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Purpose: The increasing prevalence of obesity among adolescents has resulted

in an increase in the incidence of hepatic steatosis; however, the relationship

between anthropometric measurements and this condition in youth

remains underexplored.

Aims: To evaluate the effectiveness of nine anthropometric indicators in

predicting the risk of hepatic steatosis in adolescents.

Methods: We assessed several anthropometric indicators, including the

abdominal volume index (AVI), body mass index, body roundness index, body

adiposity index, conicity index, waist-hip ratio, waist-to-height ratio, and

weight-adjusted waist index. Statistical methods such as multivariate logistic

regression, smooth curve fitting, and subgroup analysis were employed.

Discriminative accuracy was determined using receiver operating characteristic

curve analysis, and a tool based on the optimal Youden index was developed.

Results: All nine indices were significantly correlated with hepatic steatosis in

adolescents. AVI demonstrated the strongest predictive ability, with an area

under the curve of 0.8454 (95% confidence interval: 0.8221–0.8687, best

threshold: 14.9992). Variations in predictive accuracy were observed across

racial and ethnic subgroups, highlighting the importance of

demographic factors.

Conclusion: All nine anthropometric indices are associated with hepatic

steatosis, with AVI emerging as the most effective tool for assessing liver

health in adolescents.
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1 Introduction

The rising prevalence of obesity among adolescents has become a critical global public

health issue. In the United States, 20.9% of adolescents aged 12–19 are classified as obese

(1). This excessive weight not only increases the risk of various health complications but

also exacerbates the likelihood of experiencing physical and psychological conditions, such

as depression (2), disrupted sleep patterns (3), early onset of puberty (4), high blood

pressure (5), and non-alcoholic fatty liver disease (NAFLD) (6). Alarmingly, NAFLD

affects 36.1% of obese adolescents (7), underscoring the significance of addressing this

liver-related condition, which can progress to more severe health problems if left

untreated. Severe hepatic steatosis, commonly referred to as fatty liver, results from the
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accumulation of excess fat in liver cells. Metabolic syndrome—

defined as a cluster of metabolic abnormalities, including central

obesity, insulin resistance, dyslipidemia, and hypertension—is

closely associated with NAFLD. In pediatric populations, the

definition of metabolic syndrome is adjusted for age and

developmental stage, but its presence significantly increases the

risk of hepatic steatosis and its progression (8). As obesity and

NAFLD rates continue to rise among adolescents, the global

incidence of hepatic steatosis is also increasing (9). This

condition can impair liver function and potentially lead to more

severe liver diseases, such as fibrosis, cirrhosis, and even liver

cancer, which pose substantial long-term health risks (10). Early

detection of hepatic abnormalities in adolescents is crucial, as

prompt intervention can slow disease progression and improve

long-term health outcomes.

Basic tools such as tape measures and scales allow parents to

monitor their children’s physical development. Various

anthropometric indicators, including body mass index (BMI)

(11), weight-adjusted waist index (WWI) (12), and waist-to-

height ratio (WHtR) (13), have been associated with hepatic

steatosis. These indices are valuable for prevention and diagnostic

purposes. These metrics are essential in identifying the risk of

hepatic steatosis, enabling early intervention and timely medical

diagnosis. However, most research has focused on adults, and

studies on adolescents remain limited and inconclusive.

The primary objective of this study is to assess and compare the

effectiveness of nine distinct anthropometric indicators in predicting

hepatic steatosis among adolescents. These indicators include the

body shape index (ABSI), abdominal volume index (AVI), BMI,

body roundness index (BRI), body adiposity index (BAI), conicity

index (CI), WHtR, waist-hip ratio (WHR), and WWI. Each of

these indices offers a unique approach to identifying hepatic

steatosis, a condition characterized by abnormal fat accumulation

in liver cells. BMI provides a general measure of body fat, ABSI

assesses body shape-related health risks, AVI focuses on abdominal

fat, BAI estimates adiposity, BRI gauges body roundness, CI

evaluates body contour, WHR compares waist to hip size, WHtR

relates waist circumference to height, and WWI adjusts waist

circumference for weight. This comprehensive approach enhances

our ability to detect adolescents at risk of hepatic steatosis. Data for

this study were drawn from the NHANES 2017–2020 dataset. Our

analysis aims to establish the most effective cutoff values for these

indices, thereby refining the risk assessment for hepatic steatosis in

adolescents. The results will contribute to the early detection of

high-risk individuals, facilitating timely intervention and reducing

the incidence of hepatic steatosis, ultimately improving the health

outcomes for adolescents.

2 Material and methods

2.1 Study design and participants

Data for this study were obtained from the National Health and

Nutrition Examination Survey (NHANES), a comprehensive health

assessment conducted by the National Center for Health Statistics

(NCHS) under the Centers for Disease Control and Prevention

(CDC). The primary objectives of NHANES are to collect and

evaluate dietary and health data from across the United States,

monitor health trends, and provide scientific evidence to inform

public health policies (14).

The study population was drawn from NHANES 2017–2020,

focusing on participants aged 12–19 years with complete

anthropometric measurements and Controlled Attenuation

Parameter (CAP) data. Initially, 15,560 individuals were enrolled.

After exclusions due to missing anthropometric data (5,756

participants), non-completion of liver elastography or missing

CAP values (1,088 participants), as well as exclusions of

individuals aged 20 years or older and those with hepatitis B or

C infections (6,928 participants), a final cohort of 1,595

adolescents remained for analysis (Figure 1).

2.2 Definition of anthropometric indices
and their measurements

According to the Protocols and Procedures documents

available on the CDC’s NHANES website, anthropometric

measurements were obtained at the Mobile Examination Centers

(MEC), where trained professionals followed standardized

protocols and used validated instruments to collect data,

including height, weight, waist circumference (WC), and hip

circumference (HC). The nine anthropometric indices were

derived using established formulas, as referenced in previous

studies (15–17):

BMI ¼
weight (kg)

height2 (m)

ABSI ¼
WC(cm)

(BMI)2=3(kg=m2)� height1=2 (m)

AVI ¼
2�WC2 (cm)þ 0:7� (WC (cm)�HC (cm))2

1000

BAI ¼
HC (cm)

height1:5 (m)
� 18

BRI ¼ 364:2� 365:5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
WC (m)

p� height (m)

� �2
s

CI ¼
WC (m)

0:109�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

weight (kg)

height (m)

s

WHR ¼
WC (cm)

HC (cm)
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WHtR ¼
WC (cm)

height (cm)

WWI ¼
WC (cm)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

weight (kg)
p

ABSI, A body shape index; AVI, abdominal volume index; BAI,

body adiposity index; BMI, body mass index; BRI, body

roundness index; CI, conicity index; HC, hip circumference; WC,

waist circumference; WHR, waist-hip ratio; WHtR, waist-to-

height ratio; WWI, weight-adjusted waist index.

Our study included nine anthropometric indices as

exposure variables.

2.3 Hepatic steatosis evaluation

Hepatic steatosis was assessed using FibroScan® technology, a

non-invasive method that utilizes ultrasound to quantify liver fat.

The result is the controlled attenuation parameter (CAP), a

numerical indicator of hepatic steatosis. Hepatic fat infiltration

was categorized histologically into four classes: S0 (no or

minimal fat, <5% hepatocytes with fat); S1 (mild fat infiltration,

5%–33% hepatocytes with fat); S2 (moderate fat infiltration,

33%–66% hepatocytes with fat); and S3 (severe fat infiltration,

>66% hepatocytes with fat) (18). Based on previous studies, CAP

values are classified as follows: S0 (CAP < 248 dB/m), S1

(248≤ CAP < 268 dB/m), S2 (268≤ CAP < 280 dB/m), and S3

(CAP≥ 280 dB/m) (19). Hepatic steatosis was defined by a CAP

value of 248 dB/m or higher.

FIGURE 1

Flowchart for participant selection.
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2.4 Covariates

Several covariates were considered in this study, including age,

sex, race, poverty income ratio (PIR), smoking status, and various

biochemical markers, such as alanine aminotransferase (ALT),

aspartate aminotransferase (AST), alkaline phosphatase (ALP),

high-density lipoprotein cholesterol (HDL-C), and high-sensitivity

C-reactive protein (hs-CRP). The PIR was used to measure

socioeconomic status, with values of PIR < 1.3 indicating economic

disadvantage and PIR≥ 1.3 indicating economic stability (20).

Smoking status was categorized based on serum cotinine levels:

non-exposed (≤0.05 ng/ml), passive exposure (0.05–2.99 ng/ml),

and active exposure (>2.99 ng/ml) (20). Missing data were

imputed using a random forest model. Continuous variables

included age, ALT, AST, ALP, HDL-C, and hs-CRP, while other

variables were categorized. Detailed measurement methodologies

are publicly available on the CDC’s NHANES website.

2.5 Statistical analysis

Statistical analysis was performed using Python (version 3.10),

R software (version 4.2.0), and EmpowerStats (version 6.0),

following NHANES protocols for the computation and

application of sample weights. Continuous and categorical

variables were presented using weighted averages and 95%

confidence intervals (CIs). Anthropometric indices were

normalized using Z-scores, calculated as

Z-Score ¼ index�indexmean
indexsd

� �

.

Multivariate logistic regression analyses were conducted using

three models: Model 1 (no adjustments), Model 2 (adjusted for

age, sex, and ethnicity), and Model 3 (adjusted for a

comprehensive set of covariates). The relationship between

anthropometric indices and hepatic steatosis was further explored

using smooth curve fitting techniques. The area under the

receiver operating characteristic (ROC) curve (AUC) was used to

assess the predictive accuracy of each anthropometric index for

hepatic steatosis. Stratified multivariate logistic regression models

were applied to examine how the association between AVI and

hepatic steatosis varied across different demographic subgroups,

including age, sex, race, income, and smoking status. The

optimal cutoff value for prediction was determined using the

Youden index derived from ROC curve analysis. A simple

Python program was developed to alert users when their AVI

exceeds a specified threshold, indicating an increased risk of

hepatic steatosis. Statistical significance was determined for

P-values below 0.05.

3 Results

3.1 Demographic and baseline attributes

Table 1 presents the demographic and baseline

characteristics of the adolescents in the NHANES cohort,

including detailed information on hepatic steatosis and various

anthropometric measures.

The analysis involved a total of 1,595 adolescents, who were

categorized into quartiles based on the degree of liver fat

accumulation: S0 (1,160 participants), S1 (133 participants), S2

(81 participants), and S3 (221 participants). The average age of

the participants was 15.43 years, with a standard deviation of

2.24 years. Males accounted for 53.23% of the cohort (849

individuals), while females made up 46.77% (746 individuals).

Generally, anthropometric measurements associated with hepatic

steatosis were higher than those in the S0 category. Severe

steatosis (S3) was more prevalent among non-Hispanic Whites

and adolescents with elevated levels of ALT, AST, and hs-CRP,

lower levels of HDL-C, and those from more affluent

backgrounds than among those in the S0 category.

3.2 Correlation between anthropometric
measures and hepatic steatosis

A comprehensive logistic regression analysis was conducted to

examine the relationship between hepatic steatosis and various

anthropometric indices. Following z-score standardization, all

evaluated indices showed a positive association with hepatic

steatosis, as summarized in Table 2. In the unadjusted model

(Model 1), AVI presented the highest odds ratio (OR) for every 1

standard deviation increase (OR: 4.88; 95% CI: 3.73–6.39,

P < 0.0001), outperforming all other anthropometric indicators.

After adjusting for age, sex, ethnicity, PIR, nicotine use status,

and serum levels of ALT, AST, ALP, HDL-C, and hs-CRP

(Model 3), all indices remained significantly associated with

hepatic steatosis. Specifically, the odds ratios for the

anthropometric measures in Model 3 were as follows: BMI (OR:

4.71; 95% CI: 3.70–5.99, P < 0.0001), ABSI (OR: 1.51; 95% CI:

1.24–1.84, P = 0.0023), AVI (OR: 5.08; 95% CI: 3.86–6.68,

P < 0.0001), BAI (OR: 3.79; 95% CI: 3.07–4.68, P < 0.0001), BRI

(OR: 4.73; 95% CI: 3.78–5.94, P < 0.0001), CI (OR: 3.15; 95% CI:

2.67–3.72, P < 0.0001), WHR (OR: 3.01; 95% CI: 2.52–3.60,

P < 0.0001), WHtR (OR: 4.62; 95% CI: 3.76–5.67, P < 0.0001),

and WWI (OR: 2.73; 95% CI: 2.35–3.17, P < 0.0001), with AVI

maintaining the highest OR. The correlation between each

anthropometric index and hepatic steatosis as indicated by CAP

is depicted in Figure 2. Furthermore, the results from smooth

curve fitting revealed a nonlinear relationship between the

anthropometric indices and the incidence of hepatic steatosis in

adolescents, as shown in Figure 3.

3.3 ROC curves and AUC for indices in
detecting hepatic steatosis

To evaluate the diagnostic performance of the different

anthropometric indicators in identifying adolescents with hepatic

steatosis, we generated ROC curves and calculated the AUC), as

presented in Table 3 and Figure 4. Among the nine indices, AVI

demonstrated the highest predictive accuracy (AUC = 0.8454,
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TABLE 1 Baseline characteristics of participants, weighted.

Characteristic Absent/Normal (S0) Mild (S1) Moderate (S2) Severe (S3) P-value

CAP < 248 248≤CAP < 268 268≤CAP < 280 CAP≥ 280

N= 1,160 N = 133 N= 81 N= 221

Age, years 15.32 (15.13, 15.51) 15.17 (14.79, 15.56) 15.57 (15.13, 16.01) 15.92 (15.57, 16.26) 0.0725

Sex, N (%) 0.3558

Male 51.26 (45.08, 57.39) 52.02 (42.40, 61.48) 57.91 (41.48, 72.76) 59.33 (50.68, 67.44)

Female 48.74 (42.61, 54.92) 47.98 (38.52, 57.60) 42.09 (27.24, 58.52) 40.67 (32.56, 49.32)

Race, N (%) <0.0001

Mexican American 13.20 (9.86, 17.46) 21.10 (12.22, 33.93) 16.83 (7.35, 34.06) 29.95 (19.61, 42.83)

Other Hispanic 8.24 (6.15, 10.96) 13.46 (7.59, 22.77) 6.73 (2.85, 15.06) 7.00 (3.69, 12.90)

Non-Hispanic White 54.35 (48.20, 60.38) 47.45 (36.76, 58.38) 57.96 (40.93, 73.28) 40.96 (28.12, 55.17)

Non-Hispanic Black 13.35 (10.14, 17.38) 8.33 (4.60, 14.64) 12.34 (4.77, 28.36) 11.63 (6.78, 19.22)

Other Races—including multi-racial 10.85 (8.78, 13.33) 9.66 (5.42, 16.63) 6.15 (2.45, 14.57) 10.46 (7.27, 14.82)

PIR, N (%) 0.0103

<1.3 26.62 (22.74, 30.89) 29.62 (21.01, 39.97) 33.36 (23.65, 44.71) 39.32 (28.86, 50.86)

≥1.3 73.38 (69.11, 77.26) 70.38 (60.03, 78.99) 66.64 (55.29, 76.35) 60.68 (49.14, 71.14)

Smoking, N (%) 0.2561

No smoke exposure 55.77 (50.42, 60.99) 48.07 (32.88, 63.63) 44.54 (28.04, 62.33) 51.61 (41.71, 61.39)

Passive smoker 28.05 (24.70, 31.66) 32.77 (23.86, 43.11) 43.29 (29.91, 57.71) 36.19 (27.50, 45.89)

Active smoker 16.18 (13.46, 19.33) 19.16 (9.39, 35.15) 12.18 (5.50, 24.83) 12.20 (7.48, 19.27)

ALT 15.74 (14.41, 17.08) 16.90 (15.83, 17.97) 18.31 (16.43, 20.19) 27.48 (24.61, 30.36) <0.0001

AST 20.05 (19.31, 20.79) 19.67 (18.66, 20.67) 19.07 (18.06, 20.09) 22.72 (21.34, 24.11) 0.0015

ALP 148.46 (139.28, 157.63) 154.05 (130.90, 177.20) 155.90 (131.62, 180.19) 135.20 (122.34, 148.06) 0.1836

HDL-C 52.62 (51.41, 53.82) 48.51 (47.19, 49.84) 48.89 (46.57, 51.21) 45.58 (44.04, 47.12) <0.0001

hsCRP 1.89 (1.52, 2.25) 1.95 (1.33, 2.58) 2.57 (2.02, 3.11) 3.20 (2.82, 3.58) 0.0035

BMI 22.37 (21.97, 22.77) 26.53 (25.30, 27.76) 28.67 (27.17, 30.16) 32.67 (31.53, 33.80) <0.0001

ABSI 7.64 (7.61, 7.67) 7.79 (7.67, 7.90) 7.83 (7.72, 7.93) 7.85 (7.81, 7.89) <0.0001

AVI 12.50 (12.16, 12.85) 16.33 (15.01, 17.64) 18.50 (17.15, 19.85) 21.97 (21.09, 22.84) <0.0001

BAI 26.08 (25.67, 26.48) 29.63 (28.44, 30.81) 30.29 (28.92, 31.65) 33.57 (32.37, 34.78) <0.0001

BRI 2.90 (2.78, 3.01) 4.22 (3.77, 4.67) 4.74 (4.33, 5.14) 5.95 (5.64, 6.27) <0.0001

CI 1.17 (1.17, 1.18) 1.23 (1.21, 1.25) 1.25 (1.23, 1.27) 1.28 (1.28, 1.29) <0.0001

WHR 0.83 (0.82, 0.83) 0.87 (0.86, 0.89) 0.89 (0.88, 0.91) 0.92 (0.91, 0.93) <0.0001

WHtR 0.47 (0.46, 0.48) 0.54 (0.52, 0.56) 0.56 (0.54, 0.58) 0.62 (0.60, 0.63) <0.0001

WWI 9.96 (9.90, 10.02) 10.44 (10.23, 10.64) 10.51 (10.36, 10.66) 10.79 (10.72, 10.87) <0.0001

Data in the table: For continuous variables: survey-weighted mean (95% CI); P-value was calculated using survey-weighted linear regression (svyglm) For categorical variables: survey-weighted

percentage (95% CI), P-value was calculated using survey-weighted Chi-square test (svytable). ABSI, A body shape index; AVI, abdominal volume index; ALP, alkaline phosphatase; ALT,

alanine aminotransferase; AST, aspartate aminotransferase; BAI, body adiposity index; BMI, body mass index; BRI, body roundness index; CI, conicity index; HDL-C, direct high-density

lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; PIR, poverty income ratio; WHR, waist-hip ratio; WHtR, waist-to-height ratio; WWI, weight-adjusted waist index.

TABLE 2 Multivariate logistic regression analysis of anthropometric indices and hepatic steatosis.

Hepatic steatosis Model 1 Model 2 Model 3

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

BMI Z-score 4.41 (3.52, 5.53) <0.0001 4.91 (3.80, 6.36) <0.0001 4.71 (3.70, 5.99) <0.0001

ABSI Z-score 1.62 (1.41, 1.85) <0.0001 1.67 (1.46, 1.91) <0.0001 1.51 (1.24, 1.84) 0.0023

AVI Z-score 4.88 (3.73, 6.39) <0.0001 5.17 (3.86, 6.94) <0.0001 5.08 (3.86, 6.68) <0.0001

BAI Z-score 2.92 (2.53, 3.38) <0.0001 4.27 (3.43, 5.30) <0.0001 3.79 (3.07, 4.68) <0.0001

BRI Z-score 4.68 (3.69, 5.95) <0.0001 4.90 (3.80, 6.32) <0.0001 4.73 (3.78, 5.94) <0.0001

CI Z-score 3.53 (2.87, 4.33) <0.0001 3.50 (2.87, 4.27) <0.0001 3.15 (2.67, 3.72) <0.0001

WHR Z-score 3.37 (2.75, 4.11) <0.0001 3.37 (2.75, 4.14) <0.0001 3.01 (2.52, 3.60) <0.0001

WHtR Z-score 4.53 (3.64, 5.65) <0.0001 4.76 (3.76, 6.02) <0.0001 4.62 (3.76, 5.67) <0.0001

WWI Z-score 2.76 (2.35, 3.24) <0.0001 3.08 (2.61, 3.62) <0.0001 2.73 (2.35, 3.17) <0.0001

Model 1: unadjusted model. Model 2: Adjusted for age, sex, race. Model 3: Adjusted for age, sex, race, PIR, smoking status, ALT, AST, ALP, HDL-C, and hsCRP. ABSI, A body shape index; AVI,

abdominal volume index; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BAI, body adiposity index; BMI, body mass index; BRI, body roundness

index; CI, conicity index; HDL-C, direct high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; PIR, poverty income ratio; WHR, waist-hip ratio; WHtR, waist-to-

height ratio; WWI, weight-adjusted waist index.
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95% CI: 0.8221–0.8687, best threshold: 14.9992). Other indices

such as BRI, WHtR, BMI, CI, and WHR also showed robust

AUC values, indicating their strong diagnostic potential.

3.4 Subgroup analysis

Given the superior predictive accuracy of AVI among the

indices, a subgroup analysis was conducted to explore how the

association between AVI and hepatic steatosis varied across

different demographic groups. The analysis revealed a consistent

positive correlation between AVI and hepatic steatosis across all

subgroups. Interaction tests indicated that race significantly

influenced the relationship between AVI and hepatic steatosis

(P for interaction < 0.05). Specifically, adolescents from multi-

racial and other racial backgrounds exhibited a stronger

association between AVI and hepatic steatosis than Mexican

Americans, other Hispanics, non-Hispanic Whites, and non-

Hispanic Blacks. However, age, sex, PIR, and smoking status

did not significantly alter this relationship (P for

interaction > 0.05; Table 4).

3.5 Predictive program design

A Python-based tool was developed to assist in calculating

anthropometric indices associated with hepatic steatosis in

adolescents. The program uses measurements such as height,

weight, waist circumference, and hip circumference to compute

AVI. It compares the calculated AVI to a threshold value of

14.9992, previously identified as optimal for predicting hepatic

steatosis risk. If AVI meets or exceeds this threshold, the tool

alerts the user to a potentially elevated risk of hepatic steatosis,

recommending a consultation with a healthcare professional.

Conversely, if AVI is below the threshold, the user is informed

FIGURE 2

Relationship between anthropometric indices and median CAPm.
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FIGURE 3

Nonlinear relationship between anthropometric indicators and hepatic steatosis. The red solid line indicates a smooth curve fit between variables. The

blue bands indicate the 95% confidence interval from the fit.

TABLE 3 ROC analysis for continuous predictors.

Test Best threshold ROC (AUC) 95% CI low 95% CI upp Specificity Sensitivity

BMI 25.4500 0.8320 0.8086 0.8554 0.7914 0.7655

ABSI 7.8160 0.6572 0.6266 0.6878 0.7267 0.5333

AVI 14.9992 0.8454 0.8221 0.8687 0.8172 0.7816

BAI 29.4317 0.7656 0.7394 0.7917 0.7629 0.6460

BRI 3.5725 0.8417 0.8189 0.8645 0.7776 0.7862

CI 1.2180 0.8069 0.7816 0.8321 0.7879 0.7103

WHR 0.8775 0.7997 0.7739 0.8255 0.8276 0.6667

WHtR 0.5113 0.8417 0.8189 0.8645 0.7776 0.7862

WWI 10.0479 0.7703 0.7444 0.7962 0.6138 0.8207

ABSI, A body shape index; AUC, area under the curve; AVI, abdominal volume index; BAI, body adiposity index; BMI, body mass index; BRI, body roundness index; CI, conicity index; ROC,

receiver operating characteristic; WHR, waist-hip ratio; WHtR, waist-to-height ratio; WWI, weight-adjusted waist index.
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that their risk is not immediately significant, although maintaining a

healthy lifestyle is still encouraged (Supplementary Material).

4 Discussion

This study, one of the first of its kind, investigated the

relationship between hepatic steatosis and a range of

anthropometric indices in a cohort of American adolescents,

providing valuable insights into the broader demographic.

Utilizing pre-pandemic NHANES data from 2017 to March 2020,

we examined how nine different anthropometric indices correlate

with hepatic steatosis in this age group. Our findings show that,

after accounting for various factors, there is a positive association

between these indices and hepatic steatosis. Notably, AVI

displayed the strongest discriminative power for detecting hepatic

steatosis in adolescents, with an AUC of 0.8454 (95% CI: 0.8221–

0.8687), indicating excellent sensitivity and specificity. In addition,

indices such as BRI, WHtR, BMI, CI, and WHR also exhibited

elevated AUC values, suggesting their potential utility in the

preliminary identification of hepatic steatosis among adolescents.

The complex relationship between obesity and hepatic steatosis

has garnered significant scientific attention. Obesity-induced

insulin resistance plays a pivotal role in the development of

hepatic steatosis by triggering lipolysis in adipose cells, which

releases free fatty acids (FFAs) into the bloodstream. These FFAs

are then taken up by the liver, where they are converted into

triglycerides, disrupting lipid metabolism and leading to hepatic

fat accumulation (21). Additionally, obesity promotes chronic

inflammation, with adipose tissue acting as a source of pro-

inflammatory cytokines such as TNF-α, IL-6, and IL-1β, which

exacerbate lipid deposition in the liver (22). The elevated fatty

acid levels in the liver can induce oxidative stress and

mitochondrial dysfunction, further damaging hepatocytes and

accelerating the progression of steatosis (23). Recent studies have

highlighted the role of impaired hepatic fatty acid oxidation

(FAO) and mitochondrial turnover in the severity of NAFLD in

obese individuals (24). Moreover, gut microbiome imbalances, or

dysbiosis, may contribute to the worsening of obesity-related

hepatic steatosis by affecting energy metabolism and

inflammatory responses (25, 26). Research by Sergio et al. has

shown that histidine supplementation can reduce

FIGURE 4

ROC curves representing anthropometric indices used for differentiating hepatic steatosis.
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Proteobacteria abundance in NAFLD models, improving hepatic

steatosis, inflammation, and insulin resistance (27). Genetic and

epigenetic factors also influence liver lipid metabolism,

increasing the risk of steatosis. These interconnected

mechanisms help explain the rising prevalence of hepatic

steatosis in obese adolescents, which, if left untreated, may

progress to non-alcoholic steatohepatitis, liver fibrosis, and, in

severe cases, cirrhosis or liver cancer.

Anthropometric indices are critical tools for assessing obesity

and its associated health risks. While the widely used BMI is a

general indicator of obesity, it is limited in its ability to predict

metabolic risks linked to visceral fat. This is because BMI does

not distinguish between adipose and muscular tissues, nor does it

account for fat distribution patterns (28–30). In contrast, indices

such as AVI and BRI are more accurate representations of

abdominal and visceral fat accumulation (31, 32) and are more

strongly correlated with obesity-related diseases, including

cardiovascular disease, diabetes, and NAFLD.

Hepatic steatosis is closely associated with several metabolic

disorders, including insulin resistance, lipid metabolism

dysfunction, and chronic inflammation (33–35). The

accumulation of visceral fat plays a significant role in the

development of hepatic steatosis in adolescents, and

anthropometric indices serve as indirect measures of the risk for

liver fat accumulation. In our study, nearly all the

anthropometric measures demonstrated a positive correlation

with hepatic steatosis, highlighting their utility as predictive tools.

However, AVI stood out as the most accurate predictor,

reflecting its higher sensitivity in detecting increases in visceral fat.

AVI, as a specific marker for abdominal fat accumulation,

provides a more precise assessment of the relationship between

visceral fat and metabolic diseases (36). Our results indicate that

AVI has a stronger association with hepatic steatosis than other

anthropometric indices, likely because it more effectively reflects

visceral fat accumulation, making it a superior predictor of hepatic

steatosis risk. Recent studies in adolescents have also shown that

cardiovascular risk indices are closely related not only to hepatic

steatosis but also to hyperinsulinemia and insulin resistance (37).

Insulin resistance promotes lipolysis in adipose tissue, increasing

the transport of FFAs to the liver, which in turn enhances hepatic

triglyceride synthesis and accumulation. Moreover, chronic low-

grade inflammation and oxidative stress may jointly contribute to

both insulin resistance and hepatic steatosis, with visceral fat

accumulation (as reflected by AVI and similar indices) serving as

a central factor in this process. Furthermore, even when

accounting for factors such as sex, age, and ethnicity, AVI

continued to show a significant correlation with hepatic steatosis,

reinforcing its potential as an independent predictor.

Our subgroup analysis revealed notable racial differences in the

relationship between AVI and hepatic steatosis. Specifically, the

association between AVI and hepatic steatosis was stronger in

adolescents of other races, including multi-racial individuals,

than in Mexican Americans, other Hispanics, non-Hispanic

Whites, and non-Hispanic Blacks. These disparities may be due

to variations in genetics, lifestyle, and environmental factors

affecting liver fat metabolism, and suggest that future research

should investigate the mechanisms underlying these racial

differences. While factors such as age, sex, PIR, and smoking

status did not significantly alter the association between AVI and

hepatic steatosis, these findings emphasize the need for

personalized approaches in managing liver health.

The clinical implications of this study are significant. First,

AVI, as a convenient and non-invasive measure, can be used for

early screening of liver health in adolescents, particularly in

primary care settings with limited resources. This would allow

for timely intervention in high-risk populations. Second, as AVI

gains wider clinical adoption, future research should focus on

refining its threshold values to enhance its applicability across

different racial and demographic groups. Longitudinal studies are

also needed to assess AVI’s predictive value over time in the

progression of hepatic steatosis and to explore its potential in

combination with other biomarkers to develop a more

comprehensive system for liver health assessment.

Despite providing strong support for the use of anthropometric

indices, particularly AVI, as screening tools for hepatic steatosis in

adolescents, this study has several limitations. First, our assessment

of hepatic steatosis relied on FibroScan® CAP values, which,

although widely used in clinical practice, have some limitations

in accuracy when compared to liver biopsy (38). Second, while

the NHANES dataset includes a racially diverse adolescent

population from the US, the generalizability of these findings to

other geographic regions or ethnic groups requires further

investigation. It is also important to note that our study

population was limited to adolescents aged 12–19 years, and thus

the results may not be directly applicable to other age groups. In

addition, due to limitations in the available data, we were unable

to include several important factors that may contribute to

TABLE 4 Subgroup analysis of the association between AVI and
hepatic steatosis.

Subgroup OR (95% CI) P for interaction

Age 0.1904

12–15 1.28 (1.20, 1.36)

16–19 1.35 (1.28, 1.43)

Sex 0.2539

Male 1.35 (1.25, 1.45)

Female 1.28 (1.20, 1.35)

Race <0.0001

Mexican American 1.44 (1.22, 1.69)

Other Hispanic 1.38 (1.21, 1.57)

Non-Hispanic White 1.30 (1.22, 1.39)

Non-Hispanic Black 1.18 (1.12, 1.26)

Other races—including multi-racial 1.54 (1.39, 1.72)

PIR 0.0781

<1.3 1.40 (1.27, 1.54)

≥1.3 1.28 (1.22, 1.34)

Smoking 0.0981

No smoke exposure 1.39 (1.30, 1.48)

Passive smoker 1.26 (1.17, 1.36)

Active smoker 1.28 (1.17, 1.41)

AVI, abdominal volume index; CI, confidence interval; OR, odds ratio; PIR, poverty

income ratio.
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hepatic steatosis, such as alcohol consumption, drug-induced liver

injury (e.g., acetaminophen-related steatosis) (39), and certain

underlying conditions such as celiac disease (40). Finally, as this

is a cross-sectional study, causal relationships between

anthropometric indices and hepatic steatosis cannot be

established. Longitudinal studies are needed to further validate

the long-term diagnostic utility of AVI.

5 Conclusion

In conclusion, AVI demonstrates considerable diagnostic

potential for predicting hepatic steatosis in adolescents, providing

valuable evidence to support its use in early screening and

prevention. With the global rise in adolescent obesity, AVI—being

a simple and effective anthropometric index—holds significant

promise for broader application. Its ease of measurement makes it

particularly suitable for implementation not only in primary care

settings but also in school-based health programs.

Schools can incorporate AVI assessments into routine physical

examinations to establish student health profiles and offer basic,

personalized health advice. For students with abnormal AVI

values, school physicians can conduct regular follow-ups to

monitor the effectiveness of lifestyle interventions, such as

increased physical activity and dietary modifications. In more

serious cases, schools may notify parents and assist with referrals

to specialized outpatient clinics at higher-level medical institutions

(e.g., pediatric endocrinology) for further evaluation.

Meanwhile, parents can independently monitor their child’s

AVI at home using simple measurement tools or the program

developed in this study, which is based on the AVI algorithm.

This enables timely and user-friendly risk assessment, facilitating

early detection and encouraging prompt medical consultation

when necessary.

Together, these efforts contribute to a multi-tiered screening and

management framework—from home and school monitoring to

primary care and advanced clinical referral—thereby enhancing

the translational value of AVI in real-world settings. This

comprehensive approach not only supports early identification and

intervention for hepatic steatosis in adolescents but also promotes

greater public awareness and engagement in metabolic health.
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