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The future is in the background:
background EEG patterns, not
acute seizures, predict epilepsy
and neurodevelopmental
outcomes in neonatal HIE
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Background: Hypoxic ischemic encephalopathy (HIE) is the most common
neurologic emergency in the neonatal population, with a broad spectrum of
potential neurodevelopmental outcomes. Additionally, HIE is the most
common cause of seizures during the acute neonatal period. Unfortunately,
predicting neurodevelopmental outcomes and epilepsy risk is difficult in this
population, and seizure burden during the acute period has not consistently
been correlated with outcomes in prior studies. We aimed to examine EEG
background data to determine whether there is a relationship between
background abnormalities, neurodevelopmental outcomes, and epilepsy risk,
and whether this information is more informative for predicting outcomes
compared to other clinical data points.

Methods: Patients were retrospectively recruited from level 3 Neonatal
Intensive Care Units (NICU’s) in Calgary, Alberta, from 2014 to 2020. Al
patients who met the criteria for therapeutic hypothermia after being
classified as at risk for HIE were included in the study. Clinical information
captured included measures from clinical examination, blood work, MRI (day
3-5, scored using Barkovich scoring system) and medications. Continuous
video EEG (cvEEG) recordings were separated into day 1, 2, and 3, and
separate classifications systems were used for background and ictal findings.
Neurodevelopmental follow-up was completed at two years of age, and
patients were also categorized as having no epilepsy, or either well-
controlled or refractory epilepsy. Poisson regression models and relative risk
were used to compare background and ictal scores to long term
neurodevelopmental outcomes and future epilepsy risk. Three supervised
learning algorithms were trained to predict neurodevelopmental outcomes
based on clinical factors.

Results: Two-hundred and six patients were eligible for the study. Among
neonates with seizures, only 18% developed epilepsy, while 52% of those with
severely abnormal EEG background patterns did. Total ictal burden was not
significantly associated with epilepsy at follow up, and no antiseizures
medications were significant predictors. In contrast, EEG background score
was strongly associated with epilepsy risk (adjusted B =2.75, p=0.002), with
severely abnormal backgrounds conferring significantly increased risk (37.5%
vs. 5.2%, RR=7.22, 95% Cl: 3.09-16.88). Similarly, ictal burden did not predict
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poor neurodevelopmental outcome or death, whereas background score was a
strong predictor (adjusted 8=174, p<0.001; RR=2.44, 95% Cl: 1.70-3.50).
Machine learning models identified background features as more predictive
than ictal scores, with XGBoost achieving the best classification performance
(accuracy 0.724) and random forest yielding the highest AUC (0.751).

Conclusions: In our cohort, EEG background patterns outperformed ictal burden
in predicting both neurodevelopmental outcomes and future epilepsy risk.
Although background patterns are not directly modifiable, they provide
powerful, early markers of brain injury severity, offering clinicians a valuable

tool for prognostication and family counseling at a critical juncture in care.

KEYWORDS

neonatal HIE, cEEG=continuous EEG, neurodevelopmental outcome, epilepsy
prediction, background EEG, background EEG activity

Introduction

Hypoxic ischemic encephalopathy (HIE) is one of the most
common neurologic emergencies in the neonatal population,
occurring in 1-8 per 1,000 births worldwide (1). The spectrum
of outcomes is broad, ranging from normal neurodevelopment
to death. Developmental delays are common and can affect
gross and fine motor skills, language and cognitive function, and
social ~ skills.  Additionally, previous research  suggests
approximately 10% of patients develop epilepsy, many of whom
are refractory to anti-seizure medications (2). Despite advances
in neuromonitoring and targeted treatments during the acute
phase, predicting patient outcomes to counsel families is
difficult. Many studies have investigated potential predictors of
long-term neurodevelopmental outcomes in HIE, with common
variables being clinical examination (i.e., Sarnat score), specific
laboratory measures (i.e., cord blood gas, lactate), neuroimaging
findings (specifically MRI), and electroencephalography (EEG)
tracings. With more widespread access to continuous EEG
monitoring, research has expanded towards characterizing
seizure burden and temporal EEG evolution in neonatal HIE,
with many studies attempting to use these findings to help
predict developmental outcomes. While some studies have
described EEG characteristics and outcomes (3, 4), some with
limited associations (5), others have identified promising early
EEG predictors (6-11). The methodology has varied in using
continuous EEG as a predictive marker, including calculating
total vs. hourly seizure burden, characterizing EEG patterns
during the rewarming period only, separating ictal vs.
background EEG features, and using spot EEG analysis vs.
averaging more prolonged periods (6-11). Until recently, most
studies using quantitative EEG measures were small and did not
include additional clinical variables in predictive models.

In this study, we incorporated neurophysiological and clinical
data from a large cohort of patients with neonatal HIE using

Abbreviations

HIE, hypoxic ischemic encephalopathy; TH, therapeutic hypothermia; cvEEG,
continuous video electroencephalography; IBI, inter-burst-interval; IUGR,
intrauterine growth restriction.
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machine learning models, to evaluate the predictive ability for
long-term neurodevelopmental outcomes, including future
epilepsy risk. In particular, we examined specific EEG markers
of background and ictal activity to explore the relationship with
these outcomes. Understanding the relationship between clinical
markers and outcomes affords the opportunity to improve acute
clinical decision making and better guide prognostic discussions
with families.

Materials and methods
Patient cohort

Patients were retrospectively recruited from level 3 Neonatal
Intensive Care Units (NICUs) in Calgary, Alberta from 2014 to
2020. All patients who met the criteria for therapeutic
hypothermia (TH) after being classified as at risk for hypoxic
ischemic encephalopathy (HIE) were included in the study. At
our institution, initiation of therapeutic hypothermia requires
first that babies are >35 weeks gestation and <6h old, and
subsequently meet both criteria A and B defined as follows:
(A) umbilical cord or first-hour arterial gas pH <7.0 or base
excess < —16 (mmol/L), or Apgar score <5 at 10 min, or
ongoing need for respiratory support at 10 min of birth; AND
(B) evidence of moderate to severe encephalopathy,
demonstrated by the presence of seizures or at least one sign in
three or more of six major categories (Sarnat Score: level of
consciousness, spontaneous activity, posture, tone, primitive
reflexes, autonomic system) (12). Additionally, patients were
excluded from our study if they were moribund or had any
major congenital/genetic abnormalities for which no further
treatment was planned, severe intrauterine growth restriction
(IUGR), significant coagulopathy, or severe intracranial bleeding
(12). Patients were also excluded if electronic medical records
were not accessible to capture the variables listed below.
Research was conducted in accordance with institutional
requirements and policies (IRISS University of Calgary
#REB15-1249).

frontiersin.org



Woodward et al.

Clinical data

Babies

therapeutic hypothermia using whole-body cooling blankets
1®

categorized as having HIE were treated with
with a built-in thermoregulator (CritiCool™) that maintained a
temperature of 33.5 degrees Celsius. Continuous EEG was
recorded for the duration of TH (~72h) and until the babies
were rewarmed to physiological normal temperature (~6 h).

Clinical information was captured for each patient, including
referral centre (rural, urban non-cooling centre, urban cooling
centre), gestational age at birth, birth weight, APGAR score at 1,
5, and 10 min, Sarnat score at admission and discharge (13),
cord arterial pH, cord arterial base excess, lactate at one hour of
age, anti-seizure medications (ASMs) administered acutely (e.g.,
levetiracetam, phenobarbital, fosphenytoin), and if continued
upon  discharge, pain/sedative medications (morphine,
dexmedetomidine, fentanyl) administered, MRI (day 3-5), EEG
(72 h recording), length of stay, a diagnosis of epilepsy at out-
patient  follow-up, and neurodevelopmental  follow-up
assessments as described below.

Magnetic resonance imaging scans (1.5 T or 3 T Siemens MR
Scanner) were graded based on the combined Barkovich basal
ganglia/watershed scoring system by a neuroradiologist and
pediatric neurologist using T1- and T2-weighted images (14).
EEGs were scored by two independent neurophysiologists (KW
and MB). EEG data capture (Natus® NeuroWorks®, restricted
10-20 system using nine electrodes and designated neonatal
montage) was separated into day 1 (from initiation of recording
to 24 h since cooling onset), day 2 (24 to 48 h of cooling), and
day 3 (48 to 72h of cooling). Background scores and ictal
scores were analyzed and calculated separately as follows using
the American Clinical Neurophysiology Society Standardized
EEG guidelines for Neonates (15). For background scores, a
score of 0 indicated normal continuity whereby there was
uninterrupted non-stop electrical activity with <2's of voltage
attenuation <25 uV. A score of 1 indicated abnormal excessive
discontinuity, where the IBI was prolonged or voltage depressed
(for term, longer than 6s and <25uV). Severely abnormal
background (score of 2) indicated invariant, abnormally
composed EEG bursts (or no bursting) with low voltage <5 uV
and no normal electrographic elements within the bursts.
Additionally, seizure burden was calculated for each patient
during day 1, 2 and 3 for both the entire 24 h, as well as highest
1h seizure burden period during that day (using a sliding-
window technique). Total ictal burden was calculated for the
entire recording for each patient (as a continuous variable).
When specified, the highest 1h seizure burden was used to
provide an “ictal score” for each day, whereby 0=no seizures,
1 =seizures but not meeting criteria for status epilepticus, and
2 = status epilepticus (>30 min in 1 h). Total background score
was calculated by adding each daily score for a score out of 6
(i.e., worst score would be severe suppression on day 1, 2 and
3=2+2+2=6, and best score would be 0, equating a normal
background for all three days), and total ictal score was
calculated by adding each daily score for a score out of 6 (ie.,

worst score would be status epilepticus on day 1, 2, and
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3=2+4+2+2=6, and best score would be 0, indicating no
seizures). Neurodevelopmental follow-up was completed at
approximately 24 months using the Ages and Stages Assessment
(16). Neurodevelopmental impairment was characterized as >2
standard deviations outside the normal range in any domain.

Statistical analysis

Each feature was compared to neurodevelopmental outcomes
using a Mann-Whitney U-test, and Benjamini-Hochberg
correction for false discovery rate. We used Poisson regression
models with restricted cubic splines to evaluate the relationship
between total EEG background score and neurodevelopmental
outcome, as well as future epilepsy risk. The primary outcome
was binary (poor vs. good neurodevelopmental outcome, or
epilepsy vs. no epilepsy) and the main predictor was total EEG
background score. Splines were used to flexibly model non-
linear relationships without assuming a specific parametric form.
We included both an unadjusted model (included only the
spline-transformed EEG background score as a predictor) and
an adjusted model [including binary indicators for medication
exposure (dexmedetomidine, morphine, fentanyl, levetiracetam,
phenobarbital, fosphenytoin)]. Poisson models were fit using the
Generalized Linear Model framework with a log link function.
Model fit was assessed using pseudo R statistics (Cragg-Uhler),
and 95% confidence intervals were generated for all predictions.
Predictor probabilities of poor neurodevelopmental outcome, or
epilepsy, were plotted against EEG background scores. Based on
these results, patients were split into two groups; those with
“severely abnormal EEG background scores (total score of 5
or 6)” and those with “mildly/moderately abnormal or normal
EEG background scores (total score of 0-4)”. Relative risk, using
a 95% confidence interval, was calculated to determine risk of
future epilepsy. The same was used to calculate risk of poor
neurodevelopmental outcomes or death.

Ictal scores were also compared to both neurodevelopmental
follow up and future epilepsy risk using Poisson regression
models with restricted cubic splines, and relative risk was
determined as described above.

Chi-squared test was used to calculate the difference in future
epilepsy between patients that were discharged on ASMs and those
who were not.

SPSS and Python were used to conduct all statistical analyses.

Machine learning setup

The machine learning paradigm used in this study consisted of
a feature ranking and selection method followed by a classification
model. The aim of feature ranking is to sort the available features
based on relevance or importance to predict the outcome variable
(i.e., good/normal vs. poor/abnormal neurodevelopmental
outcome), which is then used for feature selection (17-19).

For this study, the information gain algorithm was used to

statistically determine the amount of information that is gained
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from each feature when predicting neurodevelopmental outcomes.
The resulting feature ranking was then used to determine the
optimal number of input features for the classifier. This was
achieved by removing the least relevant features in an iterative
fashion and then retraining and evaluating the classifier in terms
of accuracy, thereby decreasing the dimensionality problem to
improve the model performance. Three supervised learning
algorithms were used to evaluate predictive performance,
including logistic regression, random forest, and extreme
gradient boosting, in order to account for imbalance and
smaller datasets.

The machine learning models were trained to predict good/
normal vs. poor/abnormal neurodevelopmental outcomes. All of
the clinical features outlined above were initially included in the
model and iteratively reduced by removing the lowest-ranked
feature. Due to the class imbalance between normal and
abnormal neurodevelopmental outcomes, a random under-
sampling approach was used, resulting in a perfectly balanced
dataset. We repeated this process ten times to reduce any
potential bias induced by the random under-sampling approach.

Using the balanced datasets, a 10-fold cross-validation
approach was used to quantitatively evaluate the model
performance. This means that ten different models were trained
for each experiment, each of which randomly selected 90% of
the data for training and 10% for testing. The results of each
fold were averaged to compute outcome measures, including
accuracy (i.e, percent correctly classified), precision (ie.,
positive predictive value), recall (i.e., sensitivity), F-measure (i.e.,
harmonic mean of precision and recall), and area under the curve.

10.3389/fped.2025.1560760

Results

Patient characteristics

Two-hundred and six patients were admitted to hospital
between 2014 and 2020 and were eligible for the study. Patient
information is listed in Table I, including median, interquartile
ranges, minimum, and maximum values for each clinical
variable for each outcome group (normal neurodevelopmental
outcome vs. poor neurodevelopmental outcome or death). At
admission to the NICU, clinical examinations were documented,
and patients were classified as mild, moderate, or severe HIE
based on the Sarnat classification scale. For comparison, clinical
examinations were also documented after rewarming using the
Sarnat classification scale. Most patients had lower Sarnat scores
post rewarming, and no patients had higher scores.

MRIs were available for 196 patients, with 10 not performed
due to patient death prior to imaging. Five patients had MRIs
on day 3 immediately preceding death, whereas the remainder
were scanned on day 4 or 5. One-hundred and thirty-eight
patients had normal MRIs (70.4%). Of the remaining patients,
11 had a Barkovich score of 1 (5.6%), 16 had a score of 2
(8.2%), 19 had a score of 3 (9.7%), and 12 had a score of 4 (6.5%).

EEG results were available for 191 patients on all three days.
Background and ictal scoring results are shown in Figure 1.
Background patterns overall, even in moderate and severe HIE,
showed a trend towards normalization from day 1 to 3, with an
increasing number of EEGs receiving a score of 0, and a
decreasing number of EEGs with a score of 1 or 2. In terms of

TABLE 1 Summary of patient data. Variables shown in column 1, Column 2 and 3 depict patients separated into groups of normal neurodevelopmental

outcome and poor neurodevelopmental outcome/death with medians,

and interquartile ranges in brackets. Column 4 depicts the minimum and

maximum score for each variable in the total patient group. Column 5 shows the p-value comparing groups of normal and poor
neurodevelopmental outcome/death for each variable using Mann—-Whitney U. The last column shows the corrected p-value for multiple
comparisons using the Benjamini—Hochberg method.

Variable Normal Poor neurodevelopmental Min-max Raw BH
neurodevelopmental outcome or death group (all p-value | adjusted
outcome group [median [median (IQR)] patients) p-value
(IQR)]
Birth gestational age 39.50 (38.53-40.29) 39.22 (37.29-40.57) 35.00-42.43 0.328 0.420
Birth weight 3.34 (2.97-3.66) 337 (2.91-3.99) 1.25-33.60 0.395 0.478
Arterial pH 6.97 (6.86-7.11) 6.99 (6.80-7.15) 6.30-7.37 0.857 0.896
Arterial base excess —15.00 (~19.00-—10.00) —13.50 (=23.00-—8.75) —30.00-—0.30 0.940 0.940
Lactate 10.30 (6.35-13.90) 11.70 (6.15-17.95) —10.00-21.00 0.185 0.304
APGAR 1 min 2.00 (1.00-3.00) 1.00 (0.00-2.00) 0.00-9.00 0.031 0.071
APGAR 5 min 4.00 (3.00-5.75) 3.50 (2.00-6.00) 0.00-9.00 0.589 0.678
APGAR 10 min 6.00 (4.00-7.00) 5.00 (3.00-7.00) 0.00-10.00 0316 0.420
MRI Results 0.00 (0.00-3.25) 2.50 (0.00-5.00) 0.00-5.00 0.030 0.071
Neuro exam at admission 2.00 (1.00-2.00) 2.00 (2.00-3.00) 0.00-3.00 0.003 0.015
Neuro exam post re-warm 0.00 (0.00-0.00) 0.00 (0.00-3.00) 0.00-3.00 0.028 0.071
Background day 1 0.00 (0.00-1.00) 1.00 (0.00-2.00) 0.00-2.00 0.008 0.049
Background day 2 0.00 (0.00-1.00) 1.00 (0.00-2.00) 0.00-2.00 0.002 0.035
Background day 3 0.00 (0.00-1.00) 1.00 (0.00-2.00) 0.00-2.00 0.004 0.035
Total background score 0.00 (0.00-3.00) 3.00 (0.00-6.00) 0.00-6.00 0.004 0.035
Ictal day 1 0.00 (0.00-0.25) 0.00 (0.00-0.75) 0.00-2.00 0.765 0.838
Ictal day 2 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.00-2.00 0.201 0308
Ictal day 3 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.00-2.00 0.024 0.071
Total ictal score 0.00 (0.00-1.00) 0.00 (0.00-1.00) 0.00-6.00 0.328 0.420
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FIGURE 1

Sankey diagram showing (A) change in background EEG score over three days of recording for each patient and (B) change in ictal EEG score over
three days of recording for each patient. Score is beside each node, with percentage of total patients with that score shown beside.
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Patient Counts by ASM Combination
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ictal grading, there was increasingly more patients with a score of
0 (i.e., no ictal activity) over the three days. However, only 4%
patients continued to have seizures on day 3. Also of
importance, only 1.5% of patients with seizures on day 3 did
NOT have seizures on either day 1 or day 2. Thirty four percent
of patients had seizures on EEG during the first three days of
life. In terms of total ictal burden, patients on average had
53 min and 30 s of ictal EEG activity over the three days (range:
0 h-43 h 24 min). For day 1 this was a mean of 0 h 35 min 39s
(range: 0 h-14h 25min), for day 2 this was a mean of Oh
11 min 19 s (range: 0 h-19 h 15 min), and for day 3 this was a
mean of Oh 6min 3s (range: 0h-9h 44 min). Forty-eight

Frontiers in Pediatrics

percent of patients received anti-seizure medications; of these,
54% had abnormal movements suspected to be clinical seizures
prior to EEG being connected, without any further seizures on
EEG. The most frequently used anti-seizure medication was
phenobarbital, followed by levetiracetam and then fosphenytoin
(further details shown in Figure 2).

From the total cohort, 7.3% patients died during the acute
period in the hospital. An additional 6.3% were lost due to
missing follow-up information at 24 months. At follow-up,
37.1% had neurodevelopmental impairment in at least one
domain according to the Ages and Stages Assessment, and
62.9% had normal neurodevelopment at 24 months. Patients
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were separated into good/normal vs. poor/abnormal overall as a
binary measure, given the low power in separating them based
on each abnormal neurodevelopmental domain or feature.

Sixty-five patients (34%) had EEG confirmed seizures at some
point during the acute period, and of these, 12 patients with
seizures in the hospital developed epilepsy (18.5%). Five patients
without seizures in hospital developed epilepsy (4% of patients
without acute seizures). Seventeen patients (8.9%) had epilepsy,
and 8 (4.2%) of these patients had refractory epilepsy at follow-
up. Of the 17 patients with epilepsy, 8 were discharged from the
hospital on anti-seizure medications (47.0% of those with
epilepsy at follow up). In total, 29 patients were discharged on
anti-seizure medications due to physician guidance (potentially
for parental preference), all of whom had seizures while in the
hospital. Twelve of the patients with epilepsy at follow-up had
seizures in the hospital (70.6% of the patients with epilepsy). See
Figure 3 for a pictorial depiction.

Severely abnormal EEG background classification was given
for those babies with a total background score of 5 or 6. There
were 33 patients with a background score of 5 or 6 during the 3
days of EEG recording. Of these 33 patients, 17 had epilepsy at
follow up (51.5%), 7 of whom were discharged on ASMs. See
Figure 3 for a pictorial depiction.

Within our cohort, there were no significant differences in
epilepsy prevalence between the groups who were discharged on
ASM and those who were not (X* = 1.68, p=0.19).

Future epilepsy risk

As mentioned above, only 18.5% of patients with seizures in
hospital had epilepsy at follow up. In contrast, 51.5% of patients
with severely abnormal EEG background scores had epilepsy at
follow up.

10.3389/fped.2025.1560760

Figure 4 depicts the distribution of patients with no epilepsy,
well controlled epilepsy, and refractory epilepsy at follow up in
groups of patients separated based on total ictal scores while in
hospital. As shown, there is no clear trend to suggest a
relationship between worse ictal scores and epilepsy. In line with
this, using a Poisson regression model with restricted cublic
splines there was not a significant association between total ictal
burden and epilepsy at follow up (ff=-0.0002, p=0.47). None
of the covariates (levetiracetam, phenobarbital, fosphenytoin,
morphine, fentanyl, dexmedetomidine) demonstrated statistically
significant associations with epilepsy risk. This model explained
approximately 2% of the variance in the epilepsy outcome
(pseudo R*=0.0196). This was also analyzed without ASMs as
covariates, and in the unadjusted Poisson regression model, total
ictal burden was not significantly associated with epilepsy at
follow up (f=-0.0002, p=0.43), with pseudo R>=0.011
indicating that the ictal burden alone explains approximately 1%
of the variability in epilepsy outcomes. Calculating relative risk,
patients with seizures in hospital were not more likely to have
epilepsy at follow-up compared to those without seizures in
hospital (18% vs. 4% RR =3.25, 95% CI =0.759-13.907).

Figure 4 also shows the number of patients with no epilepsy,
well-controlled epilepsy, and refractory epilepsy at follow up in
groups of patients based on total background score while in
hospital. As can be seen, there is a trend to suggest a
relationship between worse background scores and likelihood of
having epilepsy. In line with this, using a Poisson regression
model with restricted cubic splines (df=3) we identified a non-
linear relationship, with a steep increase in epilepsy probability
observed among patients with more severe background
abnormalities (Figure 5). This suggests that while mildly
abnormal backgrounds display similar low future epilepsy risk,
severely abnormal EEGs are particularly predictive of epilepsy
(spline 3; ff=3.55, p<0.001) and the spline-based model
explains 34.5% of the variance in epilepsy outcome (pseudo

A)

Seizures in hospital
(n=65)

32

21
Discharged on ASM
(n=29)

Epilepsy at follow-up
(n=17)

FIGURE 3

Weighted venn diagrams showing number of patients with overlap, having (A) seizures in hospital, being discharged on ASMs, and having epilepsy at
follow-up or (B) having a severely abnormal background EEG, being discharged on ASMs, and having epilepsy at follow-up. Numbers in each overlap
area indicate number of patients falling into that overlap region. N in brackets depicts total number of patients in that category.

Severely abnormal background EEG
(n=33)

10
Epilepsy at follow-up
(n=17)
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outcomes, those with poor neurodevelopmental outcomes, and patients who died in hospital.
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Poisson regression models with restricted cubic splines and 95% confidence intervals for (A) predicted probability of epilepsy at follow-up based on
total EEG background scores over 3 days and (B) predicted probability of poor neurodevelopmental outcome or death based on total EEG

R>=0.345). Importantly, this association persisted after adjusting
for antiseizure medications (§=2.75, p=0.002 and pseudo
R*=0.39). Phenobarbital and levetiracetam were independently
associated with higher probability of epilepsy, likely due to
clinical indication in that they are used in patients at higher
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clinical risk. No other medications had significant association
with epilepsy (fosphenytoin,
dexmedetomidine). Given these findings, patients with severely
abnormal background scores (5 or 6) were compared to those
with mildly abnormal or normal background scores (0-4), and

morphine, fentanyl,
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using relative risk ratios were found to have significantly
increased risk of epilepsy at follow-up [51.5% vs. 0% RR=2.13
(adjusted by applying a continuity correction given the “0%”),
95% CI = 1.47-3.07].

Neurodevelopmental outcomes

Mann-Whitney U-test for each feature compared to

neurodevelopmental corrected  for  multiple

comparisons (Benjamini-Hochberg), is listed in Table 1. The

outcome,

only significant features were neurological exam at admission,
and background EEG scores.

Average total ictal scores compared with neurodevelopmental
outcomes and death are depicted in Figure 4. No clear trend was
apparent. The poisson regression model with restricted cubic
splines did not demonstrate a significant relationship between
total ictal burden and outcomes (ff=0.0002, p=0.43, pseudo
R*=0.011). Results did not change taking medications into
account as a covariate. When comparing patients with any
seizures in hospital compared to those with none, there was not
an increased risk of poor neurodevelopmental outcomes/death
(42% vs. 33% RR =1.339, 95% CI=0.911-1.968).

Figure 4 demonstrates the number of patients in each
neurodevelopmental outcome category with groups of patients
separated based on total background score while in hospital. As
shown, there is a trend to suggest a relationship between worse
background scores and poor outcomes. Using a Poisson
regression model with restricted cubic splines (df =4), there was

10.3389/fped.2025.1560760

a significant association between total background score and
neurodevelopmental outcome, using two models (both adjusted
and unadjusted for medications) (Figure 5). In the unadjusted
model, higher EEG background scores were associated with
increased risk of poor neurodevelopmental outcome (ff=1.55,
p<0.001), with the model explaining a moderate amount of
outcome variability (pseudo R?=0.183). In the adjusted model
(including medications as covariates), similar findings were seen,
with higher splines showing significant associations with
outcome (f=1.74, p<0.001), with similar pseudo R*> values
(0.189). Patients with severely abnormal background scores were
more likely to have poor neurodevelopmental outcomes than
those with good background scores while in hospital (62.2% vs.
25.4% RR =2.44, 95% CI =1.70-3.50).

Predictive modelling

Model performance varied across the three classifiers.
XGBoost achieved the highest accuracy (0.724), precision
(0.611), recall (0.476), and F1 score (0.519), indicating superior
performance in identifying cases with poor outcomes (Figure 6,
Table 2). However, random forest had the highest AUC (0.751)
suggestion better overall discrimination ability (Figure 6,
Table 2). To better illustrate overlap in predictive value across
methods, a Venn diagram was constructed comparing the top
10 features selected by each of the three models (Figure 6).
Interestingly, arterial pH and birth weight were selected in all
three models as important features. Background scores were

A 10 AUC Comparison (+ SD)
(8]
2
<
XGBoost Random Forest Logistic Regression
FIGURE 6

(A) Comparison of all three machine learning models area under the curves (AUC) for predicting good vs. poor neurodevelopmental outcome/death
and (B) the top ten features selected for each model, and where they overlapped between models.

Top 10 Feature Overlap Across Models

XGBoost Random Forest

Logistic Regression
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TABLE 2 Model performance across the three supervised learning algorithms for predicting poor neurodevelopmental outcome or death.

[Model _Accuracy __Preciion ____Recal ____Fiscore ___AUC |

Random Forest 0.685 0.584
Logistic Regression 0.680 0.497
XGBoost 0.724 0.611

AUQC, area under the curve.

represented more frequently in overlap sections compared to ictal
scores, in line with previous results. Other important features in
multiple models included MRI scores, gestational age, arterial
base excess and APGAR score at 5 min.

Discussion

This large cohort study examined the importance of specific
clinical factors in predicting both neurodevelopmental outcomes
and future epilepsy risk in patients with neonatal HIE.

Our main findings demonstrated:

1. cvEEG is an
neurodevelopmental outcomes.

important predictor of

2. cvEEG background scores are stronger than ictal burden at
predicting mortality and poor neurodevelopmental outcomes.

3. cvEEG background scores are stronger than ictal burden at
predicting epilepsy at follow up.

4. ASM use in hospital and at discharge does not correlate with
future epilepsy risk.

Understanding risk factors for poor neurodevelopmental
outcomes and epilepsy can help guide acute treatment decisions,
aid in early prognostication, and lead to more informed

patient care.

Neurodevelopmental outcomes

In our study, neurodevelopmental outcomes and in hospital
mortality were significantly associated with EEG background,
but not EEG ictal scores. In 2023, nested within the RCT
HEAL study, Glass et al. also reported a significant association
between EEG
neurodevelopmental outcomes (20). The reproducibility of these

background scores in  hospital and
results with large numbers, but at a single centre, reinforces the
importance of these findings. Figure 4 shows that the highest
percentage of deceased patients in the group had background
EEG scores of 5 or 6. Further, while more patients had
suppressed backgrounds on day 1 (Figure 1), these improved by
day 3. In order to receive a score of 5 or 6, the background had
to remain suppressed or discontinuous for the entirety of the 3
day recording. These results show the added utility of recording
EEG for 3 days during the acute period to aid in predicting
outcomes, but one could argue that this is predominantly
necessary in babies where the EEG background is classified as

’severely abnormal’ at the onset to ensure resolution.
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0.321 0.383 0.751
0.352 0.403 0.685
0.476 0.519 0.651

Seizure trends and future epilepsy risk

EEG ictal scores were not associated with neurodevelopmental
outcomes or future epilepsy risk. Overall, seizure frequency
decreased over the three days of cooling, except in a small (4%)
percentage that continued to have seizures on day 3, reinforcing
the limited need for maintenance ASMs in patients with HIE.
A recent study by Glass et al. in 2021 (21) demonstrated the
lack of evidence for continuing ASMs in patients with neonatal
seizures after discharge from hospital. Our study is aligned with
those findings, as there were no significant differences in rates
of epilepsy at follow-up in patients discharged home on ASMs
vs. those who were not. Furthermore, seizures in hospital did
not predict epilepsy at follow-up. In fact, 5 patients with
epilepsy at follow-up did not have acute seizures during their
admission period, reinforcing the difficulty in predicting future
risk of epilepsy.

Overall, in our cohort, EEG background scores were more
predictive of epilepsy at follow up than ictal burden. This
finding may be explained by the fact background abnormalities
reflect global cerebral injury and neuronal dysfunction; severely
abnormal EEG backgrounds, such as discontinuity or burst
suppression, indicate widespread cortical damage and impaired
synaptic recovery, thereby conditions that promote long-term
epileptogenesis. In contrast, ictal burden primarily reflects
transient instability in the acute phase, and not necessarily long-
term neuronal damage and network reorganization. Therefore,
background EEG scores, as suggested by our data, is likely a
more stable and prognostically relevant biomarker for epilepsy
risk in this population.

Predictive modelling using machine
learning

The comparative analysis of machine learning models
highlights the clinical promise of data driven prediction in
tested,
XGBoost demonstrated the strongest overall classification

neonatal neurocritical care. Among the models
performance, suggesting higher sensitivity in detecting infants
at risk of poor neurodevelopmental outcome or death. This
identified EEG background

(individual days and total), and electrographic seizures on day

model consistently scores
1 as key predictors, aligning well with existing literature (6).
Figure 6 illustrates the overlap in predictive value across
methods for top ten features, and highlights how different
algorithms data. The

reinforces  the  central

capture distinct patterns in

multidimensional  perspective
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importance of early EEG findings in prognostication, while also
suggesting complementary contributions from metabolic (i.e.,
lactate, arterial BE) and clinical (i.e., referral center, birth
weight) variables.

Limitations

Despite the inclusion of a relatively large cohort, this
study was affected by a class imbalance, with a smaller
proportion of patients experiencing poor
neurodevelopmental outcomes or death and lower rates of
epilepsy at follow up. This imbalance may have limited the
initial statistical analyses as well as the predictive
performance of the machine learning models, particularly in
accurately identifying high-risk patients. Increasing the
representation of poor outcomes in future datasets may
enhance model calibration and discrimination. A larger
sample size would also support stratification of
neurodevelopmental outcomes into specific cognitive and
which could

vulnerabilities (e.g., executive function) when examined in

behavioral domains, reveal domain-specific
conjunction with long-term follow-up data.

This analysis used neurological examinations from NICU
admission, typically within the first 6 h of life, rather than
immediate postnatal assessments. Due to documentation
constraints, earlier clinical findings at the referring hospital
may have influenced the decision to initiate therapeutic
hypothermia, and patients may have shown clinical
improvement or deterioration during transfer. This impacts
the utility of using mild, moderate, and severe examination
grouping in this dataset.

While anti-seizure medications can transiently alter EEG
background features (e.g., increased discontinuity or voltage
shown EEG background

typically recovers within 4 h of administration (22). Given that

suppression), prior studies have
EEG background was assessed continuously over 24 h intervals,
our analyses likely reflect stable background characteristics
rather than short-term medication effects (22). Additionally,
ASMs as well as sedative medications were used as covariates in
multiple analyses as described above.

While our use of XGBoost and repeated sampling strategies
was intended to enhance predictive performance, we
acknowledge that these methods do not provide causal
estimates of feature effects. If the primary objective were to
estimate the independent effect of EEG background or ictal
burden, methods such as inverse probability of treatment
weighting (IPTW) or marginal structural models (MSMs)
would be more appropriate and interpretable. Future work
aiming to quantify causal effects should consider these
approaches to complement the predictive modeling
framework presented here.

Lastly, our models have not yet undergone external validation,
which limits generalizability. Nonetheless, the results are
consistent with findings from larger studies, supporting the

robustness of the approach.
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Conclusions

Neonates with HIE present with a spectrum of clinical and
EEG findings, from having no seizures to status epilepticus,
and normal to severely abnormal backgrounds. As such,
short- and can be

prognosis  for long-term  outcomes

challenging. Scoring EEGs using separate measures for
background and ictal characteristics may serve to better predict
patients with in- hospital mortality, poor neurodevelopmental
outcomes, and future epilepsy risk. Results for our study
suggest that severely abnormal EEG background scores are
significantly associated with outcomes, whereas acute seizures
at the time of presentation are not. Characterization of specific
EEG patterns aids in understanding clinical progression,
guiding treatment decisions, and providing families with

earlier prognostication.
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