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Infants communicate with the outside world through their cries, which often

differ for various reasons. Moreover, the cries of healthy and specific

pathological conditions (e.g., neurological damage) can be different. Changes

in the physical and mental states can cause crying. Infant cries are

characterised by a variety of features, including changes in pitch, tempo, and

volume. Crying can serve as a biological indicator of an infant’s health and

emotions. To facilitate timely treatment, parents and caregivers can effectively

understand the state of their infant by observing and identifying the

characteristics of their cries. Analysis of the cries of infant with neurological

disorders or severe diseases may facilitate early diagnosis of diseases and

protect an infant from motor and intellectual impairments. In this article, we

discuss the physiological process, causes, analysis, and application of infant

cry. The purpose of this article was to fill the gap in the existing literature on

the systematic integration of multi-dimensional (physiological, pathological,

and psychological) analysis and deep learning applications of infant crying,

and to highlight the potential of infant crying as biological indicator and in

precision care.

KEYWORDS

infant cry, feature extraction, infant care, somatic system disorders,

neurodevelopmental and neuropsychiatric disorders

Background

Crying is a behavioural state in which infants express basic needs and sensations such

as hunger and pain (1). Globally, about 130 million babies are born each year. Taking good

care of a newborn is a huge challenge, especially for first-time parents (2). Simply

following the advice of other parents and guidebooks is not enough to solve practical

problems. A major issue is the difficulty new parents have in understanding the

significance of infant cries. Experienced parents, caregivers, doctors, and nurses

understand cries based on their experience (3). Accurately interpreting infant cries can

help parents take better care of their babies. More importantly, the production of a cry

requires coordination of multiple systems, and changes in one system may alter the

characteristics of crying. As a result, infant cries reflect the degree of coordination of

multiple organs and can be used to assess the physical condition of an infant.

Therefore, it is necessary to understand the meaning behind an infant’s cry.
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However, infant crying is the intertwined result of multiple

complex factors, which encompass the infant’s age, personality

traits, environmental conditions, and prior experiences. These

factors interact with each other, collectively shaping the unique

and variable characteristics of infant crying. Given the

complexity and diversity of crying, conducting in-depth and

detailed analysis faces numerous challenges, and existing

analytical methods often fail to fully and accurately reveal all the

information underlying it.

In recent years, published papers on infant cry have mostly

focused on the in-depth analysis of its acoustic characteristics.

However, there is still a lack of a comprehensive summary

regarding the timing of infant crying, the physiological

mechanisms underlying cry production, and the practical

applications of infant crying. This narrative review synthesized

evidence on infant cry research from 1968 to 2024.

A comprehensive search was conducted across four major

biomedical databases: PubMed, Embase, Cochrane Library, and

Web of Science. The search terms are shown below: (infant cry

OR baby cry OR newborn vocalization OR neonatal vocal

behavior) AND (physiological analysis OR pathological

indicators OR psychological correlates OR acoustic features OR

deep learning OR convolutional neural networks OR biological

marker OR infant care). Inclusion criteria encompassed studies

investigating cry characteristics, developmental patterns, clinical

correlations, or caregiver responses to infant cries. Exclusion

criteria removed animal studies.

This article provides a thorough and detailed elaboration on

the timing of infant crying, the physiological processes involved

in cry generation, and introduces the current analytical

techniques for infant crying as well as their applications in

various fields. In terms of applications, this article effectively

summarizes the findings in three areas: infant care, somatic

system disorders and neurodevelopmental and neuropsychiatric

disorders assessment, providing a more comprehensive

background for understanding infant crying. This not only helps

us to gain a deeper understanding of the intrinsic mechanisms of

crying, but also may provide new perspectives and ideas for

research in this field, promoting its development to deeper levels

and broader areas.

The general physiological process of
infant cry

Complex interactions between many anatomic structures and

physiologic mechanisms, that are responsible for the outcome of

the infant cry (4, 5). The nasopharynx, oropharynx,

laryngopharynx, and lungs make up the basic human vocal

system, The lungs provide airflow for vocalisation through

expansion and compression. The most important part of the

vocal system is the laryngopharynx, which consists of the

pharynx and vocal cords. The vocal cords have two ligamentous

folds, and there is a small space between them called the vocal

folds (6). The oropharynx and nasopharynx play the role of

resonating cavities in the human vocal system, and the vocal

tract is the entire respiratory passage from the vocal folds to the

lips. The vibration of the vocal cords emits a “fundamental

sound” that is extremely weak, and the sound waves must be

resonated by the resonating body in order to expand and

beautify the sound (7). When speaking or making a sound, the

airflow exchanged at the vocal folds causes the vocal cords to

vibrate, and this vibration eventually resonates through the vocal

tract to produce a sound (8).

The process of generating a cry is under the coordinated

control of several brain regions (mainly the brainstem and limbic

system) and requires the respiratory system. The respiratory

system produces the airflow to allow vibration of the vocal folds

and to make a sound. At the same time, there is resonance in all

the other resonance cavities in the human body (9, 10). Crying is

a type of vocalisation and a whole-body movement. As illustrated

in Figure 1, the process of crying involves the central nervous

system, the respiratory system, the peripheral nervous system,

and various muscles. Changes in any component of this system

may alter the characteristics of a cry.

The prenatal period has a significant impact on the

development of the vocalization-related systems in newborns,

primarily reflected in maternal health (11), nutritional status,

environmental exposures (12), and psychological state (13).

These aspects collectively influence the structural and functional

development of systems critical for infant vocalization. Infant’s

vocal folds are shorter and thinner, producing sounds at higher

frequencies. Adult’s vocal folds are longer and thicker, vibrating

at lower frequencies, which is why the frequency range of an

adult’s voice is typically lower (85 Hz to 255 Hz), whereas the

frequency range of an infant’s cry is higher (250 Hz to 700 Hz)

(14). Due to these structural differences, infants produce different

sounds compared with adults (15).

This difference is not only reflected in the average frequency

but also in the range and concentration of the frequency

distribution. The frequency range of an adult’s voice is broader,

covering more low-frequency components, while the frequency of

an infant’s cry is more concentrated and skewed towards the

higher end. This difference has potential implications for sound

recognition, speech processing, and acoustic communication.

Understanding the fundamental characteristics of infant cries

requires an analysis of both their physiological origins and their

pathological deviations.

When does an infant cry?

In the early stages, crying is primarily an expression of

physiological needs, and as emotional development progresses,

crying gradually becomes a form of emotional expression (16,

17). Hence, infant cries are important in determining their

physical and mental states (18). Infant crying is defined as a

unique behavioural state by which an infant expresses a variety

of emotions, physiological needs, and their physical state. Behind

the production of an infant’s cry is the emotional impact of basic

sensations—for example, sadness, fear, dread, or anxiety. Mood
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changes either in the infant itself or changes in the outside world

can cause an infant to cry (3, 19).

Infants also express their physical needs through crying. When

infants feel hunger, pain, restraint (from wearing clothing that is

too tight), warm or cold or pressure from a foreign object, they

tend to express their discomfort by crying. All the above

conditions lead to normal physiological cries, and when the

infant’s demands are met or their discomfort is resolved, their

crying will stop immediately (20).

Most importantly, an infant’s cry is also an adaptive signal of

distress (21). Crying in infants may be associated with one or

more known diseases including infections such as sepsis (22),

fever (23), deafness (24), autism (25),vomiting (23), meningitis

(23), renal failure (23), respiratory distress syndrome (RDS) (26),

asphyxia (23) and jaundice (27). Early diagnosis of one of these

illnesses is critical to ensure timely and effective treatment, so it

is important for infant caregivers and parents to understand the

needs of infants through their cries. In general, an infant’s crying

serves as an important signal of their physical and psychological

state. By analyzing the frequency and pitch of their cries, it is

possible to distinguish between different needs of infants and

uncover variations in their physical and emotional responses (28).

FIGURE 1

The process of crying. The production of crying originates from nociceptive or emotional stimuli that activate the amygdala within the limbic system,

eliciting a negative emotional response and initiating autonomic stress responses (e.g., accelerated heart rate and respiration) via hypothalamic

engagement. The hypothalamus enhances the drive of brainstem respiratory centers (medulla oblongata and pons) through neuroendocrine

signaling, inducing the respiratory system (diaphragm and intercostal muscles) to generate high-velocity pulmonary airflow. This airflow traverses

the larynx, inducing oscillatory vibrations of the vocal cords, whose vibratory frequency is modulated by motor neurons in the medullary nucleus

ambiguus. Concurrently, acoustic resonance within the oropharyngeal and nasopharyngeal cavities amplifies and shapes the sound waves. The

neurophysiological integration of these processes culminates in a vocal output characterized by affective features, reflecting the hierarchical

coordination of limbic, autonomic, and brainstem motor networks.
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Feature extraction of cry

The crying signals of infants differ significantly from adult

speech. The variations within waveform and spectrogram of

infant cries and adult speech are quite distinct, especially in

terms of energy, intensity, and frequency. In the context of

acoustic signals, energy refers to the total energy of the sound

wave over a specified time interval, calculated as the integral of

the squared amplitude of the signal. This energy metric, distinct

from perceived loudness (which depends on both sound pressure

level and frequency sensitivity of the human ear), can serve as an

objective indicator for assessing the physiological exertion or

duration of a baby’s cry, potentially reflecting the degree of

distress. Intensity, a measure of sound wave characteristics, is

typically closely related to the baby’s physical and physiological

state. Fundamental frequency (F0), specifically referring to the

vibration frequency of the vocal cords, is particularly significant

because it provides crucial information on neural or respiratory

abnormalities (29). Due to natural pauses and breathing, infant

cry signals exhibit rhythmic and periodic variations. Chittora

et al. used F_0 contour to find out the unvoiced segments from

the infant cry (30).

Formants are the frequencies corresponding to prominent

amplitude peaks in the sound spectrum, and their occurrence

primarily depends on the shape and length of the vocal tract.

Each formant corresponds to a specific resonant frequency of the

vocal tract. These formants are a direct reflection of the resonant

characteristics of the vocal tract during the process of sound

production, with the first three typically labeled as F1, F2, and

F3. The three formants F1, F2, and F3 are the most critical, as

they carry most of the information in the sound, effectively

distinguish between different vowels and sound features, and

provide valuable information about the shape and length of the

vocal tract. They are of great significance for identifying

pathological features in infant cries. Orlandi et al. used the mean,

median, standard deviation, minimum and maximum values of

F0 and F1–3 to utilize the differences between full-term and

preterm infant cries (31).

Infant crying is a combination of various forms such as

vocalization, silence, coughing, choking, and interruptions,

encompassing a diversity of acoustic and prosodic information at

different levels. Infant crying research involves data collection,

cry signal processing, feature extraction and selection, and

classification (2). Due to the sensitive nature of crying data, it is

difficult for researchers to obtain the required data. Signal

processing is a necessary step to remove background noise and

to segment cries to create a cry database. The quality of audio

data is highly dependent on signal pre-processing. This process

eliminates irrelevant or unwanted information such as noise and

channel distortion (32). Figure 2 provides a detailed summary of

the steps involved in the extraction of infant crying.

Feature extraction is the stage where characteristics are derived

from audio signals and then input into machine learning

algorithms. It is one of the most crucial parts of the machine

learning process. Feature extraction in the time domain or

frequency domain serves as the fundamental work for cry

analysis and processing. Time-domain features, such as zero-

crossing rate, amplitude, and energy-based characteristics, are

simple and straightforward to calculate. However, time-domain

features are not robust enough to cover the variations in infant

cry signals, and they are sensitive to background noise (33).

Conversely, frequency-domain features possess strong capabilities

to mimic the characteristics of infant cry signals. Combining

prosodic features with time-domain or frequency-domain

features can capture both physical and physiological

information simultaneously.

Currently, commonly used features like Mel-frequency cepstral

coefficient (MFCC) (33), Linear Prediction Cepstral Coefficients

(LPCC) (34), and Linear Frequency Cepstral Coefficients (LFCC)

(35) have proven to outperform time-domain features (33).

MFCC is widely used in speech recognition as a cepstral

representation of an audio signal (36). It is used by researchers

to test proposed methods and is often used for baseline

experiments. Liu et al. (37) used MFCC and two other cepstral

features, LPCC and Bark Frequency Cepstral Coefficients (BFCC)

to categorize the causes of infant crying. The results show that

BFCC combined with neural network model can obtain the best

recognition rate of 76.47%. The main idea of LPCC is to remove

redundancy from the signal and try to predict the next value by

linearly combining the previously known coefficients. The LFCC

extraction process is like the MFCC extraction process. The

difference is that it uses a linear filter -bank instead of the Mel

filter-bank (38). MFCC and LPCC derive from speech

recognition, and they aim at describing the phonetic structure of

the signal (Table 1). However, there are significant differences

between infant cries and adult speech or sounds with typical

phonetic structures. For this reason, syllabic scale features have

indeed proven to be more effective for infant cry detection (39).

Current methods used to classify
infant cry

Methods for classify infant cries have evolved significantly from

the initial subjective perception to the objective evaluation of cries

using machine learning methods, which have undergone several

major breakthroughs. Research on infant cries began as early as

the 1960s, based on trained nurses, Wasz-Hockert et al. (40)

identified four types of cries: pain, hunger, birth and joy. Early

research has confirmed that trained adults could auditorily

distinguish between different types of cries. However, training

humans to perceive infant cries is more challenging than training

machine learning models, as human perception is subjective and

prone to bias. In contrast, machine learning models can

consistently analyze large datasets and identify subtle patterns

that may be missed by human listeners (2, 41).

Researchers are beginning to explore the use of machine

learning models to analyse and process sound signals. The early

days relied heavily on manual feature extraction and simple

machine learning algorithms for basic feature extraction and

classification of cries. These algorithms learned certain feature

patterns in cries from training data and tried to correlate these
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patterns with specific emotions or need states. These emotional

states are usually determined by observing the infant’s behavioral

and physiological responses, and the need states are usually

determined by the experience and observation of parents or

caregivers (3). The establishment of basic facts about the

different states usually relies on detailed observation and

documentation of the infant’s behavior (22). For example, when

an infant cries, caregivers record the infant’s behavior,

physiological responses (e.g., facial expressions, body

movements), and environmental factors (e.g., feeding time,

diaper status) (42). To more accurately determine the underlying

facts, a combination of multimodal data, such as video

FIGURE 2

The extraction process of infant crying. (1) Collecting raw audio of infant cries under different physiological states; (2) noise reduction processing, such

as employing dual-mode noise reduction technology that combines Adobe Audition® spectral editing with wavelet threshold denoising to effectively

eliminate environmental noise; (3) segmentation and annotation: achieving precise segmentation of the expiratory phase based on waveform

morphology, frequency characteristics, and duration thresholds, and automatically marking the inspiratory/expiratory cycles through energy

envelope detection; (4) parameter calculation and output: such as using MATLAB to extract fundamental frequency, sound intensity and time-

domain features, ultimately generating a structured CSV data file with timestamps.
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recordings, physiological signals (e.g., heart rate, respiratory rate),

and environmental sensor data (33) These data can provide more

comprehensive information to help validate the infant’s

emotional and need states (43). The validation process relies on

the assessment of pediatricians, psychologists, and nursing

specialists to determine and validate the infant’s emotional and

need states based on their expertise and experience and through

consistency checks by multiple experts (44).

After the initial establishment of the ground truth, machine

learning algorithms can be used to initially categorize the data

and then compare the results with the expert assessments to

further validate the accuracy of the ground truth (45).

Mukhopadhyay et al. (46) reported that a group of people trained

to recognise cries had a maximum classification accuracy of

33.09%, while machine learning algorithms based on spectral and

rhythmic features could classify the same set of data with 80.56%

accuracy. Thus, different types of cries can be recognised faster

and more accurately by machine learning models. It should be

noted that multiple studies have already emphasized the

influence of the native language on the acoustic features of infant

cries. This finding underscores the potential impact of language-

specific factors on the ability of machine learning models to

recognize infant cries (47, 48).

However, due to the complexity and diversity of cry signals,

early machine learning algorithms do not have high accuracy and

reliability in cry recognition and insufficient ability to process

complex features. As the second winter of artificial intelligence

(AI) came to an end in the 1990s (49), early deep learning

models (primarily multi-layer neural networks) began gaining

traction in infant cry analysis. These deep learning architectures

consist of hierarchical layers of artificial neurons that simulate

biological neural connectivity. A typical framework comprises:

(1) input layers for signal reception, (2) hidden layers with

weighted connections and activation functions, and (3) output

layers generating classification predictions—forming an end-to-

end computational pipeline for cry pattern decoding. Since the

2000s, methods used in infant cry research have been mainly

related to scale-conjugate gradient neural networks, multilayer

perceptron, general regression neural networks, evolutionary

neural networks, probabilistic neural networks, neuro-fuzzy

networks and time-delay neural networks (44, 50–53). In the last

decade, many traditional machine learning methods, such as

support vector machine (SVM), k-nearest neighbour (KNN),

Gaussian mixture model (GMM), fuzzy classifier, logistic

regression, k-means clustering and random forest, have been

applied to classify pathological cries and the causes of cries and

to detect cries (Table 2).

In recent years, with the continuous development and

improvement of deep learning technology, neural network

models have been further optimized, resulting in the emergence

of deep learning models including convolutional neural networks

TABLE 1 Comparison of feature extraction methods (MFCC vs. LPCC).

Dimension MFCC LPCC

Core Principles Based on the auditory characteristics of the human ear, Mel-scale

filtering + cepstral analysis

Based on the vocal tract model, linear predictive analysis + cepstral

transformation

Key steps Pre-emphasis→ Framing→ FFT→Mel Filtering→ Log Energy→DCT Pre-emphasis→ Framing→ LPC Coefficient Calculation→ Cepstral

Transformation

Mathematical

formulas
cn ¼

P

K

k¼1
(log Ek) cos

n(k�0:5)p
K

� �

ai ¼ argmin
P

n x(n)�
P

p

i¼1
aix(n� i)

� �2

cn represents the n-th MFCC coefficient, Ek represents the k-th output of

the Mel filter bank, and K represents the number of Mel filters in the

filter bank.

ai represents the i-th LPCC coefficient, x(n) represents the n-th sample of

the speech signal, and p represents the order of the LPCC coefficients.

Advantages Strong noise resistance, in line with auditory perception Low computational load, suitable for real-time systems

Limitations Based on the assumption of the Mel scale, high-frequency resolution is low Sensitive to noise, assuming source-filter separation

Typical application

scenarios

speech recognition, voiceprint verification Low-resource devices, linear channel modeling

MFCC, mel-frequency cepstral coefficients; LPCC, linear prediction cepstrum coefficients; LPC, linear predictive coding.

TABLE 2 Comparison of classification algorithms (CNN vs. SVM vs. KNN).

Dimension CNN SVM KNN

Model Type Deep Learning

(Hierarchical

Feature Learning)

Traditional machine

learning (maximum

margin classification)

Lazy Learning

(Instance-Based)

Core Operations Convolution,

pooling,

backpropagation

kernel techniques,

convex optimization

Distance

calculation,

nearest neighbor

voting

Feature

Processing

Automatic learning

of multi-level

abstract features

Dependence on

manual

features + kernel

function mapping

Features need to

be manually

designed

Training

Complexity

High (requires GPU

acceleration)

Medium [O(n2)∼O

(n3)]

No explicit

training

Inference speed Slow (large

parameter volume)

Fast (only supports

vector participation

in prediction)

Extremely slow

(requires

traversing all

samples)

Interpretability Low (black box

model)

Support Vector

Visualization

High (dependent

on sample

distance)

Data

requirements

Large-scale labeled

data is required

Small and medium-

sized data

Small-scale data

Typical

application

scenarios

Image classification

and time series

signal analysis

Text classification,

high-dimensional

sparse data

Simple

classification and

rapid prototype

validation

CNN, convolutional neural network; SVM, support vector machine; KNN,

K-nearest neighbors.
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(CNN), recurrent neural networks (RNN), CNN-RNN, capsule

networks, reservoir networks and neuro-fuzzy networks and

others (41, 54–57). Compared to neural network models, deep

learning models are more complex, with more parameters and

layers. By building a deep neural network structure, the model

can learn more abstract and complex feature representations,

which can better process sequence data and capture temporal

and frequency features in cries, improving the accuracy and

robustness of cry recognition, and therefore, the ability in cry

recognition and analysis has been significantly improved.

Wang XM et al. (58) proposed a CNN-Transformer-based

model for infant crying emotion analysis, demonstrating

remarkable enhancements in key performance metrics such as

classification accuracy, per-class precision, and training time.

Zayed Y et al. (59) presented a medical diagnostic system for

infant crying using a combination of different audio domain

features and DL algorithms. By combining spectrograms,

harmonic ratios (HR) and gammatone frequency cepstral

coefficients (GFCCs) and employing a deep learning process,

the highest accuracy of 97.50% was achieved. Hammoud

M et al. (33) primarily studied methods for classification and

recognition of infant cries, and the results showed that using

deep learning approaches and feature extraction techniques

could effectively classify and recognize infant cries. Moreover,

compared to traditional machine learning methods, deep

learning methods demonstrated superior performance in terms

of classification accuracy.

However, during the training and using of deep learning

models, model errors (derived from data noise, model structure,

parameter settings, training algorithms, etc.) may lead to

inconsistent or conflicting results in model prediction or

classification. Zhang K et al. proposed an improved dempster-

shafer evidence theory (DST) based on wasserstein distance and

deng entropy, the fusion method has a classification accuracy of

90.15%, and improves the recognition accuracy by 5.79% to

11.53% consistent with the latest methods used in baby cry

recognition. The method could effectively reduce the conflict of

results caused by model errors between deep learning models

and improve the accuracy of infant cry recognition (60).

Besides, multimodal analysis and deep learning models can be

combined with each other and work together in cry research.

Multimodal analysis can extract information from multiple

sources and types of data. It not only focuses on the sound

features of the infant cry itself, but also considers the infant

facial expressions, body movements, and possible physiological

reactions when crying, which can provide more comprehensive,

gain a deeper understanding of the reasons and emotional state

behind infant crying (61). Multimodal analysis provides richer

and more comprehensive data inputs to deep learning models,

allowing the models to better understand and identify infant

cries. Laguna A et al. (61) used multimodal analysis to collect

multimodal data [i.e., crying, electroencephalography (EEG),

near-infrared spectroscopy (NIRS), facial expressions, and body

movements]. According to the five different conditions (i.e.,

hunger, sleepiness, fussiness, need to burp, and distress) defined

different cry types. The study showed the robust DL algorithm

named Acoustic MultiStage Interpreter (AMSI) achieved an

accuracy rate of 92% in classifying infant cries. Thence, the

combination of multimodal analysis and deep learning models

provides more accurate tools and methods for infant cry

recognition and emotion analysis.

With the improvement of computing power and the use of

deep learning methods, the study of infant crying still faces many

challenges. Firstly, the issue of insufficient data and scalability in

research limits the further enhancement of model performance.

The shared databases have limited sample sizes, and most

databases are not publicly available. Current research is mostly

based on datasets recorded by individual researchers, making it

difficult to conduct cross-study comparisons. Additionally, ethical

and legal issues in the data collection process have prevented the

acquisition of data on infant crying. Secondly, there are

difficulties in data collection and annotation, which is a time-

consuming and labor-intensive process requiring professional

expertise. To address these issues, it is necessary to combine

audio acquisition and processing technologies to improve the

accuracy of infant cry data collection, signal processing, and

feature extraction. Through training with vast amounts of data,

deep learning models can discern subtle differences in cries and

more accurately determine the infant’s emotions and

physiological states.

What can we learn from infant cry

The central nervous system (CNS) and vagal tone regulate the

function of the laryngeal and vocal cord anatomy to produce the

acoustic properties of crying, and the acoustic characteristics of

infant cries may be affected by CNS pathology (10, 62). In

addition, the cry signals of unhealthy infants have unique

characteristics that differ from those of healthy infants because

the vocal cords and respiratory system of infants are affected by

certain diseases (32). Therefore, the acoustic study of infant cries

is of great significance in the study of infant development. In

addition to understanding the daily needs of infants, it is even

more important to identify diseases by analysing pathological cry

signatures, especially in wards where medical equipment and

expertise are lacking (Table 3).

Infant care aspects

Analysis of infant cries may help to identify needs such as

hunger, pain and illness, leading to the development of a

biological indicator or possibly a mobile app that could help

parents monitor their infant’s needs. Yamamoto et al. (63)

developed a technique for recognising emotions in infants (e.g.,

uncomfortable, hungry or sleepy). They successfully integrated

this method into a robotic baby caregiver. Liang et al. (44) used

deep learning algorithms to recognise needs such as hunger/

thirst, a diaper change, emotional needs (e.g., touching/cuddling)

and pain caused by medical treatment (e.g., injection). Both

CNN and long short-term memory (LSTM) models provided
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good performance in distinguishing between healthy and sick

infants, with around 95% accuracy, precision, and recall. A CNN

achieved up to 60% accuracy in determining the special needs of

infants. These results could be used as metrics for future

applications to help parents understand the condition and needs

of their infants. Cabon et al. (55) established a method to extract

the cries of preterm infants in noisy environments such as a

neonatal intensive care unit. Manigault et al. (43) showed that

the use of machine learning for cry analysis could improve the

assessment, diagnosis and management of neonatal opioid

withdrawal syndrome and contribute to standardised care for

these infants.

Somatic system disorders

Advances in the available machine learning methods have

allowed researchers to automatically label normal and

pathological cries, and many studies on infant cries for early

diagnosis of a variety of diseases have emerged. Saraswathy et al.

(64) reviewed 34 papers published between 2003 and 2011 on

the classification of normal and pathological call signals. This

included recognition of diseases such as murmuring, asphyxia,

hypothyroidism, hyperbilirubinemia, and cleft palate. Farsaie

Alaie et al. (56) demonstrated that a diagnostic system based on

infant cries can distinguish between multiple neonatal diseases.

They proposed a novel adaptation method known as boosted

mixture learning (BML) and compared it with the traditional

Bayesian adaptation method. The experimental results revealed

that their proposed BML adaptation method significantly

improved the system’s performance. Mahmoudian et al. (65)

found that by applying acoustic analysis of cries, the intensity,

fundamental frequency and breaks of cries could be used as

indicators of differentiate between infants with impaired hearing

and infants with normal hearing at a very young age (less than 2

months). Early identification of hearing impairment plays an

important role in the prevention of speech and language disorders.

Neurodevelopmental and neuropsychiatric
disorders

Analysis of cries from infants with neurological disorders and

severe diseases, which can later lead to motor and intellectual

disability, may help to facilitate early detection and timely

intervention (32). Initially, Lester et al. (66) compared the cries

TABLE 3 The application of infant crying.

Supporting
study

Cry feature Application Measures

Yamamoto et al.

(63)

A 32-dimensional fast Fourier transform of sound Recognition the needs of the baby Accuracy: Discomfortable 30%; Hungry 92.9%; Sleepy

40%

Liang et al. (44) MFCC Infant emotion recognition CNN reached up to 60% accuracy, outperforming LSTM

and ANN in almost all measures.

Cabon et al. (55) MFCC Extraction of Premature Newborns’

Spontaneous Cries

KNN: precision score 92.9%, accuracy above 90.2%;

LR: recall score 94.1%, accuracy above 90.2%;

MLP: precision 92.7%, recall 90.48%, accuracy 94.5%

Farsaie et al. (56) MFCC Development of a health diagnosis

system based on infant crying

Healthy infant type (SVM-MLP with BML adaptation):

FNR 8.84%, FPR 11.49% Sick infant type (PNN classifier

with BML adaptation): nervous system disease: FNR

26.4%, FPR 24.6% respiratory system disease: FNR

30.5%, FPR 25.4%

Manigault et al.

(43)

Short vocalizations (<500 ms)

long vocalizations (≥500 ms)

The evaluation and diagnosis of

neonatal opioid withdrawal syndrome

AUC 0.90, accuracy 85%, sensitivity 89%, specificity 83%

Donzelli et al. (67) Duration, F0, F1, F2, F3, CV, PHP, MP, Cry score To evaluate the cries of infants affected

by severe protein energy malnutrition

CV f0 lower than controls (p < 0.0001); F1, F2, F3 lower

than controls (F1: p < 0.0001, F2: p < 0.0005, F3:

p < 0.01); MP lower than controls (p < 0.0001).

Orlandi et al. (31) Mean and median of F0 median, mean, minimum

maximum of F1, median and mean of F2 and F3

Classification of preterm vs. term

infants

AUC 0.94, Accuracy 87.34%, Sensitivity 87.3%,

Specificity 87.4%

Sheinkopf et al.

(71)

Pitch (F0), Variability of pitch, Phonation,

Hyperphonation, Utterance duration, Average

energy/amplitude, Variability of energy/amplitude,

F1, F2

Disruptions in cry acoustics may be part

of an atypical vocal signature of autism

in early life

At-risk infants produced pain-related cries with higher

and more variable F0 than low-risk infants.

English et al. (72) The utterance duration inter-utterance intervals

loudness in dB, frication, F0.

A marker of the neurobehavioral status

of newborns.

ASD infant cries were rated as more distressed, less

typical, and reflecting greater pain

Mahmoudian et al.

(65)

F0, F1, F2, F3, F2/F1, F3/F1, Intensity, Shimmer,

Jitter, Voice break, HNR mean, Duration

The functional mechanisms of the vocal

organ in hearing-impaired (HI) and

normal hearing (NH) infants.

HI infants have lower intensity and higher F0 and voice

break than NH infants. However, the other differences

were not statistically significant.

Khozaei et al. (73) MFCC

Spectral flatness

Early screening of autism spectrum

disorder

Boys: Sensitivity 85.71%, specificity 100%;

Girls: Sensitivity 71.42%, specificity 100%

MFCC, mel-frequency cepstral coefficients; CNN, convolutional neural network; LSTM, long short term memory; ANN, artificial neural network; KNN, K-nearest neighbours; LR, logistic

regression; MLP, multi-layer perceptron; SVM-MLP, support vector machine-multilayer perceptron; BML, boosting mixture learning; FNR, false negative rate; FPR, false positive rate;

AUC, area under the curve; PNN, probabilistic neural networks; NAS, neonatal opioid withdrawal syndrome; CI, confidence interval; CV, coefficient of variation; PHP, peak harmonic

proportion; MP, melodic pattern.
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of normally developing infants with those of infants who may have

suffered CNS damage due to malnutrition. They showed that the

cries of malnourished infants were initially longer, higher in

pitch, lower in amplitude, more arrhythmic and had a longer

latency to the next cry than the cries of well-nourished infants.

The similarity between the cries of malnourished infants and

brain-injured infants suggests that malnutrition may affect the

regulatory functions of the CNS. Donzelli et al. (67) reached

similar conclusions in a computer analysis. When Lester and

Dreher (68) studied the effects of maternal marijuana use on the

newborn cry, they found that heavy use of marijuana affected the

neuropsychological integrity of infants, resulting in differences in

the cry characteristics. Lawford et al. (69) showed that infants

with underlying neuropathology have unique cries characterised

by a higher fundamental frequency, dysphonia, and atypical

melodies. Assessment of acoustic cry characteristics offers the

potential for non-invasive and rapid point-of-care screening for

neurologically high-risk infants.

The characteristics of preterm cries and their differences from

those of term infants have also been explored to explain the

differences observed in their neurophysiological maturation and

the subsequent effects on their language development. The initial

studies focused on the analysis of pain-inducing cries. The effect

of neurophysiological maturity on pain-inducing cries was first

revealed when Tenold et al. (70) found that the spectral

variability of cries of term newborns was more complex than

that of preterm infants. Orlandi et al. (31) compared the acoustic

characteristics of the cries of preterm and term infants. They

obtained an optimal feature set, consisting of 10 parameters, that

they could use to assess the differences between preterm and

term newborns with approximately 87% accuracy. Moreover, the

area under the receiver operating characteristic curve reached

0.94. After comparing several machine learning models, they

found that K-Nearest Neighbors (KNN) had an accuracy of up

to 92.9%.

Sheinkopf et al. (71) studied the differences in acoustic

characteristics of infant cries between high-risk infants for autism

spectrum disorder (ASD) and low-risk infants. Using specialized

software for analysis, they found that the fundamental frequency

(F0) of pain-related cries produced by high-risk infants was

higher and more variable. Especially for those high-risk infants

who were later diagnosed with ASD at 36 months, their F0

values were the highest regardless of the cry type, and their cries

were more poorly articulated, making it difficult to produce them

in a voiced mode. The study concluded that abnormalities in the

acoustic characteristics of cries may be an atypical vocal feature

of autism in early infancy. English et al. (72) investigated

parental perceptions of cries of 1-month-old infants later

diagnosed with autism spectrum disorder (ASD) and non-ASD

controls. Across parents, ASD infant cries were rated as more

distressed, less typical, and reflecting greater pain. Khozaei et al.

(73) developed an ASD screening method based on crying

sounds and proposed a new classification approach to identify

ASD features. They trained the classifier using data from children

aged 18 to 53 months and tested it on ASD and TD children of

different genders. The results showed that for boys, the

sensitivity, specificity, and precision of the method were 85.71%,

100%, and 92.85%, respectively; for girls, these metrics were

71.42%, 100%, and 85.71%, respectively.

The relationship between infant cries and their psychological

disorders can be explained through the interaction between the

central nervous system and vagal tone. Vagal tone reflects the

activity level of the parasympathetic nervous system, with high

vagal tone typically associated with better emotional regulation,

social adaptability, and physiological stability (74). Infants with

higher vagal tone often exhibit more stable crying patterns, while

those with lower vagal tone may demonstrate higher

fundamental frequency, more irregular, or more intense cries.

The central nervous system, particularly the brainstem and

limbic system, regulates infants’ physiological and emotional

responses by modulating the activity of the vagus nerve (75). In

infants with psychological disorders such as autism spectrum

disorder, anxiety disorders, or depression, abnormalities may

occur in the central nervous system’s regulation of the vagus

nerve. These abnormalities can lead to decreased vagal tone,

which in turn affects the infants’ emotional regulation

capabilities and crying patterns.

Challenges and perspective

In this paper, we comprehensively elaborate on the physiological

process, causes, analysis, and application of infant crying. It aims to

provide detailed information and valuable resources for researchers

and medical professionals in this field. Despite significant

advancements in infant crying research, there is still room for

improvement. Given that the characteristics of infant crying are

influenced by multiple factors such as the cause of crying, health

status, weight, and age, the collection and analysis of crying data

face numerous challenges. Therefore, integrating advanced audio

acquisition and processing technologies is crucial for improving

the quality of crying data collection, signal purity (especially in

terms of background noise removal), and the accuracy of feature

recognition. With the training of massive infant crying data, deep

learning models can finely distinguish subtle differences in cries,

thereby accurately determining infants’ emotional fluctuations and

physiological conditions.

Due to the dual pressures of strict ethical review and data

scarcity, we did not analyze the cultural, ethnic, or pathological

differences in demographic characteristics, nor did we validate

the differences in infant crying patterns across different resource

environments. Future research should proceed as follows: On the

one hand, we will strictly adhere to ethical norms, ensuring that

all data collection activities are approved by legitimate and

compliant ethical review processes, fully respecting parents’ right

to informed consent, and strengthening data anonymization and

privacy protection. On the other hand, we will actively explore

and apply new technologies, such as federated learning and

synthetic data, to effectively address the issue of data scarcity,

ensuring the rational use of data resources while fully protecting

personal privacy, and promoting the continuous deepening and

development of research.
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However, the non-specificity of crying characteristics means

they cannot be directly used as a gold standard for disease

diagnosis, which undoubtedly increases the complexity of

differential diagnosis. Considering this, combining crying

characteristics with clinical manifestations and facial expression,

body movement and physiological signals (such as EEG, NIRS),

can serve as an effective supplement to comprehensive

pathological assessments of infants. Therefore, multimodal

integration based on crying is undoubtedly an important

direction for future infant crying research.

Of course, every technology is a double-edged sword. While the

application of computerized tools in infant crying classification has

brought many conveniences, researchers also need to be vigilant

about their potential interference with normal parent-infant

interaction, ensuring that the use of technology does not weaken

humanized care and attention.
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