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Human adenovirus is a significant viral pathogen causing lower respiratory tract

infections in children, prone to developing into severe pneumonia and systemic

inflammation with a high mortality rate, especially in immunocompromised

children, drawing widespread attention worldwide. Sepsis, a life-threatening

organ dysfunction caused by a dysregulated inflammatory response to

infection, has historically been focused on bacterial origins. However, nearly all

viruses can cause sepsis, which is often underestimated in clinical settings. In

recent years, severe infections and even sepsis caused by adenovirus have

shown a trend of periodic outbreaks. Early diagnosis of adenovirus-induced

sepsis can not only prevent the overuse of broad-spectrum antibiotics but

also ensure that patients receive timely and appropriate antiviral treatment.

This article aims to provide a comprehensive review of the epidemiology,

pathogenesis, diagnostic methods, and recent advances in treatment strategies

for viral sepsis caused by adenovirus.
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1 Introduction

Sepsis is a syndrome characterized by abnormal physiological and pathological

reactions caused by infection (bacteria, viruses or other pathogens) and is one of

the major causes of death in children (1, 2). There are many cases of viral sepsis

in patients with negative blood cultures (3–6), However, in actual clinical

diagnosis and treatment, these viral causes are often underestimated, resulting in

an unnecessary increase in the use of broad-spectrum antibiotics and missed

opportunities to use antiviral treatment plans, which increases the disease burden

(7). Human adenovirus (HAdV) is an important viral pathogen that causes lower

respiratory tract infections and severe pneumonia in children under 5 years old,

accounting for 3.5%–11% of community-acquired pneumonia in children (8, 9),

The severe infection rate is as high as 37% (10, 11), and the mortality rate can

be as high as 50% (12), There are a large number of cases of viral sepsis caused

by adenovirus in severe infections. Some studies have shown that early use of

antiviral strategies and neutralizing antibodies can improve the prognosis of

severe adenovirus infection (13–15), therefore, this article reviews the latest

research progress in the definition, epidemiology, pathogenic mechanism,

diagnosis and treatment of adenovirus sepsis, in order to provide a certain

reference for early clinical decision-making for adenovirus sepsis.

TYPE Review
PUBLISHED 19 May 2025
DOI 10.3389/fped.2025.1552958

Frontiers in Pediatrics 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2025.1552958&domain=pdf&date_stamp=2020-03-12
mailto:zangna1214@126.com
https://doi.org/10.3389/fped.2025.1552958
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2025.1552958/full
https://www.frontiersin.org/articles/10.3389/fped.2025.1552958/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2025.1552958
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


1.1 Definition

In 2015, the third edition of the international consensus on

sepsis defined sepsis as a life-threatening organ dysfunction

caused by a dysregulated host response to infection. Unlike the

first and second editions of the sepsis definition (16, 17), the

third edition no longer uses the systemic inflammatory response

syndrome (SIRS) to define sepsis, but it still plays an important

role in the early identification of severe infection (18). Today,

domestic and international research on the etiology of sepsis

mainly focuses on bacterial infection. Studies have shown that

about 1/3–2/3 of sepsis patients have negative blood cultures,

among which viral sepsis cannot be excluded (3–6). However,

there is currently no clear definition of viral sepsis. Since the

latest definition of sepsis does not specifically limit the pathogen,

viral sepsis is also applicable to this definition (1, 7). The most

common site of infection in sepsis patients is the respiratory

tract (64%–68%) (19). Severe infections caused by HAdV are

often caused by lower respiratory tract infections (12), and there

are manifestations of persistent disseminated viremia. The

increase in serum viral load and persistent viremia are risk

factors for severe prognosis and death in children (13, 20).

Therefore, combined with the diagnostic basis of adenovirus

infection, adenovirus sepsis is considered to be defined as cases

in which adenovirus is confirmed as a clear pathogen through

pathogen detection [antigen detection, adenovirus polymerase

chain reaction (PCR) detection], adenoviremia exists, and the

international consensus definition of sepsis is met. However, it is

still very challenging to clarify the causal relationship between

HAdV infection and sepsis, because a positive result of HAdV

alone is not sufficient to diagnose adenovirus sepsis. It is also

necessary to consider whether there is a concurrent infection and

whether a secondary infection has occurred. Clinicians need to

make a comprehensive judgment based on their clinical

characteristics. The causal relationship between HAdV infection

and sepsis needs to be further and better determined in other

prospective cohort studies.

1.2 Epidemiology

Currently, the diagnosis of viral sepsis is often neglected, and

the incidence of viral sepsis is often underestimated. However, a

recent study included patients diagnosed with viral pneumonia

and found through retrospective analysis that 61% of patients

had viral sepsis, and HAdV is one of the main pathogens

causing viral sepsis (21). According to different biological

characteristics, HAdV is divided into seven subgenera from A to

G. A total of 116 genotypes have been found, and they are still

being updated (http://hadvwg.gmu.edu/). Different types of

HAdV have different tissue tropisms. Their pathogenicity,

epidemic trends and other characteristics are also different.

HAdV infection in patients with normal immune function is

usually self-limiting, such as infections of the eyes, upper

respiratory tract, and gastrointestinal tract (12). However, HAdV

is prone to cause lower respiratory tract infections in children

(the proportion is 3.5%–11.0%) (8, 9), and is prone to develop

into severe cases (the severe cases rate is about 37%) (10, 11).

Severe patients may have respiratory failure, intracranial

infection, and even death, including children with adenovirus-

induced sepsis. Adenovirus types 3, 7, 14, 21, and 55 in the

B subgenus, types 1, 2, 5, and 6 in the C subgenus, and type 4 in

the E subgenus are commonly detected in respiratory infections

in children (12, 22). In China, HAdV-3 (32.73%) and HAdV-7

(27.48%) are the main detected types (23). In Asia, HAdV-1–3

and HAdV-7 are the main detected types (24, 25). In Europe,

HAdV-1–3 (45.6%) are the main detected types (26). In North

America, represented by the United States, adenovirus type 3 (39.

7%) is the most commonly detected type among civilians

(including children and adults), and adenovirus types 1–5 and 7

are the main detected types (89.7%) (27, 28). In many countries

in South America, HAdV-7 is the predominant strain associated

with respiratory infections requiring hospitalization (29). In

African countries, HAdV1- is the predominant adenovirus

detection type (30, 31). Worldwide, HAdV-1–HAdV-7 are the

most common types, while HAdV-4 and HAdV-5 have the

highest serum positivity rates (32) (Figure 1). However, HAdV-7,

HAdV-55, HAdV-4, and HAdV-14 often cause outbreaks in

relatively closed environments such as military camps and

schools (33). Types 7, 55, and 4 are more likely to be combined

with severe pneumonia, leading to viral sepsis and endangering

the lives of children (34–37). This is especially true for children

under 2 years old, those after organ transplantation, and those

with congenital immunodeficiency (38). In adults and children

with normal immune function, there have also been reports of

severe infections and even death caused by adenovirus (13, 39).

With the easy availability of rapid viral diagnostic testing,

HAdV infections could be identified more often. After

comprehensively analyzing relevant literature, Lin, G.L. et al.

believed that disseminated disease and adenovirus sepsis in

children account for 2% of all adenovirus infections, with a

mortality rate of up to 55%. The main risk factors for the

development of sepsis are immunosuppression (especially

allogeneic hematopoietic stem cell transplantation), young

children (less than 18 months old), and infection with highly

virulent adenovirus serotypes (such as HAdV-7) (7). A recent

retrospective cohort study found that among all patients

hospitalized for viral pneumonia with sepsis, the detection rate of

adenovirus was 8% of all viral sepsis caused by non-influenza

viruses (21). A multicenter study on the risk factors for death

from pediatric sepsis found that serum HAdV-DNA-positive

adenovirus sepsis accounted for approximately 10% of viral

sepsis, and after adjusting for factors such as age, child mortality

risk score, previous health status, and immunocompromised

status at the onset of sepsis, the adjusted odds ratio (AOR) of

HAdV was as high as 3.50 (P = 0.006), indicating that adenovirus

viremia is closely associated with increased mortality (40). In a

retrospective study of 415 immunocompetent children

hospitalized for adenovirus infection, a mortality rate of 15% was

observed (41). In a recent cohort study of patients hospitalized

for severe adenovirus pneumonia and transferred to the ICU, a

mortality rate of 31.1% was observed (13). Among these deaths,
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a large number of cases met the diagnosis of adenovirus sepsis as

described above. However, more detailed epidemiological data on

adenovirus sepsis urgently need to be supported by more

systematic multicenter epidemiological studies.

1.3 Pathogenic mechanism

The pathogenesis of HAdV viral sepsis is limited, but similar to

bacterial sepsis, its core is life-threatening organ dysfunction

caused by the dysregulated host response to infection, which

mainly involves systemic immune dysfunction, combined

destruction of the epithelial-endothelial barrier, and a series of

multi-organ functional damage caused by infection, including the

respiratory system, cardiovascular system, nervous system, blood

system, endocrine system, etc. (19) (Figure 2).

1.3.1 Systemic immune dysfunction

HAdV is a non-enveloped icosahedral double-stranded DNA

virus with a viral capsid protein surrounding the viral core. The

virus core is composed of genomic DNA and core proteins pVII,

pV, Mu (pX), pIVa2, terminal protein (TP) and protease

encoded by AdV. The adenovirus core protein plays an

important role in degranulation, genome nuclear transfer,

progeny virus encapsulation and release (42). Capsid protein is

divided into major capsid protein and minor capsid protein. The

major capsid protein is composed of hexon, penton base and

fiber, and the minor capsid protein is composed of pIX, pIIIa,

pVI and pVIII. These proteins play a very important role in

stabilizing the protein-protein interaction structure of virus

particles (42, 43).

The immune dysfunction of HAdV viral sepsis is mainly

manifested in the inability of the host’s innate and adaptive

immune response to HAdV to restore homeostasis, ultimately

leading to a pathological syndrome characterized by persistent

excessive inflammation and immunosuppression (44).

1.3.1.1 Innate immunity

Like influenza virus and new coronavirus, HAdV first activates

innate immunity after infecting the host. This initial host

perception of pathogens is mediated by pattern recognition

receptors (PRRs), including toll-like receptors (TLRs), retinoic

acid-induced gene-1-like receptors (RLRs), nod-like receptors

(NLRs) and c-type lectin receptors (45, 46). After HAdV binds

to adhesion receptors through the fiber knob, it mediates

endocytosis and signaling cascades through the binding of

Penton to integrin receptors (such as αvβ5), and then the virus

degranulates to the cytoplasm and transports to the vicinity of

the nuclear pore. After further degranulation, the genetic

material is transported to the nucleus (47), and pathogen-

associated molecular patterns (PAMPs) are expressed. PRRs

activate innate immunity by recognizing PAMPs. Normally, the

innate immune system clears viruses by promoting the release of

cytokines and chemokines (tumor necrosis factor, TNF,

interleukin, IL-1β, IL-12 and IL-18), the recruitment of

phagocytes, and the local activation of the complement and

coagulation systems (44, 46). For example, Penton binding to

integrins can activate phosphatidylinositol-3-hydroxykinase

(PI3K) signaling, which can increase viral intracellular transport

and trigger the production of the proinflammatory cytokine

TNFα (48, 49). TLR9 can detect adenovirus in the cytoplasm,

conduct signal transduction through the MYD88-dependent

pathway, activate transcription factor NF-κB and other pathways,

FIGURE 1

The worldwide map of molecular epidemiology trends of adenovirus (the predominant adenovirues genotype worldwide were marked).
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leading to the production of proinflammatory cytokines IL-6 and

IL-8, and the release of IFNα/β (47, 50, 51). Activation of the

NF-κB pathway can also promote the maturation of IL-1β and

IL-18 and the release of necrosis factor and proinflammatory

factor HMGB1 by inducing NOD-like receptor thermoprotein

domain protein 3 (NLRP3) inflammasome activation (47, 52). In

addition, adenovirus binding to membrane auxiliary factor CD46

can also induce complement activation, thereby inhibiting the

release of adenovirus fiber and the exposure of protein VI (53).

1.3.1.2 Adaptive immunity

The major capsid proteins of adenovirus (hexon, penton, and fiber)

are highly immunogenic and can stimulate B cells to produce

specific IgG antibodies, with the hexon protein being the primary

target of neutralizing antibodies (54, 55). HAdV infection can

also activate a CD4+ T cell immune response. T cell activation

depends on MHC molecules presenting viral peptides: the MHC

class I pathway degrades antigens via the proteasome to activate

CD8+ T cells, while the MHC class II pathway degrades antigens

via lysosomes to activate CD4+ T cells and promote B cell

activation (56, 57). This T cell response exhibits cross-protective

effects (56).

Autophagy degrades intracellular components (including

pathogens) by forming autophagosomes and facilitates antigen

presentation through the MHC class II pathway (58, 59).

Additionally, the TRIM21 protein can bind to viral DNA-

antibody complexes and degrade capsid proteins via the

proteasome, thereby inhibiting viral replication (50, 60).

Antibody-mediated endocytosis can also lead to viral uncoating,

promoting viral clearance (60).

1.3.1.3 Immune evasion

HAdV employs multiple immune evasion strategies to protect

infected cells. The E3-encoded proteins disrupt MHC presentation,

preventing CTL recognition (61). Specifically, E3-gp19K binds

MHC I in the ER domain, blocking its transport to the cell surface

and reducing CD8+ T cell and NK cell-mediated killing (62). Other

E3 proteins (E3–14.7K, E3–10.4K, E3–14.5K, E3–6.7K) inhibit

apoptosis by downregulating death receptors and suppressing NF-

κB. E1B-19K and E1B-55K counteract p53-mediated apoptosis (63),

while E1B-55K also suppresses IFN-induced gene expression and,

with E4, inactivates the MRN complex to enhance viral replication

(50). Early-expressed E1A blocks IFN-stimulated gene (ISG)

transcription, further promoting viral persistence (64, 65). These

mechanisms allow HAdV to evade immune clearance, sustain low-

level viral release, and trigger chronic inflammation, contributing to

long-term pulmonary complications.

1.3.1.4 Excessive inflammation and immunosuppression

When the virus cannot be cleared by the host immune system, the

homeostasis of the immune system will be broken, leading to

excessive inflammation and immunosuppression, resulting in

sepsis (66).

In the stage of excessive inflammation, HAdV viral sepsis is

similar to sepsis caused by other reasons. It activates many PRRs

FIGURE 2

Pathogenic mechanism of adenovirus sepsis.
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through the release of injury-associated molecular patterns

(IAMPs) by inflammatory cells such as leukocytes, macrophages,

endothelial cells, and platelets. These PRRs in turn recognize

PAMPs, further mediating tissue damage and leading to a vicious

cycle (67, 68). At the same time, the excessive inflammation

stage will also activate the coagulation system, complement

system, neutrophils and vascular endothelium, causing organ

damage and dysfunction (19, 69, 70).

In the immunosuppressive stage, innate immunity and

adaptive immunity play a role simultaneously. With the increase

of apoptosis of T cells, B cells and dendritic cells. T cells are

exhausted, regulatory T cells and myeloid-derived suppressor

cells (MDSC) are expanded (71, 72). In addition, in pathological

conditions such as tumors, infectious diseases and autoimmune

diseases, MDSCs can be rapidly accumulated and activated by

IAMPs or PAMPs, and MDSCs are immature bone marrow cells

that can hinder T cell function, thereby inhibiting immune

response, inhibiting viral clearance, promoting viral persistence,

and aggravating tissue damage (72).

1.3.2 Combined destruction of the epithelial-
endothelial barrier and multi-organ functional
damage

The combined destruction of the epithelial-endothelial barrier

caused by HAdV infection is also an important pathophysiological

process for the occurrence of multi-organ function damage in

HAdV sepsis (66). The inflammatory cytokine storm caused by

persistent excessive inflammation in the early stage of infection is

the main cause of endothelial dysfunction, loss of endothelial

integrity, and multi-organ edema, leakage, and failure (19).

Besides, HAdVs infection can also directly damage host cells

through various mechanisms. Different adenovirus serotypes enter

cells by binding their fiber proteins to specific host cell surface

receptors (e.g., CAR, CD46, DSG-2, etc.), triggering signal

transduction and endocytosis. Following internalization, the virus

undergoes uncoating - a process facilitated by adenovirus protease

(AVP) that dissolves the viral protein capsid. The viral particles are

then transported along microtubules to nuclear pores where the

genome is released to initiate transcription. Subsequently, the virus

penetrates the endosomal membrane and escapes into the cytosol,

ultimately inducing cell death (73). When HAdV infects alveolar

epithelial cells, inducing ferroptosis of alveolar epithelial cells,

HAdVs directly damages the alveolar epithelial barrier, releases

inflammatory mediators such as IL-6, IL-8, IL-18, and TNF-α, and

mediates the increase of reactive oxygen species (ROS) and lipid

peroxides (74). These inflammatory mediators and ROS can

damage the endothelial cell. The endothelial cell damage can also

be led by direct infection of HAdV through autophagy (75).

Endothelial cell damage lead to the damage of epithelial-endothelial

barrier and the polysaccharide coating on the surface of endothelial

cells, leading to the degradation of glycocalyx, cell rearrangement,

destruction of tight junctions between cells, and increased

endothelial cell apoptosis, thereby damaging endothelial cells and

increasing endothelial permeability (19, 75, 76). The endothelial cell

damage lead to increased secretion of angiopoietin 2, which

competes with anti-angiopoietin 1 for binding to Tie2 receptors,

thereby activating RhoA enzymes, causing skeleton rearrangement

and increased capillary permeability, leading to a vicious cycle (77),

further aggravating the destruction of the endothelial barrier and

damage to multiple organ functions.

1.4 Clinical manifestations

Similar to bacterial sepsis, adenovirus sepsis lacks specific clinical

manifestaions (1). HAdV exhibit distinct tissue tropisms depending

on their serotypes. Different adenovirus types could cause diseases in

various tissues and organs, including pharynx, digestive system, liver,

heart, urinary system, central nervous system, the respiratory tract

and hematopoietic system (78). HAdV frequently causes ocular

infections, resulting in self-limiting conditions such as simple

follicular conjunctivitis and pharyngoconjunctival fever (79). HAdV

is an important pathogen causing gastroenteritis and diarrhea in

infants and young children. According to China’s diarrheal

syndrome pathogen surveillance data from 2009 to 2018, the

detection rate of HAdV reached 9.27% (80). Recent evidence

highlights HAdV’s emerging role in severe pediatric hepatitis of

unknown origin. While traditionally linked to immunocompromised

hosts (e.g., transplant recipients), HAdV-41—typically causing

gastroenteritis—has been implicated in unexplained hepatitis

outbreaks, including cases requiring liver transplantation in

immunocompetent children (UK, US) (81, 82). These findings

challenge conventional paradigms and urge inclusion of HAdV in

differential diagnoses for unexplained hepatitis, particularly in

children. Besides, HAdV can induce myocarditis and dilated

cardiomyopathy (DCM). In pediatric patients, these conditions may

manifest with fulminant progression, severe cases can be life-

threatening, necessitating early respiratory and circulatory support

(83, 84). HAdV infections of the urinary system frequently cause

hemorrhagic cystitis, predominantly occurring in school-aged

children with immunocompromised status, particularly following

renal transplantation or hematopoietic stem cell transplantation (85).

In pediatric patients, HAdV-induced central nervous system

disorders encompass febrile seizures, epileptic episodes, encephalitis,

and meningoencephalitis. While mild cases typically demonstrate

favorable prognoses, severe infections may progress to acute

necrotizing encephalopathy, potentially resulting in permanent

neurological sequelae (86).

HAdV is a significant viral pathogen of respiratory infections,

predominantly affecting children aged 0–5 years and

immunocompromised individuals. Notably, up to 20% of HAdV

respiratory infections progress to HAdV pneumonia in neonates

and infants (87). Adenovirus pneumonia often presents with

persistent high fever, cough, and wheezing. Children with severe

infection may experience persistent or difficult-to-correct

hypoxemia and may also have extrapulmonary symptoms, such

as poor mental and appetite, alarm, shock, and decreased blood

pressure (13). There are a large number of cases of viral sepsis

caused by adenovirus among patients with severe adenovirus

pneumonia, which are manifested as acute respiratory distress

syndrome (ARDS), persistent serum adenovirus dissemination,

increased adenovirus load in serum and nasopharyngeal aspirate
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(NPA), systemic inflammatory cytokine storm, systemic immune

cell exhaustion, and multiple organ dysfunction (13, 34, 35, 38, 88).

Notably, severe adenovirus (HAdV) spesis often leads to

secondary hematological disorders, with hemophagocytic

lymphohistiocytosis (HLH) being the most predominant (89).

HLH is a rare, life-threatening immune dysregulation syndrome.

While HAdV-associated HLH typically occurs post-hematopoietic

stem cell transplantation due to immune dysfunction (90).

The condition manifests with persistent high fever,

hepatosplenomegaly, cytopenia, coagulopathy, and hemophagocytosis

on bone marrow smears. Due to insufficient understanding of its

pathogenesis, mortality remains high [138–140]. Cases are distributed

across all age groups—infants, older children, and adults—without

significant predilection (89–91).

Early identification of adenovirus sepsis is of great significance

for improving the prognosis of children. In recent years, there have

been many reports on risk factors for severe illness or death caused

by adenovirus infection. Among them, high serum viral load,

highly pathogenic adenovirus serotypes (such as HAdV-7),

combined immune deficiency, and young children are more

recognized risk factors (13, 23, 34, 35, 38, 88, 92).

1.5 Treatment

1.5.1 Pathogen-directed treatment of adenovirus
sepsis

Sepsis guidelines emphasize the important role of early anti-

infection treatment in improving the prognosis of sepsis patients

and reducing mortality, and antiviral treatment should be

initiated as early as possible for sepsis or septic shock caused by

virus (1, 2, 92). At present, there are no prospective randomized

clinical trials supporting the use of antiviral drugs for severe

infections caused by HAdV, and no antiviral drugs have been

approved by the FDA (93). Cidofovir is a viral DNA polymerase

inhibitor and is the drug of choice for the treatment of

adenovirus infection in immunocompromised populations.

However, due to limited antiviral activity and nephrotoxicity, it is

generally not recommended for use in immunocompetent

patients (87, 94). Its potential therapeutic efficacy and safety in

immunocompetent patients has only been confirmed in case

reports and small sample group (95), more evidence is needed

(15, 96). Compared with cidofovir, the lipid conjugate of

cidofovir (Brincidofovir) has better bioavailability, no

nephrotoxicity, and higher antiviral activity (97, 98). In an

animal experiment, the anti-adenovirus efficacy of Brincidofovir

was much higher than that of cidofovir (99). Another

retrospective study on severe adenovirus infection found that

Brincidofovir as a compensatory treatment could continuously

reduce the viral load of 67% of patients and improve survival

(100). However, the phase Ⅱ clinical trials revealed no

statistically significant difference from the placebo treatment, and

gastrointestinal toxicity has also been reported (101–103). The

broad-spectrum antiviral drug ribavirin is a guanosine analogue

with broad antiviral activity against RNA and DNA viruses.

Studies have reported that ribavirin has a certain effect on severe

adenovirus infection in immunodeficient children, newborns, and

solid organ transplant patients (2/5), but its broad effectiveness

and safety still need to be verified by prospective randomized

controlled trials (104). Besides, Li et al. reviewed many other

Nucleoside/nucleotide analogues (such as zalcitabine and

alovudine), along with some natural compounds (such as

cardamomin and phenolic compounds extracted from Camellia

sinensis Kuntze), Epigenetic regulators inhibitors (such as

valproic acid, vorinostat and trichostatin),and steroid-based

compounds (such as digoxin, digitoxigenin and lanatoside C) to

be potential candidates for HAdV therapy in vitro or in vivo

(105) (Table 1).

1.5.2 Immunomodulatory therapy

In the hyperinflammatory response stage of sepsis,

glucocorticoids play a very important role in reducing the

inflammatory response. However, there is controversy about the

efficacy and timing of glucocorticoid use in severe infection. Some

studies have pointed out that the use of glucocorticoids may be a

risk factor for poor prognosis of severe HAdV infection (92), and

some studies have pointed out that the timing and dose of

glucocorticoid use have no effect on the mortality outcome of

severe HAdV infection (13). Some studies have reported that

intravenous immunoglobulin may help improve the prognosis

of severe HAdV infection, especially in patients with

hypogammaglobulinemia (93). For children with normal immune

function, the early use of immunoglobulin may reduce the

mortality outcome of children (13). The therapeutic effect of

neutralizing monoclonal antibodies against HAdV fiber and

penton on HAdV infection has been confirmed in animal models

(106). In addition, a study involving 92 children with severe

adenovirus pneumonia showed that highly effective antibody

plasma screened from fresh frozen plasma of healthy blood donors

can shorten the fever time of children with severe adenovirus

pneumonia and improve the survival rate of patients, and no

serious adverse reactions were reported (107). Such results were

further confirmed in a prospective cohort study involving 59

children with fatal HAdV pneumonia (14). However, the

therapeutic effect of monoclonal antibodies in humans still needs

to be confirmed by more large-sample prospective cohort studies.

In the immunosuppressive stage of sepsis, immunostimulatory

therapy can help restore immune function and promote rapid

clearance of pathogens, thereby reducing the incidence of

secondary infections and the mortality rate of late sepsis

(108). Many immune stimulators have entered the animal

experiment or clinical trial stage, such as programmed cell

death 1 (PD 1)/programmed death protein ligand 1 inhibitor,

IFN γ, IL 15, IL 7, etc. The clinical application prospects of

these immune stimulators in adenovirus sepsis are worth

looking forward to (109).

Adaptive immunotherapy such as adenovirus-specific T cell

therapy may become a promising immunotherapy for severe

HAdV infection. It has been reported that adaptive

immunotherapy can be used to treat fatal adenovirus infection

in hematopoietic stem cell transplantation (HSCT)

patients with T cell exhaustion (110). A clinical trial of HSCT
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patients found that patients receiving Hexon adaptive T cell

transplantation (ACT) had antiviral immunity for up to 6

months, viremia clearance rate of 86%, antigen-specific

T cell response, and mortality rate decreased by about

90% (111) (Table 1).

1.5.3 Supportive treatment and complication
management

Supportive treatment for adenovirus sepsis is the same as for

other pathogens, emphasizing early fluid resuscitation and

continuous assessment of hemodynamic stability and fluid

responsiveness. Notably, since adenoviral sepsis frequently

develops from severe pneumonia caused by adenovirus infection,

early respiratory support is critical for managing adenovirus

sepsis. A 22-year U.S. study of hospitalized children with

adenovirus infections revealed that 11.9% required non-invasive

or invasive mechanical ventilation during hospitalization, while

0.4% underwent t extracorporeal membrane oxygenation

(ECMO) (28). Recent researches indicates that the mechanical

ventilation and ECMO might be beneficial for the patients with

severe adenovirus infection (13, 28, 112–114). Besides,

multiorgan failure is the one of the main causes of death in

sepsis, so treatment to enhance endothelial and epithelial barrier

function also plays a pivotal role in the treatment of adenovirus

sepsis (19). In addition, vasopressor therapy for septic shock,

blood transfusion therapy for anemia, sedation and blood sugar

TABLE 1 Treatment of adenovirus sepsis.

Therapy Category Compound/Reference Type of study Efficiency

Pathogen-directed therapy Nucleoside/nucleotide analogues Cidofovir (15, 87, 94–96) Case report,

retrospective study

Limited antiviral activity;

nephrotoxicity

Brincidofovir (97–103) Retrospective study,

basic research

phase Ⅱ clinical

trials

Better Bioavailability, and higher

antiviral activity than cidofovir, no

nephrotoxicity

Phase Ⅱ clinical trials revealed no

statistically significant difference from

the placebo, gastrointestinal toxicity

Ribavirin (104) Retrospective study Certain effect on severe adenovirus

infection in immunodeficient children,

safety uncertain

Other (such as zalcitabine and

alovudine) (105)

Review Potential candidates for HAdV

therapy in vitro or in vivo

Natural compounds As cardamomin and phenolic

compounds extracted from camellia

sinensis kuntze (105)

Epigenetic regulators inhibitors As valproic acid, vorinostat,

trichostatin (105)

Steroid-based compounds Digoxin, digitoxigenin and

lanatoside C (105)

Immunomodulatory

therapy

Glucocorticoids (13, 92) Prospective study,

retrospective study

Controversy about the efficacy and

timing of glucocorticoid use

Intravenous immunoglobulin (13, 93) Prospective study,

retrospective study

Improve the prognosis of severe

HAdV infection, reduce the mortality

Neutralizing monoclonal antibodies (106) Basic study

Highly effective antibody plasma (14, 107) Prospective cohort

study, retrospective

study

Improve the survival rate of patients,

and no serious adverse reactions were

reported

Immunostimulatory therapy such as

immune stimulators

Programmed cell death 1 (Pd 1)/

Programmed death protein ligand 1

inhibitor, Ifn γ, Il 15, Il 7 (108, 109)

Review Promote rapid clearance of pathogens,

reducing the incidence of secondary

infections and the mortality rate of late

sepsis

Adaptive immunotherapy Adenovirus-specific t cell therapy

(110, 111)

Case reports,

multicenter study,

clinical trial

Antiviral immunity, promote

clearance of viremia, and reduce

mortality

Supportive treatment/

Complication

management

Early fluid resuscitation and continuous

assessment of hemodynamic stability and

fluid responsiveness

(1) International

consensus

Reduce mortality

Early respiratory support Non-invasive or invasive mechanical

ventilation, extracorporeal

membrane oxygenation (Ecmo) (13,

28, 112–114)

Case reports,

multicenter study,

clinical trial

Treatment to enhance endothelial and

epithelial barrier function

(19) Review

Vasopressor therapy for septic shock,

blood transfusion therapy for anemia,

sedation and blood sugar control,

nutritional support

(115) Review
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control, nutritional support, etc., all play a very important role in

the treatment of adenovirus sepsis (115) (Table 1).

1.6 Discussion

Adenovirus is the main viral pathogen causing severe

pneumonia in children, with a high mortality rate. It can cause

adenovirus viremia. However, the incidence of viral viremia is

often underestimated. Understanding the definition,

epidemiology, pathogenic mechanism, diagnosis and treatment of

adenovirus sepsis can provide a reference for early clinical

decision-making of adenovirus sepsis, in order to improve

prognosis and reduce disease mortality.

Brincidofovir is expected to become an effective anti-

adenovirus treatment drug, and the early use of intravenous

immunoglobulin may help improve the prognosis of severe

HAdV infection. The application of many immune stimulatory

factors and adaptive T cell transplantation therapy provide new

therapeutic prospects for immunotherapy of severe

HAdV infection.
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