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Single-center analysis of
servo-controlled cooling during
the transport of neonates with
perinatal asphyxia
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1College of Medicine, Shantou University, Shantou, Guangdong, China, 2Clinical Research Department,
Shenzhen Children’s Hospital, Shenzhen, China, 3Department of Neonatology, Shenzhen Children’s
Hospital, Shenzhen, China, 4Department of Hyperbaric Oxygen Therapy, Shenzhen Children’s Hospital,
Shenzhen, China
Objective: To investigate the safety and efficacy of servo-controlled cooling
during the transport of neonates with perinatal asphyxia.
Methods: We conducted a retrospective non-randomized case-control study at
a single-center,which included 65 neonates diagnosed with Hypoxic-Ischemic
Encephalopathy (HIE). These neonates were referred by the Shenzhen
Children’s Hospital medical transport team between January 2020 and June
2024. All subjects received 72 h of mild hypothermia treatment upon
admission. Participants were categorized into an active group and a control
group based on the use of servo-controlled cooling during transport. To
evaluate differences in clinical characteristics, transport variables, and
hospitalization outcomes between the two groups, we employed independent
samples t-tests, Mann–Whitney U tests, and χ2 tests for inter-group comparison.
Results: Among the 65 subjects, there were 42 males and 23 females. The active
group comprised 17 patients, while the control group included 48. No
statistically significant differences were observed in sex, gestational age, birth
weight, or HIE grade between the two groups (P > 0.05). In comparison to the
control group, the active group experienced a shorter duration from leaving
the referral center to reaching the target temperature (1 h vs. 2.67 h,
Z =−4.513, P < 0.05), arrived at the treatment center at a lower temperature
(34.03°C vs. 35.6°C, t =−4.991, P < 0.05), and demonstrated a higher
proportion of patients within the target temperature range upon arrival [88.2%
(15/17) vs. 16.7% (8/48), χ2 =−0.774, P < 0.05]. Additionally, the length of
hospitalization was shorter for the active group (15 days vs. 19 days,
Z =−2.835, P < 0.05). The proportion of patients in the severe range on the
aEEG recorded on the third day of cooling was higher in the control group
[45.8% (22/48) vs. 11.8% (2/17), Z =−2.042, P < 0.05].
Conclusion: Active therapeutic hypothermia during transport is both safe and
feasible.It enables a more rapid and stable achievement of the target
temperature, enhances short-term EEG outcomes, and may serve as the
preferred method for transporting neonates with hypoxic-ischemic
encephalopathy(HIE).
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Introduction

Hypoxic-Ischemic Encephalopathy (HIE) is a significant

contributor to neonatal mortality and disability. Statistics indicate

that the incidence of HIE is 0.15% in developed countries, while

it ranges from 0.23% to 2.65% in developing countries.

Approximately 20% of infants with HIE may die during the

neonatalperiod, and 40% of survivors may experience

neurological and other disabilities (1). Without treatment, 62% of

neonates with HIE infants will develop moderate to severe

disabilities or die by 18–22 months; however, this risk can be

reduced to 41% with appropriate intervention (2, 3). Evidence

suggests that controlled hypothermia therapy effectively reduces

the likelihood of death or severe neurodevelopmental impairment

in neonates with moderate to severe HIE, establishing it as the

standard treatment for neuroprotection in this condition, with

early initiation being critical (1, 4–7). However, managing

moderate to severe HIE and implementing hypothermia requires

multidisciplinary collaboration and advanced care (5). Some

eligible HIE infants are born in centers lacking hypothermia

treatment, which poses the risk of delays due to long-distance

transfers that may exceed the recommended initiation timeline.

Currently, there is limited research in China regarding the

implementation and outcomes of hypothermia during transport

for cases of asphyxia. This study analyzes the clinical data of

asphyxia cases referred to our center, exploring the safety and

efficacy of active hypothermia during transport, thereby

providing a reference for clinical implementation.
Data and methods

Data collection

This retrospective non-randomized case-control study collected

data from neonates with asphyxia who received controlled

hypothermia treatment in the Neonatal Intensive Care Unit

(NICU) of Shenzhen Children’s Hospital from January 2020 to

June 2024. The inclusion criteria were as follows (8, 9): (1)

gestational age ≥35 weeks or birth weight ≥2,000 g; (2) evidence

of hypoxia-ischemia meeting at least one of the following

conditions: clear evidence of fetal distress (e.g., uterine rupture,

placental abruption, abnormal fetal heart rate); 5 min Apgar score

≤5; resuscitation requiring positive pressure ventilation for more

than 10 min; umbilical blood gas analysis indicating pH ≤7.10 or

base excess ≤−12 mmol/L within one hour after birth; and (3)

neurological assessment indicating moderate to severe HIE

according to the modified Sarnat criteria (10). If mild HIE is

diagnosed, the decision to initiate cooling should be made after

consultation with a neonatal specialist. Exclusion criteria included:

(1) severe congenital malformations; (2) traumatic brain injury or

moderate to severe intracranial hemorrhage; (3) congenital

metabolic diseases; (4) age at cooling initiation greater than 24 h

or cessation of cooling within 72 h. Patients were categorized into

two groups based on the use of servo-controlled cooling during

transport: the Active Group, in which cooling was administered
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using a servo-controlled cooling device (Tecotherm Neo,

Inspiration Healthcare, LTD; implemented at our center since

September 2022), and the Control Group, in which infants were

transported in incubators with temperatures maintained at 32–34°

C without active cooling. The study received approval from the

ethics committee of Shenzhen Children’s Hospital (202403202),

and informed consent was obtained from the guardians.
Methods

Clinical Data: Information was gathered through a review of

the hospital’s electronic medical record system, focusing on three

main categoies: (1) Baseline Data: gestational age, gender, birth

weight, mode of delivery, Apgar score, and the first blood gas

analysis (umbilical/arterial/venous) as well as the severity

classification of HIE (10); (2) Transport Data: the age at which

the neonate commenced hypothermia, th age at which the target

temperature was achieved, the age upon arrival at the treatment

center, the duration from departure at the referral center to

achieving the target temperature (33°C-34°C), the temperature

upon arrival at the treatment center, the proportion of neonates

whose temperature fell within the target range upon arrival, heart

rate, mean blood pressure, and blood gas analysis (pH, base

excess) before and after transport; (3) Hospitalization Data:

administration of vasopressors, duration of mechanical

ventilation, length of hospital stay, seizures confirmed by

electroencephalogram, amplitude-integrated electroencephalogram

(aEEG) on days 1 and 3 of cooling, classification of HIE-related

brain injury and affected areas on cranial MRI, and mortality rate.

All neonates underwent continuous video electroencephalogram

(EEG) monitoring for four hours on the first and third days of

cooling. This monitoring was performed at the bedside using the

Nicolet Monitor (Natus, Middleton, WI, USA) and was conducted

by trained neonatal specialist nurses. In accordance with the

“Chinese Expert Consensus on the Clinical Application of aEEG

in Neonates” (11), the aEEG was classified based on the upper

and lower voltage limits of the background as follows: (1) Normal:

upper boundary of the EEG activity amplitude spectrum ≥10 μV,
lower boundary ≥5 μV; (2) Mildly abnormal: upper boundary

>10 μV, lower boundary <5 μV; or normal amplitude with

convulsive episodes; 3. Severely abnormal: upper boundary

<10 μV, lower boundary <5 μV; or abnormal amplitude with

convulsive episodes.

All neonates underwent cranial MRI examinations within 7–14

days after birth. These examinations included T1 and T2-weighted

imaging, as well as diffusion-weighted series. In term neonates, two

primary injury patterns associated with HIE are observable on MRI

(12): (1) basal ganglia-thalamic pattern, which primarily affects the

bilateral central gray nuclei (ventrolateral thalamus and posterior

putamen) and the periventricular cortex; and (2) the watershed

pattern, which involves the watershed areas (anterior-middle

cerebral artery and posterior-middle cerebral artery), affecting the

white matter. Based on the regions of brain injury, classifications

include (12, 13): (1) deep gray matter (thalamus, basal ganglia,

posterior limb of the internal capsule, brainstem, periventricular
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cortex, and hippocampus); (2) cerebral white matter/cortex (cortex,

white matter, optic radiation, corpus callosum, punctate white

matter lesions, and intraparenchymal hemorrhage); and (3)

cerebellum (cerebellum and cerebellar hemorrhage).
TABLE 1 Baseline characteristics.

Characteristics Active
(n = 17), n (%)

Control
(n = 48), n (%)

P-value

Neonata characteristics
Gestational age
(week)a

38.76 ± 1.39 38.96 ± 1.39 0.85

Birth weight (g)a 3107.06 ± 563.23 3149.17 ± 537.94 0.964

Male sex 11 (64.7) 31 (64.6) 0.993

Delivery mode
Vaginal 9 (52.9) 23 (47.9) 0.722

Cesarean 8 (47.1) 25 (52.1)

Apgar scoresa

1 min 2.71 ± 1.16 3.25 ± 1.90 0.009

5 min 4.82 ± 2.09 5.31 ± 2.30 0.582
Implementation of hypothermia

In the Active Group, the transport team initiated active cooling

immediately upon arrival at the referral center. Cooling was

maintained continuously during transport, alongside intensive care

management that included respiratory support, hemodynamic

stabilization, and seizure control. A servo-controlled cooling device,

which could be securely mounted on the transport platform, was

utilized. The neonate was positioned on the mattress of the transport

incubator with minimal clothing. The target temperature was

achieved by circulating water through the device and the mattress.

A core temperature monitoring probe was connected to one end of

the device and inserted 4–5 cm into the infant’s rectum at the other

end. The device effectively maintained the set temperature range of

33°C–34°C by continuously monitoring the infant’s rectal

temperature (14). Throughout the process, the nursing staff ensured

that the temperature probe remained securely in place.

In cases where the asphyxiated neonate initially did not meet

the established criteria for cooling, the neonate’s clinical

condition was closely monitored throughout transport. The

evolution of the condition was dynamically assessed to determine

the necessity for cooling intervention. Due to the early

manifestation of symptoms and the limited diagnostic capabilities

at the referral center, the severity of HIE could not be promptly

evaluated. If there was significant suspicion of potential

progression to moderate or severe HIE, cooling intervention was

initiated following consultation with a neonatal specialist. Upon

arrival at the NICU, aEEG was employed to assist in assessing

the severity of HIE (15).

In the control group, neonates were transported in an incubator

set to 32°C–34°C, receiving only intensive care management without

any controlled cooling until their arrival at the NICU, where

hypothermia treatment was subsequently initiated.

During transport, respiratory support was customized according

to the neonate’s respiratory condition, utilizing invasive synchronized

intermittent mandatory ventilation (SIMV) mode, non-invasive

nasal intermittent positive pressure ventilation (NIPPV) mode, or

withholding support when deemed unnecessary. Sedation was

administered as required, primarily using phenobarbital

(10–20 mg/kg) or midazolam (1–3 µg/kg/min), and was withheld if

not indicated.
10 min 6.06 ± 2.04 6.69 ± 2.05 0.659

First blood gas values
PHa 7.05 ± 0.17 7.04 ± 0.20 0.338

Base deficit (mmol/L)a −17.13 ± 6.55 −16.91 ± 6.83 0.746

HIE stage
Mild 4 (23.5) 9 (18.8) 0.594

Moderate 9 (52.9) 25 (52.1)

Severe 4 (23.5) 14 (29.2)

aData presented as mean ± SD.
Statistical analysis

Data analysis was conducted using SPSS 27.0 statistical software.

Normally distributed measurement data were presented as

mean ± standard deviation (SD), and inter-group comparisons

were performed using the independent sample t-test. Non-

normally distributed measurement data were represented as
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median (Q1, Q3), with inter-group comparisons conducted using

the Mann–Whitney U test. Categorical data were expressed as

cases (%), and analyzed using the χ2 test for inter-group

comparisons. Similarly, ordinal data were reported as cases (%)

and compared between groups using the Mann–Whitney U test.

A two-sided P-value of <0.05 was deemed statistically significant.
Results

Comparison of baseline clinical
characteristics

A total of 72 neonates with perinatal asphyxia were included

for transport. After excluding 2 cases in which families

abandoned treatment within 24 h of admission, 3 cases where

hypothermia treatment was not completed within 72 h, and

2 cases where the age at hypothermia initiation exceeded 24 h,

65 cases were ultimately included (42 males and 23 females),

with 17 in the active group and 48 in the control group. Except

for the lower 1 min Apgar score in the active group (P < 0.05),

no statistically significant differences were observed in gestational

age, sex, birth weight, mode of delivery, Apgar scores at 5 and

10 min, initial blood gas pH and BE, or HIE severity between the

two groups (all P > 0.05) (Table 1).
Comparison of transport variables at
different stages

In comparison to the control group, the active group exhibited a

lower average temperature upon arrival at the treatment center
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(34.03 ± 0.64°C vs. 35.60 ± 1.23°C, Z =−4.9921, P < 0.05). A greater

proportion of the active group arrived within the target temperature

range [88.2% (15/17) vs. 16.7% (8/48), χ2 =−0.774, P < 0.001]

(Figure 1). The median time required to reach the target temperature

from the moment of departure from the referral center was reduced

by 1.67 h in the active group (P < 0.05). Additionally,the temperature

difference observed before and after transport was greater in the

active group (P < 0.05), with no cases of hypothermia (<33°C)

occurring in this group; however, one case (2.1%) of hypothermia

was reported in the control group. The median age at which both

groups initiated hypothermia treatment was within 6 h post-birth,

with the active group starting earlier, although these differences were

not statistically significant (P > 0.05).

The pH and BE values before and after transport were

comparable between the two groups, however, changes in BE

values were significant (P < 0.05), with negative values decreasing,

indicating that cooling during transport does not exacerbate

acidosis (Table 2).
Comparison of hospitalization outcomes

The median length of stay in the control group was increased

by 4 days compared to the active group (P < 0.05), and the

median duration of mechanical ventilation was extended by

63.5 h in the control group (P < 0.05) (Table 3).

Statistical differences in aEEG grading on day 3 of cooling were

observed between the two groups (P < 0.05), with a higher

proportion of patients in the severe range in the control group

[45.8% (22/48) vs. 11.8% (2/17)]. Furthermore,the proportion of

neonates in the active group classified in the severe range on day

3 was significantly reduced compared to day 1 (P < 0.05), while

no statistically significant difference was found in the control

group between day 1 and day 3 (P > 0.05) (Table 4).

Other assessments of neonatal outcomes, including the use of

vasoactive drugs, seizures, distribution of HIE-related cranial

MRI injury areas, and mortality rates, revealed no statistically

significant differences between the two groups (P > 0.05) (Table 3).
FIGURE 1

Bar chart of temperature measurements in the active and control groups b
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Discussion

Evidence indicates that the duration of the latent period

between primary and secondary energy failure is inversely

proportional to the severity of primary asphyxia injury. Clinical

trials demonstrate that initiating cooling within six hours after

birth can significantly reduce the risk of death or disability,

establishing HIE as a time-dependent emergency (15–18).

International guidelines emphasize that initiating hypothermia

within 6 h of birth can maximize its neuroprotective effects (19).

Clinical trials have demonstrated that commencing cooling

within this time frame can significantly reduce the risk of death

or disability (20–23). Furthermore, the earlier cooling is initiated,

the more favorable the outcomes tend to be (16, 18, 24).

Numerous studies have been conducted internationally that

compare cooling protocols for HIE during transport (14, 21,

25–29). Servo-controlled cooling devices are increasingly

recommended for neonatal transport owing to their convenience,

precision, and stability (7, 21, 23, 26, 28, 30). Our center is the

first NICU in the country to utilize active servo-controlled

devices for transport, having successfully completed nearly 20

cases of active hypothermic transport for neonates with HIE.

However, delays in cooling may occur due to factors such as

families’ hesitancy to transfer patients, remote referral centers,

and limited medical resources, which result in the inability to

promptly assess brain injury and effectively implement

therapeutic hypothermia. Many countries, including China, are

currently facing the challenge of delayed hypothermia initiation,

underscoring the critical need to commence therapeutic

hypothermia as early as possible. In this study, however, the

active group achieved the target temperature more rapidly.

According to Laptook et al., initiating cooling treatment for HIE

infants between 6 and 24 h after birth decreases the probability

of death or disability by 76% compared to no cooling, with a

64% likelihood of achieving at least a 2% reduction in death or

disability at 18–22 months (31). In this study, all neonates

initiated therapeutic hypothermia within 24 h. We conducted a

detailed analysis comparing cooling methods with and without
efore and after transport.
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TABLE 2 Transport characteristics.

Transport variables Active (n= 17), n (%) Control (n= 48), n (%) P-value

Time profiles
Stabilization time (min)b,e 35 (30–48) 30 (25–45) 0.233

Age when hypothermia was initiated (h)b 3.5 (1–7.5) 4.3 (2–9.8) 0.432

Age when target temperature was achieved (h)b 6.5 (3.33–11) 6.925 (4.615–11.925) 0.455

Age when arrived at the therapeutic centre (h)b 8 (5–12.6) 4.5 (3–9.875) 0.039

Duration of transport (h)b 2.5 (2–6.25) 2 (1.5–3) 0.089

Distance of transport (km)b 98 (50.5–399.5) 63 (30–99.25) 0.037

Time from the referral center to the target temperature (h)b 1 (0.445–1.5) 2.67 (2.04–4.105) <0.001

Temperature profiles
Temperature difference before and after transport (°C)b 1.9 (1.25–2.75) 0.3 (−0.1–1.25) <0.001

Temperature after transport (°C)a 34.03 ± 0.64 35.60 ± 1.23 <0.001

Temperature range before transport 0.439
<33°C 0 (0) 0 (0) 0.105

33°C–34°C 3 (17.6) 5 (10.4)

>34°C 14 (82.4) 43 (88.6)

Temperature range after transport
<33°C 0 (0) 1 (2.1) <0.001

33°C–34°C 15 (88.2) 8 (16.7)

>34°C 2 (11.8) 39 (81.3)

Blood gas values
PHa,c 7.17 ± 0.16 7.15 ± 0.20 0.177

PHa,d 7.34 ± 0.08 7.20 ± 0.57 0.313

Base deficit (mmol/L)a,c −12.1 ± 6.21 −13.1 ± 6.7 0.823

Base deficit(mmol/L)a,d −6.83 ± 5.13* −7.49 ± 5.44* 0.925

Vital signs
Heart rate (/min)a,c 135.47 ± 24.84 132.67 ± 22.73 0.999

Heart rate (/min)a,d 107.41 ± 14.04 126.02 ± 20.24 0.095

Mean pressure (mmHg)a,c 44.41 ± 6.95 49.17 ± 7.53 0.484

Mean pressure (mmHg)a,d 47.65 ± 8.78 46.44 ± 7.08 0.273

aData presented as mean ± SD.
bData presented as median(IQR).
cBefore transport at referring centre.
dAfter transport at the therapeutic centre.
eTime interval from arrival to departure from the referral center.

*Compared with base deficit before transport, P < 0.05.
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servo-controlled devices during transport, focusing on the

parameters of neonatal transport and the outcomes for the

neonates. The results indicate that therapeutic hypothermia

during transport is both safe and feasible. Additionally, servo-

controlled active cooling facilitates a faster and more stable

attainment of the target temperature, resulting in improved

EEG outcomes.

Hagan et al. (29) conducted a meta-analysis of eight published

studies, demonstrating that the use of servo-controlled cooling

devices during transport enables a greater number of infants to

reach the target core temperature upon arrival at the treatment

center, while also reducing temperature fluctuations during

transport (25). Chaudhary reported a success rate of 100% (22),

while Akula reported 80% (21), in this study, the rate was 88.2%,

which may be related to shorter transport distances in individual

cases. Although the median age of the active group upon arrival

at the treatment center exceeded 6 h, this may be attributed to

longer transport distances. These findings strongly support the

feasibility of servo-controlled cooling devices and highlight the

necessity for early implementation of hypothermia during
Frontiers in Pediatrics 05
transport. This study found that neonates in the active group

reached the target temperature more quickly than those in the

control group. Despite longer transport distances, a higher

proportion of neonates in the active group were within the target

temperature range upon arrival, with no incidents of

hypothermia, consistent with the results from Nitin Goel et al.

(14) The servo-controlled device continuously monitors core

temperature via a rectal probe to gradually achieve the set

temperature, allowing for precise control. Furthermore, stable

core temperatures minimize excessive fluctuations in

physiological status, thereby reducing the risk of hypothermia.

If neonates are exposed to a cold environment without being

dried, they can lose heat at a rate of 0.2–1°C/min within minutes

after birth. Asphyxiated neonates experience a more rapid decline

in body temperature compared to non-asphyxiated ones due to

reduced heat production. Robertson et al. reported that despite

standard rewarming methods, infants in the standard care group

could remain in a state of “natural” hypothermia for up to 15 h

(32). This study found that the hypothermia rate in the control

group was 2.1%, while no incidents occurred in the active group,
frontiersin.org
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TABLE 3 Therapeutic outcomes.

Neonatal outcomes Active (n = 17), n (%) Control (n= 48), n (%) P-value
Inotropic support 12 (70.6) 37 (77.1) 0.836

Max dopamine(ug/kg/min)a 5 (0–10) 5 (3–8) 0.635

Max dobutamine(ug/kg/min)a 0 (0–10) 5 (0–5) 0.395

Inhaled nitric oxide use 2 (11.8) 3 (6.3) 0.839

Mechanical ventilation 16 (94.1) 40 (83.3) 0.485

Length of hospitalization (day)a 15 (12.5–18.5) 19 (16–26) 0.005

Electrographic seizures 6 (35.3) 17 (35.4) 0.993

Length of ventilation (h)a 73 (38.75–131.25) 136.5 (81–199.25) 0.044

Need for gavage feeds at discharge 2 (11.8) 13 (27.1) 0.34

Survival to discharge 15 (88.2) 38 (79.2) 0.642

Mortalityb 1 (5.9) 6 (12.5) 0.763

MRIc

Complete MRI 17 (100) 41 (85.4) 0.226

Abnormal MRI 12 (70.6) 20 (48.8) 0.128

Areas of brain injury on MRI

White matter or cortex 11 (64.7) 16 (39) 0.074

Deep grey matter 7 (41.2) 11 (26.8) 0.282

Cerebellum 1 (5) 2 (4) 1

aData presented as median(IQR).
bMortality was defined as death prior to hospital discharge.
cMRI, magnetic resonance imaging.

TABLE 4 aEEG grade.

aEEG
grade

Active (n= 17),
n (%)

Control (n = 48),
n (%)

P-value

First aEEGa

Normal 6 (35.3) 12 (25) 0.627

Morderate 3 (17.6) 12 (25)

Severe 8 (47.1) 24 (50)

Third aEEG
Normal 11 (64.7) 21 (43.8) 0.041

Morderate 4 (23.5) 5 (10.4)

Severe 2 (11.8)*,** 22 (45.8)

P-value 0.009 0.107

aaEEG, amplitude integrated electroencephalogram.

*Compared with the control group, P < 0.05.

**Compared with Day 1 aEEG, P < 0.05.
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which was attributed to continuous core temperature monitoring

and timely temperature feedback from the servo-controlled

device. Hypothermia can lead to complications such as

arrhythmias and pulmonary hypertension, which are associated

with morbidity and mortality (21, 33). Gloria et al. reported that

hypothermia during transport (temperature <33°C) increases the

risk of neurological damage before discharge (34). Existing

studies have shown that hypothermia increases the demand for

inhaled nitric oxide and ECMO treatment, prolongs the duration

of oxygen therapy, and is associated with a higher incidence of

bradycardia and mortality (35, 36).

In this study, the duration of hospital stay and mechanical

ventilation for newborns in the active group were significantly

shorter than those in the control group. One possible explanation

for this difference is that the initiation of cooling and the

achievement of the target temperature occurred earlier in the active

group compared to the control group. Although the differences in
Frontiers in Pediatrics 06
these two parameters were not statistically significant, they may be

influenced by the longer transport distance in the active group and

the relatively small sample size. Furthermore, this study is

retrospective, and the management of respiratory care and the

initiation of enteral nutrition for patients with HIE at our center

have gradually evolved, which may account for the observed

differences. Additional randomized controlled studies are necessary

to confirm the effects of active hypothermia on these outcomes. For

instance, a study by Eniko et al. indicated that the median age at

which cooling was initiated in the active group was 2.58 h earlier

(P < 0.0001), and the median age at which the target temperature

was reached was 1.83 h earlier (P < 0.0001) (27).

Research conducted by Nash (37) and Bourel-Ponchel (38)

underscores the critical role of continuous EEG monitoring in

patients with HIE. This monitoring technique is effective in

accurately detecting electrographic seizures and possesses a high

predictive value regarding mortality and neurodevelopmental

outcomes in HIE patients. Additionally, Saliba et al. (39) further

emphasized the significance of EEG in both the diagnosis and

prognostic evaluation of HIE. Thoresen et al. indicated that

normalizing aEEG background patterns within 48 h of hypothermia

treatment is predictive of improved outcomes for affected infants

(40). However, bedside aEEG is not available in most of the district

referral hospitals, making the dianosis of HIE incomplete. In fact,

we are building integrative aEEG equipments in our transfer

platform now, hopefully could move forward the moniter time. The

study demonstrates a significant reduction in the proportion of

severe aEEG classifications on the third day of hypothermia in the

active group compared to the control group, indicating that earlier

cooling yields more favorable results. Nicolet Monitor offers

convenience for bedside use, unrestricted by time or space, allowing

for real-time monitoring of brain activity to assess brain damage

and identify seizures. Furthermore, aEEG is particularly user-
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friendly for clinicians with limited experience. Consequently, it is

strongly recommended to conduct continuous EEG monitoring for

neonates with HIE during therapeutic hypothermia.

This study does have certain limitations. Firstly, it is a

retrospective analysis, which may introduce potential

information bias. Secondly, there is an absence of long-term

neurodevelopmental follow-up data. Future multi-center,

prospective randomized controlled trials are essential to further

elucidate the safety and efficacy of active hypothermia during the

transport of neonates with HIE.

In conclusion, servo-controlled cooling therapy during

transport is both safe and effective. The servo-controlled device

provides advantages such as precise temperature regulation and

rapid cooling. From the perspective of the transport team, it

ensures greater temperature stability with minimal personnel

intervention, allowing the team to allocate more time and

resources to patient monitoring and care. Medical institutions

with suitable facilities and those involved in long-distance

transport should consider implementing this method.
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