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The future is in the background: 
background EEG patterns, not 
acute seizures, predict epilepsy 
and neurodevelopmental 
outcomes in neonatal HIE
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Pauline Mouches3, Marvin Braun1, Khorshid Mohammad1,  
Nils D. Forkert2,3,4 and Michael J. Esser1,2

1Department of Pediatrics, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada, 
2Department of Clinical Neurosciences, Cummings School of Medicine, University of Calgary, Calgary, 
AB, Canada, 3Department of Radiology, Cummings School of Medicine, University of Calgary, Calgary, 
AB, Canada, 4Department of Electrical and Software Engineering, Schulich School of Engineering, 
University of Calgary, Calgary, AB, Canada

Background: Hypoxic ischemic encephalopathy (HIE) is the most common 
neurologic emergency in the neonatal population, with a broad spectrum of 
potential neurodevelopmental outcomes. Additionally, HIE is the most 
common cause of seizures during the acute neonatal period. Unfortunately, 
predicting neurodevelopmental outcomes and epilepsy risk is difficult in this 
population, and seizure burden during the acute period has not consistently 
been correlated with outcomes in prior studies. We aimed to examine EEG 
background data to determine whether there is a relationship between 
background abnormalities, neurodevelopmental outcomes, and epilepsy risk, 
and whether this information is more informative for predicting outcomes 
compared to other clinical data points.
Methods: Patients were retrospectively recruited from level 3 Neonatal 
Intensive Care Units (NICU’s) in Calgary, Alberta, from 2014 to 2020. All 
patients who met the criteria for therapeutic hypothermia after being 
classified as at risk for HIE were included in the study. Clinical information 
captured included measures from clinical examination, blood work, MRI (day 
3–5, scored using Barkovich scoring system) and medications. Continuous 
video EEG (cvEEG) recordings were separated into day 1, 2, and 3, and 
separate classifications systems were used for background and ictal findings. 
Neurodevelopmental follow-up was completed at two years of age, and 
patients were also categorized as having no epilepsy, or either well- 
controlled or refractory epilepsy. Poisson regression models and relative risk 
were used to compare background and ictal scores to long term 
neurodevelopmental outcomes and future epilepsy risk. Three supervised 
learning algorithms were trained to predict neurodevelopmental outcomes 
based on clinical factors.
Results: Two-hundred and six patients were eligible for the study. Among 
neonates with seizures, only 18% developed epilepsy, while 52% of those with 
severely abnormal EEG background patterns did. Total ictal burden was not 
significantly associated with epilepsy at follow up, and no antiseizures 
medications were significant predictors. In contrast, EEG background score 
was strongly associated with epilepsy risk (adjusted ß = 2.75, p = 0.002), with 
severely abnormal backgrounds conferring significantly increased risk (37.5% 
vs. 5.2%, RR = 7.22, 95% CI: 3.09–16.88). Similarly, ictal burden did not predict 
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poor neurodevelopmental outcome or death, whereas background score was a 
strong predictor (adjusted ß = 1.74, p < 0.001; RR = 2.44, 95% CI: 1.70–3.50). 
Machine learning models identified background features as more predictive 
than ictal scores, with XGBoost achieving the best classification performance 
(accuracy 0.724) and random forest yielding the highest AUC (0.751).
Conclusions: In our cohort, EEG background patterns outperformed ictal burden 
in predicting both neurodevelopmental outcomes and future epilepsy risk. 
Although background patterns are not directly modifiable, they provide 
powerful, early markers of brain injury severity, offering clinicians a valuable 
tool for prognostication and family counseling at a critical juncture in care.

KEYWORDS

neonatal HIE, cEEG = continuous EEG, neurodevelopmental outcome, epilepsy 
prediction, background EEG, background EEG activity

Introduction

Hypoxic ischemic encephalopathy (HIE) is one of the most 
common neurologic emergencies in the neonatal population, 
occurring in 1–8 per 1,000 births worldwide (1). The spectrum 
of outcomes is broad, ranging from normal neurodevelopment 
to death. Developmental delays are common and can affect 
gross and fine motor skills, language and cognitive function, and 
social skills. Additionally, previous research suggests 
approximately 10% of patients develop epilepsy, many of whom 
are refractory to anti-seizure medications (2). Despite advances 
in neuromonitoring and targeted treatments during the acute 
phase, predicting patient outcomes to counsel families is 
difficult. Many studies have investigated potential predictors of 
long-term neurodevelopmental outcomes in HIE, with common 
variables being clinical examination (i.e., Sarnat score), specific 
laboratory measures (i.e., cord blood gas, lactate), neuroimaging 
findings (specifically MRI), and electroencephalography (EEG) 
tracings. With more widespread access to continuous EEG 
monitoring, research has expanded towards characterizing 
seizure burden and temporal EEG evolution in neonatal HIE, 
with many studies attempting to use these findings to help 
predict developmental outcomes. While some studies have 
described EEG characteristics and outcomes (3, 4), some with 
limited associations (5), others have identified promising early 
EEG predictors (6–11). The methodology has varied in using 
continuous EEG as a predictive marker, including calculating 
total vs. hourly seizure burden, characterizing EEG patterns 
during the rewarming period only, separating ictal vs. 
background EEG features, and using spot EEG analysis vs. 
averaging more prolonged periods (6–11). Until recently, most 
studies using quantitative EEG measures were small and did not 
include additional clinical variables in predictive models.

In this study, we incorporated neurophysiological and clinical 
data from a large cohort of patients with neonatal HIE using 

machine learning models, to evaluate the predictive ability for 
long-term neurodevelopmental outcomes, including future 
epilepsy risk. In particular, we examined specific EEG markers 
of background and ictal activity to explore the relationship with 
these outcomes. Understanding the relationship between clinical 
markers and outcomes affords the opportunity to improve acute 
clinical decision making and better guide prognostic discussions 
with families.

Materials and methods

Patient cohort

Patients were retrospectively recruited from level 3 Neonatal 
Intensive Care Units (NICUs) in Calgary, Alberta from 2014 to 
2020. All patients who met the criteria for therapeutic 
hypothermia (TH) after being classified as at risk for hypoxic 
ischemic encephalopathy (HIE) were included in the study. At 
our institution, initiation of therapeutic hypothermia requires 
first that babies are ≥35 weeks gestation and ≤6 h old, and 
subsequently meet both criteria A and B defined as follows: 
(A) umbilical cord or first-hour arterial gas pH ≤ 7.0 or base 
excess ≤ −16 (mmol/L), or Apgar score ≤5 at 10 min, or 
ongoing need for respiratory support at 10 min of birth; AND 
(B) evidence of moderate to severe encephalopathy, 
demonstrated by the presence of seizures or at least one sign in 
three or more of six major categories (Sarnat Score: level of 
consciousness, spontaneous activity, posture, tone, primitive 
reflexes, autonomic system) (12). Additionally, patients were 
excluded from our study if they were moribund or had any 
major congenital/genetic abnormalities for which no further 
treatment was planned, severe intrauterine growth restriction 
(IUGR), significant coagulopathy, or severe intracranial bleeding 
(12). Patients were also excluded if electronic medical records 
were not accessible to capture the variables listed below. 
Research was conducted in accordance with institutional 
requirements and policies (IRISS University of Calgary 
#REB15-1249).

Abbreviations  

HIE, hypoxic ischemic encephalopathy; TH, therapeutic hypothermia; cvEEG, 
continuous video electroencephalography; IBI, inter-burst-interval; IUGR, 
intrauterine growth restriction.
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Clinical data

Babies categorized as having HIE were treated with 
therapeutic hypothermia using whole-body cooling blankets 
with a built-in thermoregulator (CritiCool®) that maintained a 
temperature of 33.5 degrees Celsius. Continuous EEG was 
recorded for the duration of TH (∼72 h) and until the babies 
were rewarmed to physiological normal temperature (∼6 h).

Clinical information was captured for each patient, including 
referral centre (rural, urban non-cooling centre, urban cooling 
centre), gestational age at birth, birth weight, APGAR score at 1, 
5, and 10 min, Sarnat score at admission and discharge (13), 
cord arterial pH, cord arterial base excess, lactate at one hour of 
age, anti-seizure medications (ASMs) administered acutely (e.g., 
levetiracetam, phenobarbital, fosphenytoin), and if continued 
upon discharge, pain/sedative medications (morphine, 
dexmedetomidine, fentanyl) administered, MRI (day 3–5), EEG 
(72 h recording), length of stay, a diagnosis of epilepsy at out- 
patient follow-up, and neurodevelopmental follow-up 
assessments as described below.

Magnetic resonance imaging scans (1.5 T or 3 T Siemens MR 
Scanner) were graded based on the combined Barkovich basal 
ganglia/watershed scoring system by a neuroradiologist and 
pediatric neurologist using T1- and T2-weighted images (14). 
EEGs were scored by two independent neurophysiologists (KW 
and MB). EEG data capture (Natus® NeuroWorks®, restricted 
10–20 system using nine electrodes and designated neonatal 
montage) was separated into day 1 (from initiation of recording 
to 24 h since cooling onset), day 2 (24 to 48 h of cooling), and 
day 3 (48 to 72 h of cooling). Background scores and ictal 
scores were analyzed and calculated separately as follows using 
the American Clinical Neurophysiology Society Standardized 
EEG guidelines for Neonates (15). For background scores, a 
score of 0 indicated normal continuity whereby there was 
uninterrupted non-stop electrical activity with <2 s of voltage 
attenuation <25 uV. A score of 1 indicated abnormal excessive 
discontinuity, where the IBI was prolonged or voltage depressed 
(for term, longer than 6 s and <25 uV). Severely abnormal 
background (score of 2) indicated invariant, abnormally 
composed EEG bursts (or no bursting) with low voltage <5 uV 
and no normal electrographic elements within the bursts. 
Additionally, seizure burden was calculated for each patient 
during day 1, 2 and 3 for both the entire 24 h, as well as highest 
1 h seizure burden period during that day (using a sliding- 
window technique). Total ictal burden was calculated for the 
entire recording for each patient (as a continuous variable). 
When specified, the highest 1 h seizure burden was used to 
provide an “ictal score” for each day, whereby 0 = no seizures, 
1 = seizures but not meeting criteria for status epilepticus, and 
2 = status epilepticus (≥30 min in 1 h). Total background score 
was calculated by adding each daily score for a score out of 6 
(i.e., worst score would be severe suppression on day 1, 2 and 
3 = 2 + 2 + 2 = 6, and best score would be 0, equating a normal 
background for all three days), and total ictal score was 
calculated by adding each daily score for a score out of 6 (i.e., 
worst score would be status epilepticus on day 1, 2, and 

3 = 2 + 2 + 2 = 6, and best score would be 0, indicating no 
seizures). Neurodevelopmental follow-up was completed at 
approximately 24 months using the Ages and Stages Assessment 
(16). Neurodevelopmental impairment was characterized as ≥2 
standard deviations outside the normal range in any domain.

Statistical analysis

Each feature was compared to neurodevelopmental outcomes 
using a Mann–Whitney U-test, and Benjamini–Hochberg 
correction for false discovery rate. We used Poisson regression 
models with restricted cubic splines to evaluate the relationship 
between total EEG background score and neurodevelopmental 
outcome, as well as future epilepsy risk. The primary outcome 
was binary (poor vs. good neurodevelopmental outcome, or 
epilepsy vs. no epilepsy) and the main predictor was total EEG 
background score. Splines were used to flexibly model non- 
linear relationships without assuming a specific parametric form. 
We included both an unadjusted model (included only the 
spline-transformed EEG background score as a predictor) and 
an adjusted model [including binary indicators for medication 
exposure (dexmedetomidine, morphine, fentanyl, levetiracetam, 
phenobarbital, fosphenytoin)]. Poisson models were fit using the 
Generalized Linear Model framework with a log link function. 
Model fit was assessed using pseudo R2 statistics (Cragg-Uhler), 
and 95% confidence intervals were generated for all predictions. 
Predictor probabilities of poor neurodevelopmental outcome, or 
epilepsy, were plotted against EEG background scores. Based on 
these results, patients were split into two groups; those with 
“severely abnormal EEG background scores (total score of 5 
or 6)” and those with “mildly/moderately abnormal or normal 
EEG background scores (total score of 0–4)”. Relative risk, using 
a 95% confidence interval, was calculated to determine risk of 
future epilepsy. The same was used to calculate risk of poor 
neurodevelopmental outcomes or death.

Ictal scores were also compared to both neurodevelopmental 
follow up and future epilepsy risk using Poisson regression 
models with restricted cubic splines, and relative risk was 
determined as described above.

Chi-squared test was used to calculate the difference in future 
epilepsy between patients that were discharged on ASMs and those 
who were not.

SPSS and Python were used to conduct all statistical analyses.

Machine learning setup

The machine learning paradigm used in this study consisted of 
a feature ranking and selection method followed by a classification 
model. The aim of feature ranking is to sort the available features 
based on relevance or importance to predict the outcome variable 
(i.e., good/normal vs. poor/abnormal neurodevelopmental 
outcome), which is then used for feature selection (17–19).

For this study, the information gain algorithm was used to 
statistically determine the amount of information that is gained 
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from each feature when predicting neurodevelopmental outcomes. 
The resulting feature ranking was then used to determine the 
optimal number of input features for the classifier. This was 
achieved by removing the least relevant features in an iterative 
fashion and then retraining and evaluating the classifier in terms 
of accuracy, thereby decreasing the dimensionality problem to 
improve the model performance. Three supervised learning 
algorithms were used to evaluate predictive performance, 
including logistic regression, random forest, and extreme 
gradient boosting, in order to account for imbalance and 
smaller datasets.

The machine learning models were trained to predict good/ 
normal vs. poor/abnormal neurodevelopmental outcomes. All of 
the clinical features outlined above were initially included in the 
model and iteratively reduced by removing the lowest-ranked 
feature. Due to the class imbalance between normal and 
abnormal neurodevelopmental outcomes, a random under- 
sampling approach was used, resulting in a perfectly balanced 
dataset. We repeated this process ten times to reduce any 
potential bias induced by the random under-sampling approach.

Using the balanced datasets, a 10-fold cross-validation 
approach was used to quantitatively evaluate the model 
performance. This means that ten different models were trained 
for each experiment, each of which randomly selected 90% of 
the data for training and 10% for testing. The results of each 
fold were averaged to compute outcome measures, including 
accuracy (i.e., percent correctly classified), precision (i.e., 
positive predictive value), recall (i.e., sensitivity), F-measure (i.e., 
harmonic mean of precision and recall), and area under the curve.

Results

Patient characteristics

Two-hundred and six patients were admitted to hospital 
between 2014 and 2020 and were eligible for the study. Patient 
information is listed in Table 1, including median, interquartile 
ranges, minimum, and maximum values for each clinical 
variable for each outcome group (normal neurodevelopmental 
outcome vs. poor neurodevelopmental outcome or death). At 
admission to the NICU, clinical examinations were documented, 
and patients were classified as mild, moderate, or severe HIE 
based on the Sarnat classification scale. For comparison, clinical 
examinations were also documented after rewarming using the 
Sarnat classification scale. Most patients had lower Sarnat scores 
post rewarming, and no patients had higher scores.

MRIs were available for 196 patients, with 10 not performed 
due to patient death prior to imaging. Five patients had MRIs 
on day 3 immediately preceding death, whereas the remainder 
were scanned on day 4 or 5. One-hundred and thirty-eight 
patients had normal MRIs (70.4%). Of the remaining patients, 
11 had a Barkovich score of 1 (5.6%), 16 had a score of 2 
(8.2%), 19 had a score of 3 (9.7%), and 12 had a score of 4 (6.5%).

EEG results were available for 191 patients on all three days. 
Background and ictal scoring results are shown in Figure 1. 
Background patterns overall, even in moderate and severe HIE, 
showed a trend towards normalization from day 1 to 3, with an 
increasing number of EEGs receiving a score of 0, and a 
decreasing number of EEGs with a score of 1 or 2. In terms of 

TABLE 1 Summary of patient data. Variables shown in column 1, Column 2 and 3 depict patients separated into groups of normal neurodevelopmental 
outcome and poor neurodevelopmental outcome/death with medians, and interquartile ranges in brackets. Column 4 depicts the minimum and 
maximum score for each variable in the total patient group. Column 5 shows the p-value comparing groups of normal and poor 
neurodevelopmental outcome/death for each variable using Mann–Whitney U. The last column shows the corrected p-value for multiple 
comparisons using the Benjamini–Hochberg method.

Variable Normal  
neurodevelopmental 

outcome group [median 
(IQR)]

Poor neurodevelopmental 
outcome or death group 

[median (IQR)]

Min–max 
(all 

patients)

Raw 
p-value

BH 
adjusted 
p-value

Birth gestational age 39.50 (38.53–40.29) 39.22 (37.29–40.57) 35.00–42.43 0.328 0.420
Birth weight 3.34 (2.97–3.66) 3.37 (2.91–3.99) 1.25–33.60 0.395 0.478
Arterial pH 6.97 (6.86–7.11) 6.99 (6.80–7.15) 6.30–7.37 0.857 0.896
Arterial base excess −15.00 (−19.00–−10.00) −13.50 (−23.00–−8.75) −30.00–−0.30 0.940 0.940
Lactate 10.30 (6.35–13.90) 11.70 (6.15–17.95) −10.00–21.00 0.185 0.304
APGAR 1 min 2.00 (1.00–3.00) 1.00 (0.00–2.00) 0.00–9.00 0.031 0.071
APGAR 5 min 4.00 (3.00–5.75) 3.50 (2.00–6.00) 0.00–9.00 0.589 0.678
APGAR 10 min 6.00 (4.00–7.00) 5.00 (3.00–7.00) 0.00–10.00 0.316 0.420
MRI Results 0.00 (0.00–3.25) 2.50 (0.00–5.00) 0.00–5.00 0.030 0.071
Neuro exam at admission 2.00 (1.00–2.00) 2.00 (2.00–3.00) 0.00–3.00 0.003 0.015
Neuro exam post re-warm 0.00 (0.00–0.00) 0.00 (0.00–3.00) 0.00–3.00 0.028 0.071
Background day 1 0.00 (0.00–1.00) 1.00 (0.00–2.00) 0.00–2.00 0.008 0.049
Background day 2 0.00 (0.00–1.00) 1.00 (0.00–2.00) 0.00–2.00 0.002 0.035
Background day 3 0.00 (0.00–1.00) 1.00 (0.00–2.00) 0.00–2.00 0.004 0.035
Total background score 0.00 (0.00–3.00) 3.00 (0.00–6.00) 0.00–6.00 0.004 0.035
Ictal day 1 0.00 (0.00–0.25) 0.00 (0.00–0.75) 0.00–2.00 0.765 0.838
Ictal day 2 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00–2.00 0.201 0.308
Ictal day 3 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00–2.00 0.024 0.071
Total ictal score 0.00 (0.00–1.00) 0.00 (0.00–1.00) 0.00–6.00 0.328 0.420
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ictal grading, there was increasingly more patients with a score of 
0 (i.e., no ictal activity) over the three days. However, only 4% 
patients continued to have seizures on day 3. Also of 
importance, only 1.5% of patients with seizures on day 3 did 
NOT have seizures on either day 1 or day 2. Thirty four percent 
of patients had seizures on EEG during the first three days of 
life. In terms of total ictal burden, patients on average had 
53 min and 30 s of ictal EEG activity over the three days (range: 
0 h–43 h 24 min). For day 1 this was a mean of 0 h 35 min 39 s 
(range: 0 h–14 h 25 min), for day 2 this was a mean of 0 h 
11 min 19 s (range: 0 h–19 h 15 min), and for day 3 this was a 
mean of 0 h 6 min 3 s (range: 0 h–9 h 44 min). Forty-eight 

percent of patients received anti-seizure medications; of these, 
54% had abnormal movements suspected to be clinical seizures 
prior to EEG being connected, without any further seizures on 
EEG. The most frequently used anti-seizure medication was 
phenobarbital, followed by levetiracetam and then fosphenytoin 
(further details shown in Figure 2).

From the total cohort, 7.3% patients died during the acute 
period in the hospital. An additional 6.3% were lost due to 
missing follow-up information at 24 months. At follow-up, 
37.1% had neurodevelopmental impairment in at least one 
domain according to the Ages and Stages Assessment, and 
62.9% had normal neurodevelopment at 24 months. Patients 

FIGURE 1 

Sankey diagram showing (A) change in background EEG score over three days of recording for each patient and (B) change in ictal EEG score over 
three days of recording for each patient. Score is beside each node, with percentage of total patients with that score shown beside.

FIGURE 2 

Number of patients that received each combination of anti-seizure medications.
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were separated into good/normal vs. poor/abnormal overall as a 
binary measure, given the low power in separating them based 
on each abnormal neurodevelopmental domain or feature.

Sixty-five patients (34%) had EEG confirmed seizures at some 
point during the acute period, and of these, 12 patients with 
seizures in the hospital developed epilepsy (18.5%). Five patients 
without seizures in hospital developed epilepsy (4% of patients 
without acute seizures). Seventeen patients (8.9%) had epilepsy, 
and 8 (4.2%) of these patients had refractory epilepsy at follow- 
up. Of the 17 patients with epilepsy, 8 were discharged from the 
hospital on anti-seizure medications (47.0% of those with 
epilepsy at follow up). In total, 29 patients were discharged on 
anti-seizure medications due to physician guidance (potentially 
for parental preference), all of whom had seizures while in the 
hospital. Twelve of the patients with epilepsy at follow-up had 
seizures in the hospital (70.6% of the patients with epilepsy). See 
Figure 3 for a pictorial depiction.

Severely abnormal EEG background classification was given 
for those babies with a total background score of 5 or 6. There 
were 33 patients with a background score of 5 or 6 during the 3 
days of EEG recording. Of these 33 patients, 17 had epilepsy at 
follow up (51.5%), 7 of whom were discharged on ASMs. See 
Figure 3 for a pictorial depiction.

Within our cohort, there were no significant differences in 
epilepsy prevalence between the groups who were discharged on 
ASM and those who were not (X2 = 1.68, p = 0.19).

Future epilepsy risk

As mentioned above, only 18.5% of patients with seizures in 
hospital had epilepsy at follow up. In contrast, 51.5% of patients 
with severely abnormal EEG background scores had epilepsy at 
follow up.

Figure 4 depicts the distribution of patients with no epilepsy, 
well controlled epilepsy, and refractory epilepsy at follow up in 
groups of patients separated based on total ictal scores while in 
hospital. As shown, there is no clear trend to suggest a 
relationship between worse ictal scores and epilepsy. In line with 
this, using a Poisson regression model with restricted cublic 
splines there was not a significant association between total ictal 
burden and epilepsy at follow up (ß = −0.0002, p = 0.47). None 
of the covariates (levetiracetam, phenobarbital, fosphenytoin, 
morphine, fentanyl, dexmedetomidine) demonstrated statistically 
significant associations with epilepsy risk. This model explained 
approximately 2% of the variance in the epilepsy outcome 
(pseudo R2 = 0.0196). This was also analyzed without ASMs as 
covariates, and in the unadjusted Poisson regression model, total 
ictal burden was not significantly associated with epilepsy at 
follow up (ß = −0.0002, p = 0.43), with pseudo R2 = 0.011 
indicating that the ictal burden alone explains approximately 1% 
of the variability in epilepsy outcomes. Calculating relative risk, 
patients with seizures in hospital were not more likely to have 
epilepsy at follow-up compared to those without seizures in 
hospital (18% vs. 4% RR = 3.25, 95% CI = 0.759–13.907).

Figure 4 also shows the number of patients with no epilepsy, 
well-controlled epilepsy, and refractory epilepsy at follow up in 
groups of patients based on total background score while in 
hospital. As can be seen, there is a trend to suggest a 
relationship between worse background scores and likelihood of 
having epilepsy. In line with this, using a Poisson regression 
model with restricted cubic splines (df = 3) we identified a non- 
linear relationship, with a steep increase in epilepsy probability 
observed among patients with more severe background 
abnormalities (Figure 5). This suggests that while mildly 
abnormal backgrounds display similar low future epilepsy risk, 
severely abnormal EEGs are particularly predictive of epilepsy 
(spline 3; ß = 3.55, p < 0.001) and the spline-based model 
explains 34.5% of the variance in epilepsy outcome (pseudo 

FIGURE 3 

Weighted venn diagrams showing number of patients with overlap, having (A) seizures in hospital, being discharged on ASMs, and having epilepsy at 
follow-up or (B) having a severely abnormal background EEG, being discharged on ASMs, and having epilepsy at follow-up. Numbers in each overlap 
area indicate number of patients falling into that overlap region. N in brackets depicts total number of patients in that category.
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R2 = 0.345). Importantly, this association persisted after adjusting 
for antiseizure medications (ß = 2.75, p = 0.002 and pseudo 
R2 = 0.39). Phenobarbital and levetiracetam were independently 
associated with higher probability of epilepsy, likely due to 
clinical indication in that they are used in patients at higher 

clinical risk. No other medications had significant association 
with epilepsy (fosphenytoin, morphine, fentanyl, 
dexmedetomidine). Given these findings, patients with severely 
abnormal background scores (5 or 6) were compared to those 
with mildly abnormal or normal background scores (0–4), and 

FIGURE 4 

Comparison of patient groups based on (A) total 3-day ictal scores and (B) total 3-day background scores and epilepsy at follow-up, including 
patients with no epilepsy, those with well controlled epilepsy, and those with refractory epilepsy; and comparison of patient groups based on (C) 
total 3-day ictal score and (D) total 3-day background scores and outcomes at follow-up, including patients with good neurodevelopmental 
outcomes, those with poor neurodevelopmental outcomes, and patients who died in hospital.

FIGURE 5 

Poisson regression models with restricted cubic splines and 95% confidence intervals for (A) predicted probability of epilepsy at follow-up based on 
total EEG background scores over 3 days and (B) predicted probability of poor neurodevelopmental outcome or death based on total EEG 
background scores over 3 days.
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using relative risk ratios were found to have significantly 
increased risk of epilepsy at follow-up [51.5% vs. 0% RR = 2.13 
(adjusted by applying a continuity correction given the “0%”), 
95% CI = 1.47–3.07].

Neurodevelopmental outcomes

Mann–Whitney U-test for each feature compared to 
neurodevelopmental outcome, corrected for multiple 
comparisons (Benjamini–Hochberg), is listed in Table 1. The 
only significant features were neurological exam at admission, 
and background EEG scores.

Average total ictal scores compared with neurodevelopmental 
outcomes and death are depicted in Figure 4. No clear trend was 
apparent. The poisson regression model with restricted cubic 
splines did not demonstrate a significant relationship between 
total ictal burden and outcomes (ß = 0.0002, p = 0.43, pseudo 
R2 = 0.011). Results did not change taking medications into 
account as a covariate. When comparing patients with any 
seizures in hospital compared to those with none, there was not 
an increased risk of poor neurodevelopmental outcomes/death 
(42% vs. 33% RR = 1.339, 95% CI = 0.911–1.968).

Figure 4 demonstrates the number of patients in each 
neurodevelopmental outcome category with groups of patients 
separated based on total background score while in hospital. As 
shown, there is a trend to suggest a relationship between worse 
background scores and poor outcomes. Using a Poisson 
regression model with restricted cubic splines (df = 4), there was 

a significant association between total background score and 
neurodevelopmental outcome, using two models (both adjusted 
and unadjusted for medications) (Figure 5). In the unadjusted 
model, higher EEG background scores were associated with 
increased risk of poor neurodevelopmental outcome (ß = 1.55, 
p < 0.001), with the model explaining a moderate amount of 
outcome variability (pseudo R2 = 0.183). In the adjusted model 
(including medications as covariates), similar findings were seen, 
with higher splines showing significant associations with 
outcome (ß = 1.74, p < 0.001), with similar pseudo R2 values 
(0.189). Patients with severely abnormal background scores were 
more likely to have poor neurodevelopmental outcomes than 
those with good background scores while in hospital (62.2% vs. 
25.4% RR = 2.44, 95% CI = 1.70–3.50).

Predictive modelling

Model performance varied across the three classifiers. 
XGBoost achieved the highest accuracy (0.724), precision 
(0.611), recall (0.476), and F1 score (0.519), indicating superior 
performance in identifying cases with poor outcomes (Figure 6, 
Table 2). However, random forest had the highest AUC (0.751) 
suggestion better overall discrimination ability (Figure 6, 
Table 2). To better illustrate overlap in predictive value across 
methods, a Venn diagram was constructed comparing the top 
10 features selected by each of the three models (Figure 6). 
Interestingly, arterial pH and birth weight were selected in all 
three models as important features. Background scores were 

FIGURE 6 

(A) Comparison of all three machine learning models area under the curves (AUC) for predicting good vs. poor neurodevelopmental outcome/death 
and (B) the top ten features selected for each model, and where they overlapped between models.

Woodward et al.                                                                                                                                                      10.3389/fped.2025.1560760 

Frontiers in Pediatrics 08 frontiersin.org



represented more frequently in overlap sections compared to ictal 
scores, in line with previous results. Other important features in 
multiple models included MRI scores, gestational age, arterial 
base excess and APGAR score at 5 min.

Discussion

This large cohort study examined the importance of specific 
clinical factors in predicting both neurodevelopmental outcomes 
and future epilepsy risk in patients with neonatal HIE.

Our main findings demonstrated: 

1. cvEEG is an important predictor of 
neurodevelopmental outcomes.

2. cvEEG background scores are stronger than ictal burden at 
predicting mortality and poor neurodevelopmental outcomes.

3. cvEEG background scores are stronger than ictal burden at 
predicting epilepsy at follow up.

4. ASM use in hospital and at discharge does not correlate with 
future epilepsy risk.

Understanding risk factors for poor neurodevelopmental 
outcomes and epilepsy can help guide acute treatment decisions, 
aid in early prognostication, and lead to more informed 
patient care.

Neurodevelopmental outcomes

In our study, neurodevelopmental outcomes and in hospital 
mortality were significantly associated with EEG background, 
but not EEG ictal scores. In 2023, nested within the RCT 
HEAL study, Glass et al. also reported a significant association 
between EEG background scores in hospital and 
neurodevelopmental outcomes (20). The reproducibility of these 
results with large numbers, but at a single centre, reinforces the 
importance of these findings. Figure 4 shows that the highest 
percentage of deceased patients in the group had background 
EEG scores of 5 or 6. Further, while more patients had 
suppressed backgrounds on day 1 (Figure 1), these improved by 
day 3. In order to receive a score of 5 or 6, the background had 
to remain suppressed or discontinuous for the entirety of the 3 
day recording. These results show the added utility of recording 
EEG for 3 days during the acute period to aid in predicting 
outcomes, but one could argue that this is predominantly 
necessary in babies where the EEG background is classified as 
’severely abnormal’ at the onset to ensure resolution.

Seizure trends and future epilepsy risk

EEG ictal scores were not associated with neurodevelopmental 
outcomes or future epilepsy risk. Overall, seizure frequency 
decreased over the three days of cooling, except in a small (4%) 
percentage that continued to have seizures on day 3, reinforcing 
the limited need for maintenance ASMs in patients with HIE. 
A recent study by Glass et al. in 2021 (21) demonstrated the 
lack of evidence for continuing ASMs in patients with neonatal 
seizures after discharge from hospital. Our study is aligned with 
those findings, as there were no significant differences in rates 
of epilepsy at follow-up in patients discharged home on ASMs 
vs. those who were not. Furthermore, seizures in hospital did 
not predict epilepsy at follow-up. In fact, 5 patients with 
epilepsy at follow-up did not have acute seizures during their 
admission period, reinforcing the difficulty in predicting future 
risk of epilepsy.

Overall, in our cohort, EEG background scores were more 
predictive of epilepsy at follow up than ictal burden. This 
finding may be explained by the fact background abnormalities 
reflect global cerebral injury and neuronal dysfunction; severely 
abnormal EEG backgrounds, such as discontinuity or burst 
suppression, indicate widespread cortical damage and impaired 
synaptic recovery, thereby conditions that promote long-term 
epileptogenesis. In contrast, ictal burden primarily reflects 
transient instability in the acute phase, and not necessarily long- 
term neuronal damage and network reorganization. Therefore, 
background EEG scores, as suggested by our data, is likely a 
more stable and prognostically relevant biomarker for epilepsy 
risk in this population.

Predictive modelling using machine 
learning

The comparative analysis of machine learning models 
highlights the clinical promise of data driven prediction in 
neonatal neurocritical care. Among the models tested, 
XGBoost demonstrated the strongest overall classification 
performance, suggesting higher sensitivity in detecting infants 
at risk of poor neurodevelopmental outcome or death. This 
model consistently identified EEG background scores 
(individual days and total), and electrographic seizures on day 
1 as key predictors, aligning well with existing literature (6). 
Figure 6 illustrates the overlap in predictive value across 
methods for top ten features, and highlights how different 
algorithms capture distinct patterns in data. The 
multidimensional perspective reinforces the central 

TABLE 2 Model performance across the three supervised learning algorithms for predicting poor neurodevelopmental outcome or death.

Model Accuracy Precision Recall F1 score AUC
Random Forest 0.685 0.584 0.321 0.383 0.751
Logistic Regression 0.680 0.497 0.352 0.403 0.685
XGBoost 0.724 0.611 0.476 0.519 0.651

AUC, area under the curve.
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importance of early EEG findings in prognostication, while also 
suggesting complementary contributions from metabolic (i.e., 
lactate, arterial BE) and clinical (i.e., referral center, birth 
weight) variables.

Limitations

Despite the inclusion of a relatively large cohort, this 
study was affected by a class imbalance, with a smaller 
proportion of patients experiencing poor 
neurodevelopmental outcomes or death and lower rates of 
epilepsy at follow up. This imbalance may have limited the 
initial statistical analyses as well as the predictive 
performance of the machine learning models, particularly in 
accurately identifying high-risk patients. Increasing the 
representation of poor outcomes in future datasets may 
enhance model calibration and discrimination. A larger 
sample size would also support stratification of 
neurodevelopmental outcomes into specific cognitive and 
behavioral domains, which could reveal domain-specific 
vulnerabilities (e.g., executive function) when examined in 
conjunction with long-term follow-up data.

This analysis used neurological examinations from NICU 
admission, typically within the first 6 h of life, rather than 
immediate postnatal assessments. Due to documentation 
constraints, earlier clinical findings at the referring hospital 
may have influenced the decision to initiate therapeutic 
hypothermia, and patients may have shown clinical 
improvement or deterioration during transfer. This impacts 
the utility of using mild, moderate, and severe examination 
grouping in this dataset.

While anti-seizure medications can transiently alter EEG 
background features (e.g., increased discontinuity or voltage 
suppression), prior studies have shown EEG background 
typically recovers within 4 h of administration (22). Given that 
EEG background was assessed continuously over 24 h intervals, 
our analyses likely reflect stable background characteristics 
rather than short-term medication effects (22). Additionally, 
ASMs as well as sedative medications were used as covariates in 
multiple analyses as described above.

While our use of XGBoost and repeated sampling strategies 
was intended to enhance predictive performance, we 
acknowledge that these methods do not provide causal 
estimates of feature effects. If the primary objective were to 
estimate the independent effect of EEG background or ictal 
burden, methods such as inverse probability of treatment 
weighting (IPTW) or marginal structural models (MSMs) 
would be more appropriate and interpretable. Future work 
aiming to quantify causal effects should consider these 
approaches to complement the predictive modeling 
framework presented here.

Lastly, our models have not yet undergone external validation, 
which limits generalizability. Nonetheless, the results are 
consistent with findings from larger studies, supporting the 
robustness of the approach.

Conclusions

Neonates with HIE present with a spectrum of clinical and 
EEG findings, from having no seizures to status epilepticus, 
and normal to severely abnormal backgrounds. As such, 
prognosis for short- and long-term outcomes can be 
challenging. Scoring EEGs using separate measures for 
background and ictal characteristics may serve to better predict 
patients with in- hospital mortality, poor neurodevelopmental 
outcomes, and future epilepsy risk. Results for our study 
suggest that severely abnormal EEG background scores are 
significantly associated with outcomes, whereas acute seizures 
at the time of presentation are not. Characterization of specific 
EEG patterns aids in understanding clinical progression, 
guiding treatment decisions, and providing families with 
earlier prognostication.
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