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Background: Globally, anemia poses a serious health challenge for children

under the age of five, and Ethiopia is one of the countries significantly

affected by this issue. The 2016 Ethiopian Demographic and Health Survey

(DHS) data sets were employed to evaluate anemia risk among children aged

6–59 months. Due to limited research has been conducted on childhood

anemia spatial disparities at the Ethiopian zonal level, and it is essential for

developing zonal-level interventions for inform policy recommendations.

Methods: This study was examined the geospatial disparities in anemia

prevalence among children aged 6–59 months. We used a semi-parametric

additive model with spatial smoothing to assess zone-level variation in anemia

risk while adjusting for key covariates. Each predictor variable was spatially

adjusted using non-parametric smoothing techniques based on geolocation

parameters, and corresponding maps for each predictor.

Results: A regularized random forest techniques was employed to identify the most

influential predictors of childhood anemia and enhance the model predictive

performance. Our findings revealed that the regional states of Somalia, Afar, and

Dire Dawa exhibit the highest risk levels for childhood anemia. Furthermore, the

risk of anemia in children varies spatially across different zones in Ethiopia. The

most prominent hotspots for childhood anemia were in the country’s

Northeastern, Eastern, and Southeastern regions. In contrast, the areas with the

lowest risk were in Northwestern, Western, and Southwestern zones of Ethiopia.

Conclusion: The significant spatial disparities in anemia risk across the

administrative zones of Ethiopia, indicating that the distribution of each

predictor variable is not uniform. These findings provide valuable insights for

policymakers, enabling the development of geographically targeted

interventions to mitigate anemia risk at the zonal level.
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1 Introduction

Anemia is a medical condition defined by a decrease in hemoglobin concentration or a

reduction in red blood cell (RBC), falling below the normal range observed in healthy

individuals. This condition presents a significant global health challenge, particularly

among children. The consequences of anemia in children are significant with including
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growth retardation, compromised immune systems, and increased

vulnerability to diseases, potentially leading to fatal outcomes

(1–6). Furthermore, anemia harmfully affects mental, physical,

and language development and scholastic performance (1–7). In

female, the long-term implications of anemia include the risk of

low birth weight infants and postpartum hemorrhage, particularly

among low-income families (8, 9). In addition, anemia often

associated with inadequate nutrition and poor overall health (8–10).

According to the World Health Organization (WHO) global

report, 39.8% of under children five were anemic worldwide,

with 60.2% of these cases occurring in Africa (9). In East Africa,

the situation is even more concerning, as anemia have been

affected more than 75% of children under five, with prevalence

rates varying from 44% to 76% (11). In Ethiopia, the 2016

Demographic and Health Survey (EDHS) revealed that 57% of

children under five were anemic, with regional differences

ranging from 42% in the Amhara to 83% in the Somali regions

(12). Furthermore, various studies conducted in different regions

of Ethiopia have reported varying prevalence rates of anemia

among children under five, research from Northeast Ethiopia,

North Showa, the Tigray region, Hawassa Referral Hospital, and

Gondar shows prevalence rates varying from 21.6% to 41.7%

(13–17). In 2021, the Ethiopian government launched its second

health sector transformation plan, aiming to significantly lower

child mortality rates and address related complications, with the

goal of fostering healthier communities by 2025 (18).

Mapping the spatial distributions of disease incidence and

prevalence has long been a vital tool in spatial epidemiology research.

Therefore, the methodology has been used in characterizing spatial

patterns of risk, identifying public health risk factors, and predicting

disease outcomes in diverse geographical contexts (19–22). In

Ethiopia, some studies have explored in traditional spatial analysis

and the identification of associated covariates at national and

subnational levels (23–29). However, there is limited research

examining how the non-parametric smoothing effects of each

predictor variable relate to the spatial variations in children anemia

risk across Ethiopian administrative zones.

This paper aims tomap and visualize the covariate-adjusted spatial

effects of childhood anemia prevalence in these zones, specifically

focusing on children aged 6–59 months and employing robust

statistical models, such as semiparametric additive models. Therefore,

the novelty of this work has two folds over previous research. First,

we explore the geographical differences in the prevalence of

childhood anemia among the local administrations (zones) in

Ethiopia. Second, our innovative approach utilizes individual-level

data to map and visualize the covariate-adjusted spatial effects of

childhood anemia in local Ethiopian administrative zones.

2 Methods and materials

2.1 Data sources

2.1.1 Survey data sources
The 2016 Ethiopian Demographic and Health Surveys (DHS)

provided the data used in this investigation. After fulfilling the

requirements, these surveys were obtained from the DHS

program website https://dhsprogram.com. The DHS employed a

multistage sampling design. Enumeration areas (EAs), established

during the 2007 Population and Housing Census, were randomly

selected in the first stage. In the second stage, households were

systematically chosen from the selected clusters. For the 2016

Ethiopian DHS, 10,641 households were randomly selected,

averaging 28 households per EA from a total of 645 EAs,

creating a nationally representative sample (30). Additionally,

stratified sampling was utilized to consider residential status

(rural vs. urban households).

2.1.2 Spatial data sources
The DHS Program first made Georeferenced Global

Positioning System (GPS) datasets publicly available in 2003.

Individual records from DHS household surveys can be linked to

these georeferenced datasets using unique survey identifiers.

Since the early 2000s, recording GPS coordinates during surveys

has become increasingly common. Over 120 surveys, including

one conducted in Ethiopia, utilize GPS data.

To safeguard the privacy of respondents, the locations in these

datasets undergo alterations through a process known as geo-

masking or geo-scrambling (31). In this process, the latitude and

longitude of survey clusters are relocated to new coordinates

while adhering to specific guidelines: urban areas are displaced

by 0–2 km, rural locations by 0–5 km, and 1% of the points (or

every 100th point) are displaced by up to 10 km from their

original locations.

For more detailed information on the geographic displacement

of DHS georeferenced data and the associated spatial variability,

please refer to Spatial Analysis Reports 7–10 (31–33). The EA GPS

datasets can be accessed from https://dhsprogram.com by

submitting a reasonable request to the DHS program.

Additionally, zonal shapefiles can be explored on the website

https://www.diva-gis.org. Figure 1 illustrates the zonal and regional

maps of Ethiopia, highlighting the anemia datasets within the EA.

2.2 Study variables

2.2.1 Outcome variable: childhood anemia

Children aged 6–59 months who obtained consent from their

parents, or another responsible guardian were subjected to

anemia testing. Blood was drawn via a heel prick for children

aged 6–11 months and from the palm side of the fingertip for

those aged 12–59 months. Blood samples were collected using a

hemoglobin HemoCue photometer, and the results were recorded

immediately. In this study, the outcome variable, child anemia, is

categorized as follows: a child’s anemia is either present (yes = 1)

or absent (no = 0). According to the World Health

Organization’s guidelines, children are considered anemic if their

altitude-adjusted hemoglobin level is less than 11 g/dl (30).

2.2.2 Independent variables (covariates)
The potential variables for children under the age of five (6–59

months) are extracted from the 2016 DHS children’s data to
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analyze the prevalence of anemia in children (30). These

variables are selected using random forest feature importance

methods. The entire dataset is examined with these methods,

which effectively identify and eliminate unnecessary variables,

thereby enhancing the model’s predictive capability. By

evaluating the relative significance of various variables within

the dataset, this technique improves the effectiveness and

performance of the statistical model. The variables included in

this statistical analysis are illustrated in the framework

below (Figure 2).

FIGURE 1

The EA datasets overlay across the regional and zonal maps of Ethiopia.

FIGURE 2

Conceptual framework for variable discerptions.
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2.3 Inclusion and exclusion criteria

For the response variables, children aged 6–59 months who

lived in the specified enumeration areas (community) met the

inclusion requirements. Whereas children aged 6–59 months

who did not have a hemoglobin test result were excluded. In

addition, the covariates (independent variables) are selected

based on literatures and the accessibility of the covariates in the

DHS dataset. The candidate covariates for children under age 5

years (6–59 months) are obtained at different levels from the

2016 DHS kids’ record for the analysis of child anemia

prevalence. The potential candidate covariates displayed in

Figure 2, are based on different literatures as follows: Child-level

factors are age of child (in months), sex of child, size of child at

birth, and pregnancy of the child wanted are chosen from these

literatures (24, 34, 35). Maternal-level factors are age of mothers,

mother’s highest educational level, literacy, marital status of

mothers, wealth index, mother’s anemia level, place of delivery,

maternal age at child birth, mother’s breastfeeding, currently

amenorrhea, currently abstaining from consuming alcohol, ever

attended school, and mother’s currently pregnancy (35, 36).

Household-level factors are source of drinking water, type of

toilet facility, type of cooking fuel, sex of household head,

number of living children in the household (23, 25, 37). And

finally community-level factors are place of residence, and

region (35).

2.4 Importance variable selection

Variable importance is a method used in variable selection

procedures. The regularized random forest variable importance

algorithm is commonly used to identify the most important

variables for machine learning and advanced statistical models

(38). A regularized random forest model was employed to

identify the most influential predictors of childhood anemia, as it

effectively handles high-dimensional data and reduces overfitting

by penalizing less important variables. Furthermore, it is resilient

when dealing with nonlinear interactions and multicollinearity.

This method made it possible to choose precisely which of the

most significant predictors to incorporate into the geo additive

model. The most significant variables typically emerge from the

highest ranks of the predictor variable selections. This indicates

each variable’s statistical significance in relation to its impact on

the constructed model. Furthermore, it ranks each independent

variable based on its contribution to the model. Data scientists

and statisticians utilize variable importance methods to filter out

specific independent variables that provide value, rather than

those that unnecessarily increase processing time (39–41).

In this study, we explored random forest variable importance

methods to minimize the risk of leaving out useful variables

while keeping a substantial contributing variable and eliminating

the less contributing variables. We examined different literatures

to identify the variables for this study (39, 42, 43), and on

average, we observed that the retained variables typically had

importance scores ranging from 5% to 30% of the maximum

importance score. There are no widely accepted particular

threshold hold values, despite the fact that these research offer

insightful information (e.g., 5%–30% of the highest significance

score) (41, 44). To keep a substantially contributing variable, the

retaining variable significance score needs to be larger than 30%

of the variable with the greatest important scores

(. 0:3 � maximum importance score).

2.5 Geospatial statistical models

When the outcome of interest is binary, a generalized linear

model (GLM) serves as a methodological framework for

developing and applying models in disease mapping. GLMs are

composed of random and systematic components that are

interconnected through a link function. The probability

distribution of the response variable Y is defined by the random

component, which is assumed to belong to the exponential

family and is characterized by a specific density function of the

form given by

pY (y; u; f) ¼ exp
yu� b(u)

a(f)
þ c(y, f)

��

In the above density, u is termed the canonical or natural

parameter, c(:, :) the data function and the dispersion parameter,

a(:) is a function of the dispersion parameter f, and f

represents a nuisance parameter that characterizing the

dispersion of response Y. Let us define the respondents of

anemia risk for in ith EA as

yij ¼
1, if jth child in the ith EA is anemic
0, otherwise

�

yij follows a Bernoulli distribution with P(yij ¼ 1) ¼ pij being the

probability that the anemia risk of the jth child in the ith

geographical location is anemic and P(yij ¼ 0) ¼ 1� pij is the

probability that the anemia status of the jth child in the ith

geographical location is non-anemic.

Estimating and mapping the spatial impacts of disease data at

the individual level necessitate the application of various statistical

models. Generalized additive models (GAMs), an extension of

generalized linear models (GLMs), were first proposed by Hastie

and Tibshirani (45). These models have become widely adopted

for mapping point-based epidemiological data and are now

regarded as indispensable tools in epidemiological analysis.

In the realm of geographical analysis, GAMs typically include

smooth terms for spatial parameters (specifically, x and y

coordinates) alongside a linear predictor for adjustment variables.

Smooth terms effectively capture complex interactions, including

those between the outcome and spatial elements, without

imposing specific parametric forms on the relationships. GAMs

provide a robust statistical framework for distributing illness risk

across geographic areas by utilizing various covariates (46).
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To encourage the use of GAMs for spatial disease mapping, the

modeling of observations dispersed across a map with location

coordinates ui and vi representing the location parameters for

the ith respondents i ¼ 1, 2, . . . :, N is taken into consideration.

Let Yi denote the anemic outcome variables and Xi represent the

adjustment variables, which assumes that the anemia’s

distribution is a member of the exponential family. For a spatial

effect analysis, the GAM can be defined as

g(mi) ¼ hi ¼ b0 þ xTi bþ s(ui, vi), i ¼ 1, 2, . . . , N

where g(:) is the link function for the mean of the outcome

mi ¼ E(Yi) and the variance of the outcome is defined by the

assumed probability model and denoted as Var(Yi) ¼ V(mi, f) a

function of the mean and nuisance parameter f. The linear

predictor by hi, the spatial effects of interest are represented by

the nonlinear smoothing function s (ui, vi) and b indicates a

vector of coefficients associated with the adjustment covariate xi

and finally ui, and vi are the coordinates of longitude and

latitude respectively. When fitting the model, the spatial effect

model is decomposed into parametric and nonparametric parts:

f (ui, vi) ¼ guui þ gvvi þ s(ui, vi):

Therefore, the GAM model redefined as

g(mi) ¼ b0 þ xTi bþ g1ui þ g2vi þ s(ui, vi):

The parametric component of the spatial effect is fitted jointly with

other adjustment variables using least squares, while the

nonparametric term is fitted using a nonparametric smoother.

A semi-parametric geo-additive model was applied to a variety of

linear and nonlinear functional forms while accounting for

spatial variability, making it ideal for assessing spatially

structured on the anemia risk data. The semi-parametric geo-

additive model has an advantage over parametric models in its

functional flexibility, which improves accuracy and reduces

biases, leading to more accurate estimates and findings. In

addition, the semi-parametric geo-additive model offers a key

benefit by allowing the simultaneous estimation of fixed,

nonlinear, and spatial effects, thereby providing greater flexibility

in capturing unobserved heterogeneity and spatial autocorrelation

over the conventional GLMs.

A locally weighted scatterplot smoother (LOESS) is commonly

used as the bivariate smoothing function for two geolocations, u

and v, due to the significant variation in population densities

across geographic areas (47–49). LOESS is particularly suitable

because it retains the smooth characteristics of a kernel while

adapting the size of the smoothing neighborhood to the local

density. The smoothing parameter that defines the neighborhood

can either be automatically selected by minimizing the Akaike

Information Criterion (AIC) or the residual deviance (50). The

AIC is commonly used for the optimal span size selection in this

analysis for GAM model.

GAMs were used to smooth the predictor variables with a two-

dimensional predictor (geolocation) and adjust linearly for

confounding variables, resulting in a heatmap of odds ratios and

other effect estimates (19). Permutation tests were performed for

the null hypothesis to examine the relationship between the two-

dimensional predictor and anemia status while controlling for

adjusted covariates (13, 19). We set the default number of

permutations to test the significance of the two-dimensional

predictors as it saves calculation time.

Considering this, a p-value for testing the globally adjusted

spatial effects is provided by the permutation test. The null

distribution is represented by the distribution of deviance

statistics from the permuted data sets, and the p-value is based

on the deviance statistic when comparing models

without geolocation.

For a test of hypothesis

H0: geolocation is unassociated with the child anemia risk
for adjusting covariates (reject H0 if the percentile rank is

below alpha (default alpha value = 0.05).

H1: geolocation is associated with child anemia risk.

In this study, R software with MapGap package is used for

fitting a GAM with a two-dimensional smooth function (5–7).

Typical spatial applications in the MapGAM package begin with

the predgrid() function, which generates a regular grid of points

inside the study area, potentially limited to points inside map

boundaries (i.e., zonal maps imported from a shapefile or

retrieved from the maps package). Then, crude or covariate-

adjusted odds ratio effect estimates are generated for each grid

point using the modgam() function to smooth by geolocation.

The optimal span size, which indicates the percentage of the data

included in the neighborhood for the LOESS smoother, can be

determined using the optspan() function. The sensitivity analysis

is applied with the AIC criteria for selecting the smoothing

parameters in the MapGAM R packages for modgam() function.

The optimal span sizes for the two-dimensional location

predictor’s LOESS smooth are chosen from a range of values

between 0.05 and 0.95, with each increment of 0.05 (13, 19) for

which the minimum values of AIC is the optimal span.

It is advisable to interpret the smoothed spatial terms visually.

By utilizing the modgam plotting procedure, a call to the colormap

() function can generate a heatmap illustrating the estimated

predictions of the spatial effect. This heatmap represents the

odds ratio, comparing the probabilities at each site to the median

odds across all locations (51).

3 Results

3.1 Descriptive statistics for socio-
demographic characteristics

In this study, anemia status and associated covariates were

derived from the 2016 EDHS dataset. Table 1 displays the
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TABLE 1 Random forest-based variable importance rankings for socioeconomic predictors of child anemia, with category frequencies and proportions.

Socio-economics
characteristics

Categories Frequency Non-
anemic

Frequency
anemic

Non anemic
(%)

Anemic
(%)

Variable
importance

Age of mothers in 5-year groups 15–19 61 160 27.60 72.40 123.67

20–24 544 906 37.52 62.48

25–29 896 1,374 39.47 60.53

30–34 701 1,009 40.99 59.01

35–39 527 674 43.88 56.12

40–44 232 248 48.33 51.67

45–49 85 68 55.56 44.44

Region Tigray 389 440 46.92 53.08 182.38

Afar 183 561 24.60 75.40

Amhara 451 332 57.60 42.40

Oromia 426 766 35.74 64.26

Somalia 141 610 18.77 81.23

Benshangul 378 281 57.36 42.64

SNNPR 491 504 49.35 50.65

Gambella 206 298 40.87 59.13

Harari 125 248 33.51 66.49

Addis Ababa 159 146 52.13 47.87

Dire Dawa 97 253 27.71 72.29

Wealth Poorest 819 1,814 31.11 68.89 121.02

Poorer 559 800 41.13 58.87

Middle 538 591 47.65 52.35

Richer 454 505 47.34 52.66

Richest 676 729 48.11 51.89

Current age of child in months Bellow 11 195 677 22.86 77.14 224.57

12–23 492 1,213 38.77 71.14

24–37 637 1,006 47.86 61.23

38–47 759 827 47.86 52.14

48–59 963 716 57.36 42.64

Size of child at birth Very large 504 717 41.28 58.72 120.04

Large 476 595 44.44 55.56

Average 1,338 1,816 42.42 57.58

Small 303 480 38.70 61.30

Very small 425 831 33.84 66.16

Women’s anemia level Severe 21 91 18.75 81.25 101.74

Mild 182 505 26.49 73.51

Moderate 581 1,220 32.26 67.74

Not anemic 2,262 2,623 46.31 53.69

Total children ever born 1–2 936 1,275 72.33 57.67 76.49

3–4 877 1,293 40.41 59.59

5–6 640 972 39.70 60.30

Above 7 593 899 39.75 60.25

Maternal age at first birth Below 15 410 638 39.12 60.88 72.91

16–20 1,767 2,676 39.77 6.23

Above 21 869 1,125 43.58 56.42

Number of living children in the

household

0–2 1,035 1,415 42.24 57.76 76.16

3–4 961 1,393 40.82 59.18

5–6 626 996 39.59 61.41

Above 7 424 635 40.04 59.96

Type of cooking fuel Electricity 180 144 55.56 44.44 56.53

Charcoal 268 323 45.35 54.65

Wood 2,388 3,695 39.26 60.74

Other 210 487 43.12 56.88

Literacy No 2,138 3,439 38.34 61.66 32.70

Yes 908 1,000 47.59 52.41

Highest educational level No education 1,858 2,979 38.41 61.59 50.51

Primary 831 1,099 43.06 56.94

Secondary 230 246 48.32 51.68

Higher 127 115 52.48 47.52

(Continued)
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TABLE 1 Continued

Socio-economics
characteristics

Categories Frequency Non-
anemic

Frequency
anemic

Non anemic
(%)

Anemic
(%)

Variable
importance

Place of residence Urban 608 720 45.78 54.22 -

Rural 2,438 3,719 39.60 60.40

Sex of household head Male 2,479 3,499 41.47 58.58 40.86

Female 567 940 37.62 62.38

Sex of child Male 1,545 2,300 40.18 59.82 49.75

Female 1,501 2,139 41.24 58.76

Current marital status Married 2,818 4,176 40.29 59.71 -

Other 228 263 46.44 53.56

Currently breastfeeding No 1,215 1,489 44.93 55.07 45.56

Yes 1,831 2,950 38.30 61.70

Currently amenorrheic No 1,963 2,539 43.60 56.40 44.94

Yes 1,083 1,900 36.31 63.69

Currently abstain from consuming

alcohol

No 2,658 3,756 41.44 58.56 35.38

Yes 388 683 36.23 63.77

Ever attended school No 1,858 2,979 38.41 61.59 -

Yes 1,188 1,460 44.86 55.14

Source of drinking water Improved 1,446 1,830 44.14 55.85 45.48

Unimproved 1,600 2,609 55.86 61.99

Type of toilet facility No 1,287 2,327 35.61 64.39 48.06

Yes 1,759 2,112 45.44 54.56

Place of delivery Home 1,957 2,968 39.74 60.26 42.54

Health center 1,089 1,471 42.54 57.46

Wanted pregnancy No more 188 254 42.53 57.47 -

Yes 2,858 4,185 40.58 59.42

FIGURE 3

Feature importance scores based on random forest algorithm.
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anemia status for all potential candidate variables along with their

corresponding variable importance rank values. To select the

variables to our analysis we preferred at least 30% of the

maximum variable importance score. This is since 30% rule of

thumb is a heuristic, which keeps variables that are at least 30%

important closer to the top. When looking Figure 3 and Table 1,

there is a wide gap in importance scores between the variables

age at first birth (72.91) and cooking fuel (56.53) and therefore

we prefer variable importance greater than 67 (i.e.,

67 ¼ 0:3 � 225 ). Where 225 is the maximum importance score

for current age of child in months.

Consequently, the important biological variables, current age of

child in months (225), size of child at birth (120), women’s anemia

status (102), total number of children ever born (77), maternal age

at first birth (73), and number of living children in the household

(76), and the socioeconomic variables such as age of mothers in

5-year intervals (124), region (182), wealth index (121) are

retained in the final model. These variables were selected for

fitting the specified model (see Figure 3 and Table 1). In

contrast, other covariates with low importance values were

excluded from the study. The numbers in parentheses indicate

the importance of scores for each variable.

We observed that the prevalence of anemia varies significantly

at the regional level. Somalia has the highest rate at 81%, followed

by Afar at 75% and Dire Dawa at 72% (1). In contrast, Amhara has

a lower prevalence of 42%, followed by Benishangul at 43% and

Addis Ababa at 48%. Economic status also plays a crucial role in

anemia risk. Children from the poorest families are at the highest

risk of anemia, followed by those from poorer families.

Additionally, children aged 6–11 months have the highest risk of

anemia, while those aged 48–59 months have a lower risk.

Furthermore, the anemia risk in children is significantly

associated with the severe anemic status of their mothers, who

exhibit the highest rates of anemia compared to mothers with

less severe anemia.

3.2 Estimating and mapping spatial effects
adjusted for covariates

GAMs were employed to smooth the covariates, specifically

focusing on two-dimensional predictors associated with

geolocations while also adjusting for covariates. The crude and

adjusted for covariates analysis statistics test values are presented

in Table 2. According to the crude analysis, the prevalence of

childhood anemia had a significant association with the

respondents’ spatial locations (longitude, latitude), as indicated

by the p-value (0.000) used to evaluate the global spatial effect.

Geographic variations were statistically significant prior to the

variables being adjusted for geographical geolocations. According

to the findings in Table 2, the ideal span size that reduced the

AIC was 0.15, by selecting by sensitivity analysis, meaning that

15% of the nearby dataset was utilized to smooth the geolocation

parameters. Considering that the p-value to assess the global

spatial effect of children anemia is 0.000, the findings showed

that, after controlling for variables, there were significantly

significant spatial differences between location and childhood

anemia prevalence (Table 2).

Estimating and mapping the spatial distribution of anemia risk

is crucial for identifying health disparities. Epidemiologists are

particularly interested in creating risk surfaces that account for

individual-level confounding variables (52). The adjusted odds

ratios (AOR) and their corresponding p-values, which reflect

potential covariate-adjusted spatial effects using GAMs, are

detailed in Table 3.

Children residing in the Afar region are 1.66 times more likely

to develop childhood anemia (AOR = 1.66, p-value = 0.000) than

those in the Tigray region. Similarly, children in Oromia have a

1.14 times higher likelihood (AOR = 1.14, p-value = 0.049), those

in Gambella are 1.63 times more likely (AOR = 1.63,

p-value = 0.032), and children in Dire Dawa are 1.74 times more

likely (AOR = 1.74, p-value = 0.006) to develop anemia when

compared to their counterparts in Tigray. In contrast, children

living in Benishangul are statistically significantly less likely to

develop anemia (AOR = 0.65, p-value = 0.009). At the same time,

those in Harari show an even lower likelihood (AOR = 0.27,

p-value = 0.000) compared to children in Tigray.

Children aged 12–23 months (AOR = 0.73, p-value = 0.0015),

24–37 months (AOR = 0.41, p-value < 0.0001), 38–47 months

(AOR = 0.27, p-value < 0.0001), and 48–59 months (AOR = 0.18,

p-value < 0.0001) were statistically significantly less likely to

develop anemia when compared to those aged 6–11 months.

Additionally, the likelihood of developing anemia decreased by

31% (AOR = 0.69, p-value < 0.0001) for children from families with

a middle wealth index, by 28% (AOR = 0.72, p-value < 0.0001) for

those from richer families, and by 50% (AOR = 0.50,

p-value < 0.0001) for children from the wealthiest families, in

comparison to those from the poorest families.

Moreover, children of non-anemic mothers had a 50% lower

risk of developing anemia (AOR = 0.50, p-value = 0.008)

compared to children of mothers with severe anemia. Finally,

children living in households with 5–6 siblings were 1.33 times

more likely to develop anemia compared to those with only 1–

2 siblings.

The Ethiopian zonal maps illustrating the locations where

survey datasets were collected, based on the 2016 EDHS, are

shown in Figure 4. This map presents the geolocations of child

anemia observations across various administrative zones in

Ethiopia. Anemic cases are marked in red on the map, while

non-anemic cases are indicated in black.

The connection between spatial locations and the risk of

childhood anemia is depicted in Figure 5, which features a

heatmap illustrating both crude and covariate-adjusted spatial

TABLE 2 Optimal span size selection for crude and covariate adjusted
spatial effects.

Parameters Unadjusted (crude) Adjusted for covariates

Deviance statistic 9,431.596 8,698.54

AIC 9,513.686 8,862.98

p-value 0.000 0.000

Span size 0.15 0.15
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effects. The crude odds ratio map (Figure 5, left) is based

exclusively on two spatial characteristics (geolocation) that define

a geographic smoothing term related to the risk of child anemia.

In contrast, the adjusted odds ratio map (Figure 5, right)

accounts for all covariate data to provide a more comprehensive

estimate of the spatial impacts.

Evaluating the smoothed spatial terms visually, as shown in

Figure 5, is particularly effective. The heatmap represents the

spatial disparities in anemia across Ethiopian administrative

zones, displaying the estimated spatial effect predictions. This

visualization compares the odds ratio for each location against

the median odds across all locations. In Figure 5, regions with a

higher likelihood of child anemia are indicated in red, while

those with a lower likelihood are represented in blue.

MapGAM provides point estimates for each spatial location,

along with point-wise standard errors and confidence intervals.

Significant regions are identified using the 95% probability

intervals of the non-parametric smoothing effects, as illustrated

in Figure 6. To visualize the inference for spatial effects, the

“plot” function displays all point estimates alongside their

corresponding lower and upper confidence interval bounds.

Areas where the confidence intervals do not include 0 (on the

log estimated effect scale) can be represented on the map by

plotting contours of an indicator vector. This vector indicates

whether 0 is positioned below, within, or above the confidence

intervals at the grid points.

Table 4 presents the summary statistics for spatial effect

predictions, including the residual deviance and the AIC for

potential predictor variables contributing to anemia prevalence.

The results include the minimum AIC (where a smaller value

indicates a better fit), the residual deviance, and the spatial

prediction effects.

The potential contribution of each variable to the risk of child

anemia, adjusted for geolocation (latitude and longitude) in each

zone, is displayed in Figure 7. This figure illustrates the

contributions of various risk predictor variables to the geographic

patterns of anemia odds ratios for children aged 6–59 months

while controlling for other factors.

In the figure, key predictor variables including the child’s

current age in months, region, wealth index, maternal age, birth

size of children, maternal anemia risk, number of children in the

household, maternal age at first birth, and total number of

children born show differing effects on anemia prevalence across

various zones in Ethiopia when compared to their reference

groups. Some regions exhibit a positive impact from these

predictor variables, while others show negative effects.

The regions with the highest risk of child anemia are in the

Northeastern, Eastern, and Southeastern parts of the country. In

contrast, areas with the lowest risk can be found in the

Northwestern, Western, and Southwestern regions. For instance,

when factors such as wealth index, maternal anemia levels, and

the age of the child are considered, the odds ratio for childhood

anemia is considerably elevated in the Northeastern, Eastern, and

Southeastern areas. On the other hand, the odds ratio for

childhood anemia is significantly reduced in the Northwestern,

Western, and central regions of the country.

4 Discussion

The purpose of this study is to consider the spatial inequalities

and factors that influence childhood anemia in Ethiopian children

TABLE 3 Adjusted covariate spatial effects odds ratios for socioeconomic
variables using a generalized additive model.

Variables Categories AOR p

value

Age of mothers in 5-year groups 1 = “15–19” (ref.) - -

2 = 20–24 0.90 0.536

3 = 25–29 0.93 0.682

4 = 30–34 0.88 0.524

5 = 35–39 0.84 0.394

6 = 40–44 0.77 0.259

7 = 45–49 0.62 0.082

Region 1 = Tigray (ref.) - -

2 = Afar 1.66 <0.000

3 = Amhara 0.80 0.068

4 = Oromia 1.14 0.049

5 = Somalia 1.10 0.759

6 = Benishangul 0.65 0.009

7 = SNNPR 0.66 0.055

8 = Gambella 1.63 0.032

9 = Harari 0.27 <0.000

10 = Addis Ababa 0.85 0.427

11 = Dire Dawa 1.74 0.006

Wealth index 1 = Poorest (ref.) - -

2 = Poorer 0.86 0.059

3 =Middle 0.69 <0.000

4 = Richer 0.72 <0.000

5 = Richest 0.50 <0.000

Current age of child in months 0 = 6–11 (ref.) - -

1 = 12–23 0.73 0.0015

2 = 24–37 0.41 <0.000

3 = 38–47 0.27 <0.000

4 = “48–59” 0.18 <0.000

Size of child at birth 1 = Very large (ref) - -

2 = Larger than

average

0.93 0.400

3 = Average 1.03 0.788

4 = Smaller than

average

1.13 0.266

5 = Very small 1.14 0.171

Women’s anemia level 1 = Severe (ref) - -

2 =Mild 0.69 0.147

3 =Moderate 0.72 0.228

4 = Not anemic 0.50 0.008

Total children ever born 0 = 1–2 (ref) - -

1 = 3–4 1.10 0.551

2 = 5–6 0.92 0.707

3 = “>=7” 1.01 0.978

Maternal age at first birth 1 = Below 15 (ref.) - -

2 = 16–20 0.97 0.644

3 = Above 21 0.91 0.333

Number of living children in the

household

0 = 1–2 (ref.) - -

1 = 3–4 1.10 0.061

2 = 5–6 1.33 0.014

3 = “>7” 1.15 0.054
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aged 6–59 months from various zones. Though there were studies

in spatial distributions of anemia prevalence at the regional and

national levels (24, 34, 35), we are aware of that there was

limited investigations explored on the spatial disparities across

the zones using individual level data for smoothing the

geolocation variables and adjusting linearly for confounding

variables. Accordingly, the current study involved in mapping

and visualizing the spatial effects adjusted for covariates,

explicitly focusing on the risk of child anemia within the various

administrative zones of Ethiopia. In contrast to other studies (24,

34, 35), the current analysis was mapped individual-level odds

ratios across the zones, the third administration layer of the

country. The odds ratios of the potential risk factors were

estimated in relation to the zonal level geographical distributions

FIGURE 4

Geolocation of child anemia observations across the local zones in Ethiopia.

FIGURE 5

The crude and adjusted odds ratio of spatial effect predictions.
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of the prevalence of anemia among children aged 6–59 months.

The odds ratios for the individual level variables, as indicated in

Figure 7, linked to the geolocations were plotted in the

administrative zones of Ethiopia (53, 54).

This study was in line with previous findings from HIV data

conducted in South Africa and Ethiopia (52, 55). However,

research in low- and middle-income nations were mapping the

prevalence of anemia in those nations (56–58). Furthermore,

other research on the prevalence of anemia in Ethiopia has

mapped it across the second administration level (59). However,

this methodology enabled spatially adjust the odds of individual

variables to assess their spatial effects on the risk of anemia. Our

findings are also consistent with research conducted in sub-

Saharan Africa (60) providing additional validation for

our conclusions.

The geospatial analysis reveals that most anemia hotspot areas

were in zones of Somali, Afar, and Dire Dawa city administration,

whereas the lowest anemia hotspots were primarily observed in

zones of Amhara, Benishangul, and Addis Ababa. Anemia

prevalence exhibited considerable variation among local

administrations zones of Ethiopia. In the Afar region, the zones

identified as high hotspots for anemia include Zone 1, Zone 5,

and Shinile. Furthermore, Jijiga, East Hararge, Degahabur,

Welewel, Shabelle, Liben, and Bale zones in Somalia region

ranked among the highest hotspot areas. This was since these

zones were primarily inhabited by pastoralist communities,

experience seasonal mobility for livelihood, were frequently

affected by drought, and were geographically remote, which

limited access to transportation and health services. These

indicated that, in comparison to other places, pastoralist

communities are at a higher risk of anemia. These were due to

different factors such as food insecurity, lower economic status,

and nutritional deficiency (61, 62). In contrast, most zones in

Amhara and Tigray regions were classified as low hotspot areas.

The observed regional and zonal variations may be attributed

to differences in dietary habits, the distribution of infectious

diseases, and the accessibility of maternal and child health care

services (63). The socio-economic status of a household was

significantly linked to the prevalence of anemia among children

under 5 years of age. Children from households in the poorest

FIGURE 6

The confidence interval and point estimates of AOR with all covariates adjusted spatial effects.

TABLE 4 Residual deviance, AIC, and summary statistics for covariate-adjusted spatial effect predictions of anemia by socioeconomic variables.

Socio-economics characteristics Residual deviance AIC Spatial effect predictions

Min Q1 Mean Q3 Max

Age of mothers in 5-year groups 9,404 9,498 −4.20 −0.54 0.10 0.81 2.56

Region 9,363 9,465 −2.40 −0.36 0.22 0.85 2.64

Wealth 9,340 9,431 −5.68 −0.55 0.02

Current age of child in months 8,942 9,032 −4.24 −0.58 0.11 0.89 2.81

Size of child at birth 9,411 9,502 −4.16 −0.55 0.08 0.81 2.60

Women’s anemia level 9,373 9,463 −3.68 −0.52 0.06 0.70 2.37

Total children ever born 9,431 9,519 −3.78 −0.56 0.09 0.82 2.56

Age of respondent at first birth 9,427 9,514 −3.90 −0.56 0.09 0.80 2.55

Number of living children 9,428 9,516 −3.76 −0.56 0.09 0.82 2.55
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and poorer wealth quantiles faced a higher risk of anemia, with

probabilities exceeding 68.8% and 58.87%, respectively, when

compared to their peers in the wealthiest quantile. This finding

aligns with studies conducted in Ethiopia (25, 64–67), Sub-

Saharan Africa (68), Nigeria (69), and Brazil (70, 71). This

association may be attributed to the fact that children from

wealthier households were more likely to have access to a

balanced diet rich in macro and micronutrients, including

essential vitamins and minerals, and appropriate medical care.

Research studies indicated that children from lower

socioeconomic backgrounds were more susceptible to easily

preventable diseases and various nutritional deficiencies,

including anemia (61, 62, 72, 73). This was a consequence of the

limited dietary variety often seen in rural households, which

struggle with inadequate resources to provide balanced meals

(23). In this study, over 80% of participants were from rural

areas (74–78). Consequently, children from the poorest families

were less likely to have access to a balanced diet, as they cannot

afford or utilize a range of foods. This lack of dietary diversity

increased their risk of poor health conditions, including anemia

caused by factors such as parasitic infections.

Children aged 6–11 months were more likely to develop

anemia compared to those older than 12 months. Studies

conducted in Ethiopia (59, 79–81), Uganda (82), Sub-Saharan

Africa (75), Togo (83), Bangladesh (74, 84), Brazil (85), Asia and

India (86), Burma (71), Sydney (87), and Nepal (88) support this

FIGURE 7

Nine maps display the Adjusted Odds Ratio (AOR) in Ethiopia by various factors: (a) children’s age, (b) region, (c) wealth index, (d) mothers’ age, (e) size

of children, (f) mothers’ anemia risk, (g) number of children, (h) total number of children, and (i) age at first birth. Each map uses a color gradient to

represent AOR values, with a scale bar and north arrow for reference.
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conclusion. One reason for this increased risk is that younger

children had a higher need for micronutrients as they grow (72,

89). If they did not receive these essential nutrients, they may

become anemic (72). Another explanation is that older children

tend to have a more diversified diet, which often includes

sufficient iron-rich foods, helping to prevent anemia (74, 90).

Children over the age of one typically consumed a variety of

iron-rich foods such as cereals, meats, poultry, and fish (91, 92).

Moreover, nutritional issues were more prevalent in younger

children than in older ones. Younger children, especially those

living in unhygienic environments were also more vulnerable to

infectious diseases like intestinal helminthes, as they may put

contaminated objects in their mouths (93–95).

Children from households with more than two family members

were more likely to be anemic compared to children from

households with two or fewer family members. This finding was

supported by research from Ethiopia (67, 79, 96, 97), Uganda (82),

Sub-Saharan Africa (SSA) (75), Brazil (70, 98), India (99),

Switzerland (90), and Burma (71). The higher incidence of anemia

in larger families may be attributed to several factors, including

increased transmission of communicable diseases, inadequate

nutrient intake, and competition for food. Additionally, larger

families may face challenges in accessing appropriate health care

services, which can lead to infections and nutritional deficiencies

(74, 100). These issues can worsen the quality of care for children

and increase their risk of developing anemia (76).

Maternal anemia was significantly linked to the onset of

childhood anemia, a correlation supported by studies conducted

in Ethiopia (97), Togo (83), Cuba (101), Burma (71), Brazil (85,

98), Kuwait (102), and Nepal (88). This relationship can be

attributed to children often sharing common environmental,

socioeconomic, and dietary conditions with their mothers (103).

Furthermore, inadequate maternal iron reserves during

pregnancy and lactation can adversely affect the iron levels in

their children (86, 99, 104). Additionally, maternal anemia

increases the risks of low birth weight, premature delivery, and

maternal mortality (105), all of which contribute to a higher

likelihood of childhood anemia.

4.1 Limitations

EDHS collects data in every 5 years, however, due to national

instability and the COVID-19 pandemic’s effects, data was not

gathered in 2021 after the 2016 round, and no further polls have

been carried out. In 2011, the World Health Assembly (WHA)

established goals to cut the risk of anemia in half by 2025. The

Ethiopian government strives to meet the WHA targets, however

we are uncertain if this has been accomplished or not because

the data was not timely collected. In fact, there will be an

expected discrepancies of the anemia prevalence within this 9

years gap. However, academicians, stakeholders, and national

policy makers continue to use the 2016 EDHS data to inform

policy decisions for the government’s legislative body.

Geo-masking or geo-privacy might be impacted the

estimations of the spatial effect by introducing bias and

inaccuracy, which could result in incorrect interpretations of the

spatial pattern or relationship. In this study, the latitude and

longitude of survey clusters are moved by 0–2 km for urban

regions and 0–5 km for rural areas. The focus of this study is

spatial effects estimates at bigger area levels (zones and regions),

therefore moving individuals’ location for privacy within certain

distance might have an negative impact on the analysis.

5 Conclusion

This study found that children anemia in Ethiopia is highly

influenced by both individual-level factors such as age of the child,

age of the mother, wealth index, mother’s anemia risk, age of first

birth, and number of children in the family, and spatial

determinants, notably in pastoralist zones in Afar and Somalia.

These findings underscore the importance of using spatial models

to uncover hidden zonal vulnerabilities. The significant geographical

variation in childhood anemia risk over zones differed based on the

spatially adjusted covariates. Notably, hotspot areas were

predominantly located within pastoralist communities, especially in

several zones of Ethiopia’s Afar and Somali regions. Regional

differences in anemia risk were shaped by factors such as maternal

health, wealth index, and age of child, which varied across zones.

These findings will aid policymakers in developing geographically

targeted strategies to address and mitigate anemia risks effectively

across the Ethiopian local level administrations.
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