recalibration at individual sites may optimize its performance

(41). The low prevalence of the positive outcome in this model

also contributes to its lower performance predicting positive

cases. The incorporation of alternate markers of renal

dysfunction should be investigated in the future.

In summary, our study shows that short-term creatinine

change can be predicted in critically ill children using routinely

collected clinical data before a measured rise in creatinine is

observed. If the creatinine value either at admission or any time

in days 1–5 of PICU admission is ≥0.6 mg/dl, creatinine change

in the next 24 h can be accurately predicted. The low prevalence

of positive cases in this cohort limits model performance. If this

model were applied clinically, 14 patients would need to be

screened to detect one positive case. Despite the complexity of

creatinine dynamics, the ability to predict creatinine change may

allow for clinical interventions that minimize ongoing renal

damage, avoid worsening of renal function, and mitigate

clinical consequences.
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Appendix

Appendix A: Overview, data cleaning,
and data definitions

Data cleaning: Cleaning of extracted data included removing

duplicate or null values, standardizing units of measurement, and

removing invalid entries (e.g., negative values, data extremes

inconsistent with life). Data cleaning specific to each data type is

outlined in sections below.
Data definitions

Pediatric patients: >1 month to ≤18 years at time of admission.

Inpatient: Inpatients were defined as those with Real World

Data (RWD) encounter classification of “Inpatient”.

Intensive care unit (ICU): All encounters were included within

the “Inpatient” classification with a RWD location classification of

“intensive care unit” (ICU) or “pediatric intensive care unit”

(PICU). “Neonatal intensive care unit” (NICU) encounters were

excluded. Encounters with <6 h ICU length of stay were

excluded. Up to 4 repeat ICU admission for any given encounter

were included, with each ICU admission treated as a distinct event.
APPENDIX TABLE 1 Repeat ICU admissions.

Number of encounters (%)
First ICU admission 39,932 (100)

Second ICU admission 491 (1.2)

Third ICU admission 101 (0.3)

Fourth ICU admission 36 (0.1)
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Appendix B: Laboratory variables

Tests included were collected from whole blood or serum, at

any site (venous, arterial, or capillary). For each included

laboratory test, all recorded units and distribution of results were

examined. Units were standardized to the most commonly used

unit (ex: mg/dl to g/dl).

The distribution of each laboratory test was analyzed

individually, with both descriptive statistics and graphical display.

Lower and upper limits were based on clinically relevant ranges

and physiology (see below). Values outside of these limits were

excluded. Tests with units that did not fit the clinical distribution

were also excluded. Any laboratory test that was present in less

than 500 encounters was excluded and is not shown. The table

below shows the laboratory variables included, the measurement

units evaluated and standardized units, and upper and lower

limits for range testing.
Imputed laboratory values

Imputed values were used for variables without a recorded

measurement. These were maintained until replaced by a

recorded value. When possible, values were imputed based on

numerical computation. For variables with insufficient data to

use this method, imputed values were selected assuming normal

physiology and reference values as follows:.
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APPENDIX TABLE 2 Standardized laboratory variables.

Variable Units included Units excluded Standard
units

Lower
limit

Upper
limit

Alanine transaminase IU/L, enzyme U/L, IU/ml, g/dl, mg/dl, null none U/L 0 2,000

Albumin g/dl, mg/dl, µg/dl, null ratio, ml g/dl 0 10

Ammonia µmol/L, µg/dl, mmol/L, null none µmol/L 0.1 8

Amylase Enzyme U/L, IU/L, null none U/L 0 1,000

Absolute neutrophil count 103/µl, 103, 109/L, µl, kiloenzyme unit/L, mm3,
cells/µl, kg/m3, null

percent 103/µl 0 60

Anion gap mmol/L, mEq/L, g/dl, mg/dl, null percent, ratio mEq/L 0 30

Aspartate aminotransferase IU/L, enzyme U/L, IU/ml, null ratio U/L 0 2,000

Bands 103/µl, 103, 109/L, cells/µl percent, null 103/µl 0 60

Base excess mmol/L, meq/L, null mg/dl, mmHg, percent mmol/L −30 30

Bicarbonate (HCO3/total
CO2)

mmol/L, µmol/L, mEq/L, mmol, null percent, °C, mm, mmHg mmol/L 1 80

Bilirubin direct mg/dl, g/dl, null none mg/dl 0 30

Bilirubin indirect mg/dl None mg/dl 0 40

Bilirubin total mg/dl, g/dl, null none mg/dl 0 40

Blood urea nitrogen mg/dl, null meter mg/dl 0 150

C-reactive protein mg/dl, mg/L, null none mg/dl 0 50

Calcium mg/dl, mg/ml, null mmol/L, mg/day mg/dl 1 15

Calcium ionized mmol/L, µmol/L, mg/dl, mEq/L, null mg, mmHg, percent mmol/L 0 2

Chloride mmol/L, µmol/L, mEq/L, null mmol mmol/L 70 140

Creatinine mg/dl, mg, null ml/min, g/24 h, ml/min/173*10−2

*m2
mg/dl 0.1 10

Creatine kinase Enzyme U/L, IU/L, null ng/ml U/L 0 500,000

Erythrocyte sedimentation
rate

mm/hr, null None mm/hr 0 150

Fibrinogen Mg/dl, null None mg/dl 0 1,200

Gamma-glutamyl transferase Enzyme U/L, IU/L, null enzyme U/ml, U/L 0 2,000

Gentamicin level µg/dl, µg/ml, null None µg/ml 0 20

Glucose mg/dl, mg/ml, null ng/ml, ml/dl, mg/day, ng/dl, mmol/
dl, mmol/L,

mg/dl 10 800

Hematocrit Percent, null mmHg, mmol/L, ng/ml percent 1 80

Hemoglobin gm/dl, mg/dl, g/ml, null Percent, mmol/mol Cr gm/dl 1 25

International normalized
ratio (INR)

ratio, international normalized ratio, null none ratio 0 5

Lactate (arterial) mmol/L, mEq/L, null mmHg, percent, nmol/ml, µmol/L,
mg/dl

Mmol/L 0 30

Lipase Enzyme U/L, IU/L, enzyme U/dl, mIU/ml, null none U/L 0 3,000

Magnesium mg/dl, mEq/L, mmol/L, mg/L, null None mg/dl 0.1 5

Partial thromboplastin time
(PTT)

Seconds, null none seconds 1 250

PCO2 mmHg, null Mmol/L, g/dl, percent, mg mmHg 1 150

pH pH, enzyme units, null None pH 6.0 8.5

Phosphate mg/dl, null none mg/dl 0.1 10

Platelet count 103/µl, 103, 109/L, µl, kiloenzyme unit/L, mm3,
kg/m3, null

fL, g/dl, 106/µl, percent 103/µl 0 1,200

PO2 (arterial) mmHg, null Percent, meter, ml/dl mmHg 5 600

Potassium mEq/L, mmol/L, mmol/dl, mmol, µmol/L, null none mmol/L 0 12

Procalcitonin ng/ml, mg/dl, µg/ml none ng/ml 0 30

Prothrombin time (PT) Seconds, null Percent, µg/ml seconds 1 80

Sodium mEq/L, mmol/L, mmol, µmol/L, mmol/dl, null none mmol/L 115 180

Vancomycin level µg/dl, µg/ml, mg/dl, null None µg/ml 0 60

White Blood Cell Count 103/µl, 103, 109/L, µl, Kiloenzyme Unit/L, Mm3,
Cells/µl, 106/Ml, Null

Kg/M3 103/µl 0 200
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APPENDIX TABLE 3 Imputed laboratory values.

Variable Imputed value [sourced (42, 43),
unless otherwise specified]

Ammonia 28 µmol/L

Amylase 73 U/L

Bands 0%

Bilirubin direct 0.35 mg/dl

Bilirubin indirect 1.0 mg/dl

Calcium 9.6 mg/dl

C-reactive protein 1.0 mg/ml

Creatine kinase 170 U/L

Erythrocyte
sedimentation rate

10 mm/hr

Fibrinogen 330 mg/dl

Gamma-glutamyl
transferase

23 U/L

Gentamicin level 0 µg/ml if no gentamicin given
0.5 µg/ml if gentamicin given (44)

Lactate (arterial) 0.5 mmol/L

Lipase 68 U/L

PCO2 38 mmHg

pH 7.40

PO2 (arterial) 97 mmHg

Procalcitonin 0.1 ng/ml (45)

Vancomycin level 0 µg/ml if no vancomycin given
10 µg/ml if vancomycin given (46)

APPENDIX TABLE 4 Imputed clinical values.

Variable Imputed values
Central venous pressure 5 mm Hg (47)

Peak inspiratory pressure −8 cm H2O (48)

PO intake 0 ml

Tidal volume 8 ml/kg body weight (49)

APPENDIX TABLE 5 Medications.

Medications
Acetazolamide Dopamine

Acyclovir Enalapril

Aspirin Epinephrine

Bumetanide Furosemide

Captopril Gentamicin

Chlorothiazide Ibuprofen

Colloid fluids Iodinated contrast media

Albumin 5% Diatrizoate meglumine/
diatrizoate sodium

Albumin 25% Iohexol

Dextran Ioversol

Hydroxyethyl starch Ketorolac

Crystalloid fluids Milrinone

Isolyte Norepinephrine

Lactated ringers (+ dextrose) Phenylephrine

Normosol Piperacillin-tazobactam

Plasma-lyte Pentamidine

Sodium chloride 0.9% (+ dextrose, KCl,
KH2PO4, NaHCO3)

Spironolactone

Sodium chloride 0.45% (+ dextrose, KCl,
KH2PO4, NaHCO3)

Topiramate

Sodium chloride 0.33% (+ dextrose, KCl,
KH2PO4, NaHCO3)

Vancomycin

Sodium Chloride 0.225% (+ Dextrose, Kcl,
KH2PO4, Nahco3)

Vasopressin
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Appendix C: Vital signs, clinical
variables, and measurements

Clinical variables and measurements were assessed as follows:

all vital signs, clinical values, and measurements in this cohort

was collected. All recorded units and distribution of results were

examined. Units were standardized to the most commonly used.

Units were converted to the standard. Data that could not be

converted were excluded.

The distribution of each variable was analyzed individually,

with both descriptive statistics and graphical display. Lower and

upper limits were set based on clinical medicine. Values outside

of these limits were excluded. Tests with units that did not fit the

clinical distribution were also excluded. Any clinical variable that

was recorded in less than 500 encounters was excluded.

Urine output data was standardized as follows: All measurements

with recorded units of ml were included. Amount of urine recorded in

a 12-hour period was summed (from 7 AM to 7 PM, and 7 PM to 7

AM). 12-hour urine output was divided by patient weight and hours

to obtain urine output in ml/kg/hr for that time period.

Tidal volume for mechanically ventilated patients was also

divided by patient weight to obtain tidal volume in ml/kg.
Imputed clinical values

As with laboratory values, imputed values were entered for

variables without a recorded measurement. These were

maintained until replaced by a recorded value. For variables with

insufficient data to use this method, imputed values were selected

assuming normal physiology values as follows:
Frontiers in Pediatrics 12
Appendix D: Medication variables

All records of crystalloid or colloid volume expanders were

evaluated, including those with supplemental electrolytes as listed

below (Appendix Table 5). Both bolus and maintenance fluid

volumes were counted. Vasoactive medications in both bolus

doses and continuous infusions were included. Nephrotoxic

medications were selected based on clinical evidence (27–29).
Appendix E: Diagnosis codes

Diagnostic and procedural codes from the International

Classification of Diseases (ICD) −9 and −10 (30, 31) were

available for 88% of patients. All diagnostic and procedural codes

were first screened for indication of chronic kidney disease,

congenital renal abnormalities, renal transplant status, and

chronic dialysis dependence (Appendix Table 6). Encounters

with these associated codes were excluded from the model.
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The diagnoses associated with each encounter were categorized

into seven groups: cardiovascular disease, infection, malignancy,

neurologic disease, respiratory disease, trauma/ingestion, or other.

Diagnostic categories were not mutually exclusive (multiple

diagnoses could be associated with a single encounter). If a

diagnosis was not associated with a given encounter, it was

coded as “no diagnosis associated”.
APPENDIX TABLE 6 Excluded diagnostic codes.

Description ICD−9 codes ICD−10 codes
Chronic kidney
disease

403, 404, 582, 585 E08.2, E09.2, E10.2, E11.2, E13.2,
I12, I13, N03, N11, N18, N26

Congenital renal
abnormalities

753 P96.0, Q60, Q61, Q62, Q63

Absent kidney 55.4, 55.5, V45.73 Z90.5

Renal transplant
status

55.6, 996.81, V42.0 T86.1, Z48.22, Z94.0

Chronic dialysis
dependence

39.95, 54.98, 996.56,
996.68, 996.73, E879.1,

V45.1, V56

I95.3, R88.0, T82.4, T85.611,
T85.621, T85.631, T85.691,

T85.71, Y84.1, Z49, Z91.15, Z99.2
Appendix F: Model development

Model structure

Every encounter was required to have an admission creatinine

measured within the 24 h preceding admission through day 1 of

ICU admission. Subsequent creatinine values utilized in the

modeling had to occur in pairs separated by 24 ± 6 h. The first

creatinine value of a pair defined hour 0–1 of that modeling period,

and could occur at any point in days 1–5 of ICU admission.

A second creatinine had to be measured within 24 ± 6 h of the first

in order to be used for model training or validation. The 48 h

preceding the first creatinine of the pair were then divided into 4
Frontiers in Pediatrics 13
12-hour time periods. The number of modeling periods for any

given encounter was therefore dependent on the number of

creatinine pairs that fit the above criteria.
Appendix Figure 1: Model structure

For each 12-hour period preceding the first creatinine of the

pair, the following metrics were applied to all variables prior to

inclusion in the model:

(1) For all vital signs (heart rate, respiratory rate, blood pressure,

temperature, oxygen saturation, and GCS), the minimum

value, maximum value, average, and count (number of

records) were included.

(2) For all other clinical measurements (weight, respiratory

support variables), the minimum value, maximum value,

and count were included.

(3) For intake and output measurements (UOP) which had been

standardized to units of ml/kg/hr over 12 h, a single value

was included.

(4) For laboratory values, the minimum value, maximum value,

and count were included.

(5) Each medication was included as a binary variable (received/

did not receive).

For all variables, the maximum value and minimum value at any

point in admission prior to the first creatinine of the pair were

also included.
Treatment of highly correlated variables

For all variable pairs with Pearson correlation value ≥0.9 or

≤−0.9, the following rules were applied to select one variable of

the pair for inclusion in the model:
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(1) If the same variable was correlated across two time periods

(regardless of parameter), the variable from the earliest time

period was kept.

(2) If the same variable was correlated within the same time

period, the maximum value was kept.

(3) If the count parameter of different variables were correlated in

the same time period, the following hierarchy was applied:

measurements > events > labs > medications
Fron
a. If both variables were labs, drug levels were kept over

other labs

b. If both variables were labs but one was a directly measured

value and the other was a calculated value, the directly

measured lab was kept
tiers in Pediatrics 14
(4) If the minimum or maximum parameter of different variables

were correlated within the same time period, the following

hierarchy was applied: labs > measurements > events >

medications
a. If both variables were labs, drug levels were kept over

other labs

b. If both variables were labs but one was a directly measured

value and the other was a calculated value, the directly

measured lab was kept
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