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Bronchopulmonary dysplasia (BPD), also known as chronic lung disease, is the

most common cause of respiratory morbidity in preterm infants. Sepsis plays a

significant role in the pathogenesis of BPD, and the systemic inflammatory

response caused by sepsis is associated with lung development, leading to

simplified alveoli and abnormal vascular development, which are the

histological hallmarks of BPD. In this study, we conducted a retrospective

analysis of the clinical characteristics of 306 preterm infants with BPD treated

at our hospital from December 2019 to December 2022. We subsequently

utilized ten machine learning (ML) algorithms and used clinical features to

acquire models to predict BPD with sepsis. The performance of the model

was evaluated according to the mean area under the receiver operating

characteristic curve (AUC), sensitivity, specificity, and accuracy. The mean area

under the curve (AUC) of the best predictive model was 0.93. A nomogram

for sepsis onset was developed in the primary cohort with four factors:

invasive respiratory support, CRIB II score, NEC, and chorioamnionitis. By

including clinical features, ML algorithms can predict BPD with sepsis, and the

random forest (RF) model (sorted by the mean AUC) performs the best. Our

prediction model and nomogram can help clinicians make early diagnoses

and formulate better treatment plans for preterm infants with BPD.
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Introduction

Bronchopulmonary dysplasia (BPD) is usually caused by mechanical ventilation and

long-term use of oxygen (1). BPD, resulting from lung injury that disrupts alveolar

and pulmonary vascular development, is one of the most common causes of morbidity

and mortality in preterm infants. Owing to the increased survival of extremely low-

gestational-age newborns, BPD remains the most common complication associated with

prematurity, and its prevalence is increasing (1–3).

BPD is a multifactorial pathology influenced by a variety of prenatal and postnatal

factors that affect mothers and infants (4). BPD pathology worsens and further

promotes reactive oxygen species (ROS) production, and subsequent inflammation leads
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to sepsis (5). If children with BPD develop an infection, this may

further exacerbate the inflammatory response, thereby increasing

the risk of sepsis (6).

Sepsis is a clinical syndrome involving organ dysfunction

caused by a disordered host response to infection (7). Preterm

infant sepsis refers to an infection involving the bloodstream in

infants aged <28 days of age (8). Sepsis is divided into early-

onset sepsis (EOS) and late-onset sepsis (LOS) on the basis of

age at presentation after birth. EOS refers to sepsis in neonates

occurring within 72 h (h) of birth (some experts use 7 days), and

LOS is defined as sepsis occurring at or after 72 h of life (8–10).

EOS is generally caused by an in utero infection or by vertical

bacterial transmission from the mother during vaginal delivery,

whereas LOS usually occurs not only by vertical bacterial

transmission but also by horizontal bacterial transmission from

healthcare providers and the environment (11). The clinical

manifestations of neonatal sepsis can range from nonspecific or

vague symptoms to hemodynamic collapse. The early symptoms

may include irritability, lethargy, or poor feeding. Others may

quickly progress to respiratory distress, fever, hypothermia, or

hypotension, accompanied by poor perfusion and shock (12).

Preterm infants with BPD are more susceptible to developing

sepsis because of chronic lung and airway damage. Predicting the

risk of BPD with sepsis is crucial for early intervention and

improving patient prognosis. Few studies have reported the

establishment of predictive models in adults (13–15). However,

in neonatal medicine, statistical or machine learning (ML)

models for predicting patients who may develop BPD with sepsis

are relatively rare. Therefore, such models need to be established

to help doctors identify risks early, thereby allowing them to take

preventive measures or undergo early treatment.

In this study, we conducted a retrospective analysis of the

clinical characteristics of preterm infants with BPD at our

hospital from December 2019 to December 2022. We

subsequently used ML algorithms to identify high-risk factors for

the co-occurrence of BPD and sepsis.

Methods

Study design and study participants

This study was approved by the Ethics Committee of the

Seventh Medical Center of the PLA General Hospital

(S2024-046-01) and was conducted in accordance with the

Declaration of Helsinki. The studies were conducted in

accordance with local legislation and institutional requirements.

Written informed consent for participation was not required

from the participants or their legal guardians/next of kin because

of the retrospective design of the study.

The study population included extremely preterm infants with

BPD who were born or admitted to the Seventh Medical Center of

PLA General Hospital (Beijing, China). Trained neonatologists at

our center identified the patients. The following criteria were

applied to construct the initial dataset:

The inclusion criteria were as follows: very preterm infants

(gestational age ≤32 weeks, >28 weeks) and extremely preterm

infants (gestational age ≤28 weeks) who met the diagnostic

criteria for BPD.

The exclusion criteria were as follows: very preterm infants and

extremely preterm infants who died were withdrawn from

treatment or discharged within 28 days after birth. Patients with

genetic metabolic diseases. Infants without BPD.

The patients were divided into BPD with sepsis and BPD

without sepsis groups on the basis of Doppler echocardiography

results after at least 36 weeks of corrected gestation.

Clinical feature collection

Clinical data were collected from the electronic medical records

of the Seventh Medical Center of the PLA General Hospital,

including maternal pregnancy factors [amniotic fluid disorders,

hypertension during pregnancy, gestational diabetes mellitus

(GDM), preeclampsia, placental abnormality, delivery method,

placenta pathology], newborn clinical data [gestational age (GA),

birth weight (BWt), sex, multifetal gestations, 1-min Apgar score

(5APGAR), 10 min Apgar score (10APGAR), severity of BPD,

pulmonary hypertension (PH) (early-PH and BPD-related PH),

patent ductus arteriosus (PDA), severe PDA (defined as needing

surgery ligation), intraventricular hemorrhage (IVH), necrotizing

enterocolitis (NEC), retinopathy of prematurity (ROP), clinical

risk index for babies score II (CRIB II), hospital length of stay

(day), invasive respiratory support (day), etc.], related laboratory

tests (platelet (PLT), C-reactive protein (CRP), white blood cell

count (WBC), neutrophil count (N), hemoglobin (HGB)), signs

and symptoms of infection episodes such as difficulty breathing,

fever (>37.5°C), hypothermia (<36.5°C), abdominal distension,

feeding intolerance, etc., and microbiological characteristics. The

diagnosis of chorioamnionitis was confirmed via placental

histopathology. Echocardiograms at 4–7 days of age were used to

assess “early-PH” (16, 17). Other diagnostic criteria were based

on related criteria (18, 19).

Statistical methods

To filter for missing data, the missing data module in Python

3.9.12 was used. In Supplementary Figure S1, each column

represents a clinical variable, and the white line represents missing

data. The denser the lines in each column are, the greater the

number of missing values for that variable. Detailed information

regarding missing values is provided in Supplementary Table S1.

We removed the antenatal corticosteroid (ANC) variable, which

was missing in >25% of the observations, to facilitate and ensure

study accuracy.

Continuous data are presented as the mean ± standard deviation

(SD) or median (interquartile range, Q1, Q3), and intergroup

comparisons of normally distributed continuous data were made via

two-sample t tests, with the test value being the t value. Intergroup

comparisons of nonnormally distributed continuous data via
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nonparametric tests were performed via the Mann‒Whitney U test,

with the test value being the Z value. Categorical data are

represented by the number of cases and percentage (%), and

intergroup comparisons were made via the rank sum test, with the

test value being χ
2. To identify the predictors of sepsis, a variance

inflation factor (VIF) was first used to test all predictors for

multicollinearity, followed by the inclusion of all predictors in the

model via multivariate logistic regression analysis. The odds ratios

(ORs) for independent risk factors for sepsis were estimated via a

stepwise selection method with a 95% confidence interval (CI).

A two-tailed P value less than 0.05 indicated a statistically significant

difference. Statistical analyses were performed via SPSS version 27.0.

Binary classification was performed using Scikit-learn (version

0.24.1) in Python (version 3.9.12). Ten ML algorithms were used

to differentiate between septic BPD patients and nonseptic BPD

patients. The following 10 models are used: logistic regression

(LR), random forest (RF), support vector machine (SVM), decision

tree (DTREE), AdaBoost (ADB), Gaussian naive Bayes (NB),

linear discriminant analysis (LDA), k-nearest neighbors (KNN),

gradient boosting classifier (GB), and multilayer perceptron

(MLP). Considering the limited number of data samples, each

classification model for the ML algorithms was built on all the data

via the default parameters in the scikit-learn library. The synthetic

minority oversampling technique (SMOTE) expands the number

of samples in a minority class to ensure equal representation

among groups in ML. The bootstrap method was used 1,000 times

for internal validation. The performance of each algorithm was

assessed on the basis of average sensitivity, specificity, the mean

area under the receiver operating characteristic (ROC) curve, and

the mean F1 of the resampled samples 1,000 times for pediatric

patients with combined septic and nonseptic BPD. Receiver

operating characteristic (ROC) curves were plotted via the

matplotlib library (version 3.3.4) in Python as part of the internal

validation process. The precise contribution (magnitude and

direction) of the feature output by each classifier was determined

via Shapley additive explanations (SHAPs). The SHAP values were

calculated via the RF algorithm for each classifier. SHAP summary

plots were visualized in Python via the Sharp library (version 0.39.0).

Nomogram charts (rms package) were drawn using the selected

risk factors. The concordance statistic (C statistic) and calibration

curve (rms package) were used to distinguish and calibrate the

nomograms. Decision curve analysis (DCA) and a clinical impact

curve (CIC) were used to evaluate the clinical utility of the

model (20–22). The DCA curve and CIC (ggDCA package) were

used to evaluate the effectiveness and clinical applicability of the

risk prediction nomogram. Statistical analyses were performed

via version 4.5.0 of the R statistical software.

Results

Demographic and clinical features of sepsis
BPD patients and nonsepsis BPD patients

A total of 306 patients with BPD were enrolled in this study,

including 177 men (57.8%) and 129 women (42.2%). The

demographic and clinical features of the patients are summarized

in Table 1.

Our analysis revealed that the lower the birth weight was, the

greater the chance of developing sepsis (Figure 1A). The lower

the gestational age was, the greater the incidence of sepsis,

especially in preterm infants born at ≤27 weeks (Figure 1B).

The features of the patients with BPD are described in Table 1.

A comparison of the two groups revealed that several characteristics,

such as GA, BWt, delivery mode, hospital stay, duration of invasive

ventilator ventilation, oxygen intrathecal time, CRIB II score and

5APGAR, were significantly different (p < 0.05). These results

suggest that the earlier the gestational age and the lower the birth

weight, the greater the proportion of infants with sepsis, the longer

the hospital stay, and the longer the duration of invasive mechanical

ventilation. Sex, singleton pregnancy, noninvasive ventilator

ventilation time, and 1APGAR and 10APGAR levels were not

significantly different between the two groups.

The analysis of the clinical characteristics of maternal and

postnatal complications, including chorioamnionitis, varying

degrees of ROP, NEC, early postnatal pulmonary hypertension

(early PH), severity grading of BPD, and BPD-PH (p < 0.05),

revealed significant differences between sepsis patients and

nonsepsis BPD patients (Table 1).

Machine learning algorithms and the
development and evaluation of a
nomogram for BPD patients with sepsis

In previous clinical practices, BWt, GA, invasive respiratory

support, CRIB II, 5APGAR, NEC, early PH, and

chorioamnionitis were found to be independent risk factors for

sepsis in preterm infants with BPD. Furthermore, collinearity

diagnostic analysis demonstrated that the VIFs of these risk

factors, except BWt and GA, were less than 4, indicating that

there was no strong indication of multicollinearity among the

variables. Considering that data were missing, we included a

sample size of 284 cases for model construction after removing

missing data. These four variables, invasive respiratory support,

CRIB II, NEC, and chorioamnionitis, were incorporated into the

final predictive model on the basis of stepwise regression results.

Multivariate analysis revealed that invasive respiratory support

(OR, 1.02; 95% CI, 1.00–1.04; p < 0.05), CRIB II (OR, 1.28; 95%

CI, 1.12–1.46; p < 0.05), NEC (OR, 3.10; 95% CI, 1.23–7.82;

p < 0.05), and chorioamnionitis (OR, 10.40; 95% CI, 2.85–38.02;

p < 0.05) independently increased the risk for the development of

sepsis in BPD infants (Table 2).

We constructed 10 models of ML by comparing their model

performance. In the predictive model built with the above four

factors, the mean area under the ROC curve of each model

reached or approached 0.8. Among them, the RF model emerged

as the most effective predictor, with a mean area under the

receiver operating characteristic (ROC) curve of 0.93 (Figure 2A).

The mean F1 of the 4/10 models reached 0.8, with the RF model

having the best predictive performance, with a mean F1 of 0.87

(Table 3).
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TABLE 1 Clinical characteristics of infants with BPD with sepsis vs. those without sepsis and EOS vs. LOS in infants with BPD with sepsis.

Variables Total (N = 306) Total (N = 103)

Sepsis (N= 103) Nonsepsis (N= 203) t/χ2 P EOS (N= 47) LOS (N = 56) t/χ2 P

Clinical variables

GA(weeks),a mean ± SD 26.82 ± 1.53 27.63 ± 1.90 −3.850 <0.001 26.85 ± 1.63 26.79 ± 1.46 −0.010 0.992

BWt(g)a, mean ± SD 990.65 ± 282.81 1,104.42 ± 334.13 −3.561 <0.001 997.77 ± 246.79 984.34 ± 313.54 −0.715 0.475

Sex 0.121 0.728 0.113 0.737

Male 61 (59.2%) 116 (57.1%) 27 (57.4%) 34 (60.7%)

Female 42 (40.8%) 87 (42.9%) 20 (42.6%) 22 (39.3%)

Csec 7.793 0.005 0.082 0.775

Yes 41 (39.8%) 114 (56.2%) 18 (38.3%) 23 (41.1%)

No 62 (60.2%) 87 (42.8%) 29 (61.7%) 33 (58.9%)

Singleton 0.032 0.858 0.201 0.654

Yes 70 (68.0%) 140 (69.0%) 33 (70.2%) 37 (66.1%)

No 33 (32.0%) 63 (21.0%) 14 (29.8%) 19 (18.0%)

Stay in the hospital (d)a 98.53 ± 41.75 84.67 ± 34.05 −3.591 <0.001 97.30 ± 46.09 99.57 ± 38.12 −0.868 0.386

Invasive respiratory support (d)a 31.64 ± 38.20 28.65 ± 19.63 −5.473 <0.001 33.78 ± 45.46 29.89 ± 41.37 −0.156 0.876

Noninvasive respiratory support (d)a 28.65 ± 19.63 28.26 ± 23.32 −0.649 0.516 30.13 ± 23.09 27.42 ± 17.93 −0.109 0.913

Nasal catheter oxygen inhalation (d)a 14.04 ± 15.64 16.79 ± 12.92 −2.957 0.003 12.55 ± 12.39 15.29 ± 17.94 −0.288 0.773

CRIB IIa,c 9 (7,11) 6 (4,8) −6.560 <0.001 8 (7,10) 9 (8,11) −1.247 0.212

1APGARa,c 7 (6,8) 8 (6,9) −1.952 0.051 7 (6,8) 8 (6,8) −0.053 0.958

5APGARa,c 9 (8,9) 9 (8,10) −2.220 0.026 9 (8,9) 9 (8,9) −1.102 0.271

10APGARa,c 9 (8,10) 9 (9,10) −1.818 0.069 9 (8,10) 9 (8,9.5) −0.461 0.654

PIH 14 (13.7%) 43 (21.2%) 2.484 0.115 6 (13%) 8 (14.3%) 0.033 0.856

GDM 23 (22.8%) 54 (26.6%) 0.523 0.470 10 (22.2%) 13 (23.2%) 0.014 0.906

Placental abruption 19 (18.4%) 33 (16.3%) 0.215 0.643 9 (19.1%) 10 (17.9%) 0.028 0.866

Abnormal amniotic fluid 20 (19.4%) 39 (19.3%) 0.001 0.982 8 (17.0%) 12 (21.4%) 0.317 0.573

Abnormal fetal membranesb 2 (1.9%) 1 (0.5%) 0.264 1 (2.1%) 1 (1.1%) 1

Umbilical cord abnormalities 16 (15.7%) 23 (11.4%) 1.121 0.290 6 (12.8%) 10 (18.2%) 0.562 0.453

Maternal age(years) 32.58 ± 5.11 32.11 ± 4.23 0.823 0.411 31.30 ± 4.73 33.68 ± 5.21 −2.288 0.024

Outcomes

ROP 15.292 0.002 1.535 0.674

Non 31 (33.7%) 115 (58.4%） 15 (34.1%) 16 (33.3%)

I 12 (13%) 16 (8.1%) 6 (13.6%) 6 (12.5%)

II 30 (32.6%) 41 (20.8%) 12 (27.3%) 18 (37.5%)

III 19 (20.7%) 25 (12.7%) 11 (25.0%) 8 (9.9%)

Early-PH 84 (84.0%) 58 (29.1%) 6.176 0.013 38 (45.2%) 46 (54.8%) 0.012 0.913

PDA 0.859 0.651 0.028

Non 5 (4.9%) 15 (7.5%) 1 (2.1%) 5 (78.6%)

Without surgical treatment 88 (86.3%) 169 (84.9%) 44 (95.7%) 44 (8.9%)

Surgical treatment 9 (8.8%) 15 (7.5%) 2 (4.3%) 7 (12.5%)

NEC 18 (17.47%) 194 (9.56%) 14.447 <0.001 5 (10.6%) 13 (23.2%) 2.802 0.094

WMI 6.676 0.036 0.681

Non 72 (69.9%) 168 (82.8%) 35 (48.6%) 37 (51.4%)

I 23 (22.3%) 26 (12.8%) 9 (39.1%) 14 (60.9%)

II 8 (7.8%) 9 (4.4%) 3 (37.5%) 5 (62.5%)

BPD severity 31.646 <0.001 2.429 0.297

Mild 12 (11.9%) 66 (33.2%) 7 (14.9%) 5 (9.3%)

Moderate 40 (39.6%) 94 (47.2%) 21 (44.7%) 19 (35.2%)

Severe 49 (48.5%) 39 (19.6%) 19 (40.4%) 30 (55.6%)

BPD-PH 13 (13.1%) 10 (5.0%) 6.099 0.014 4 (8.7%) 9 (17.0%) 1.482 0.223

IVH 72 (70.6%) 121 (61.4%) 2.468 0.116 33 (71.7%) 39 (70.6%) 0.053 0.817

Chorioamnionitisb 19 (18.4%) 3 (1.5%) <0.001 13(27.7%) 6(10.7%) 4.877 0.027

Continuous data are presented as the mean ± SD values except for median (interquartile range, Q1, Q3); categorical data as n/N (%); the figures in parentheses are percentages. n: Number of

participants. Chi-square, Fisher’s exact test, and Mann–Whitney U test were used for discrete and continuous variables.

SD, standard deviation; EOS, early onset sepsis; LOS, late-onset sepsis; BWt, birth weight; GA, gestational age; Csec, cesarean section; 1APGAR, Apgar score at 1 min; 5APGAR, Apgar score at

5 min; 10APGAR, Apgar score at 10 min; CRIB-II, clinical risk index II for infants; PIH, pregnancy-induced hypertension; GDM, gestational diabetes mellitus; IVH, cerebral intraventricular

hemorrhage; ROP, retinopathy of prematurity; PDA, patent ductus arteriosus; BPD, bronchopulmonary dysplasia; NEC, necrotizing enterocolitis; WMI, brain white matter injury; BPD-PH,

BPD-associated pulmonary hypertension.
aMann–Whitney U test, Z value.
bFisher’s exact test.
cData are shown as median (interquartile range, Q1, Q3).
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The RF model was used to demonstrate the importance of

various features in the model with the best predictive

performance. The CRIB II score ranked first, followed by the

duration of invasive mechanical ventilation and NEC. These

findings indicated that a higher CRIB II score and longer

duration of invasive mechanical ventilation were associated with

greater risk (Figure 2B). In addition, the coexistence of

chorioamnionitis and NEC is a major risk factor for sepsis.

These findings suggest that, in the absence of chorioamnionitis

in pregnant mothers before birth, actively preventing prenatal

infections and NEC after birth can prevent the occurrence of sepsis.

We constructed anomogrambased on the logistic regressionmodel,

which allowed for a more intuitive prediction of the risk of sepsis

(Figure 2C). A nomogram for sepsis onset was developed in the

primary cohort with four factors: invasive respiratory support, CRIB II

score, NEC, and chorioamnionitis. These factors were screened via

logistic regression analysis. The C-statistic of the nomogram was 0.79.

The Brier score was 0.164, which is smaller than 0.25.

The calibration curve of the constructed regression model

generated via the bootstrap method (with 1,000 repeated

samples) indicated an average absolute error of 0.03, suggesting

that the predicted risk of sepsis was quite accurate after

calibration and that the model did not overfit (Figure 2D).

According to the DCA curve of the prediction model and the

verified DCA curve (Figure 2E), the net benefit corresponding to

the curve was above 0 over a wide range of decision thresholds

(0.2–0.8). It is far from the two extreme curves of “None” and

“All”. The CIC curves of the prediction model validation

(Figure 2F) show that the results predicted by the model are

close to the actual results in a wide range of risk thresholds (0.5–

1.0), which indicates practical application value in a wider range

of clinical situations.

Clinical characteristics of BPD patients with
EOS and LOS

Next, we analyzed the clinical information regarding birth

details, postnatal complications, and symptoms from the BPD

complicated with EOS group and BPD complicated with LOS

group and found significant differences in the LOS group in

terms of biochemical indicators (platelet count, peak values of

CRP), symptoms during infection (fever, feeding intolerance, and

abdominal distension), and postnatal complications (PDA)

(p < 0.05). These findings suggest that infants with BPD and LOS

are more likely to have abnormalities in the above indicators and

clinical symptoms. Other factors, such as GA, BWt, the Apgar

score, sex, the CRIB II score, the total SOFA score, the WBC

count, HGB, postnatal complications such as NEC and early

postnatal PH, and symptoms during infection, such as oxygen

desaturation and bradycardia, were not significantly different

between the two groups. However, in both groups of patients

with sepsis, the percentage of patients with oxygen desaturation

reached over 95%, whereas respiratory arrest and bradycardia

were more common in patients with LOS, indicating that these

patients require close attention from physicians (Table 1).

FIGURE 1

Distribution of birth weight (A) and gestational age (B) in sepsis and nonsepsis BPD patients. BPD, bronchopulmonary dysplasia.

TABLE 2 Binary logistic regression analysis of sepsis and nonsepsis
patients with BPD.

Variables OR (95% CI) P value

Invasive respiratory support 1.019 (1.003–1.036) 0.022

NEC 3.098 (1.228–7.815) 0.017

Chorioamnionitis 10.400 (2.845–38.015) <0.001

CRIB II 1.280 (1.121–1.460) <0.001

NEC, necrotizing enterocolitis; CRIB-II, clinical risk index II for babies. P values were

calculated via a stepwise multivariate regression model.
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The analysis of biochemical indicators from the groups with

BPD complicated by EOS and LOS revealed that the peak values

of CRP were relatively high in the group with BPD complicated

by LOS. In contrast, in the group with BPD complicated by EOS,

the proportion of infants with abnormal white blood cell counts

was relatively high (Table 4).

FIGURE 2

Ml and prediction models for sepsis-induced BPD patients. (A) ROC curves after internal validation via bootstrap resampling (1,000 times) of 10 machine

learning models. the shading represents the mean AUC of the bootstrap samples, and the line represents the apparent AUC. (B) SHAP heatmap

generated via the random forest model. (C) A nomogram was used to predict sepsis in infants with BPD. A binary logistic regression algorithm was used

to establish the nomogram. The final score was calculated as the sum of the individual scores for each of the four variables included in the nomogram.

(D) Calibration curve of the regression model. The X-axis represents the overall predicted probability of sepsis in infants with BPD, and the Y-axis

represents the actual probability. Model calibration is indicated by the degree of fitting of the curve and the diagonal. (E) DCA curve of the logistic

regression model. The horizontal axis in the figure represents the threshold probability, and the vertical axis represents the net benefit (NB). The lines’

None “and” All “represent two extreme situations, where” None’ indicates that all patients have a negative outcome, no intervention has been performed,

and NB is 0. All the lines indicate that all patients have a positive outcome and that all have received intervention. Its NB is a negative sloping diagonal

line. In this analysis, the decision curve provided a larger net benefit across the range of 0.2–0.80. (F) Clinical impact curve of the logistic regression

model. LR, logistic regression; RF, random forest; SVM, support vector machine; DTREE, decision tree; ADB, AdaBoost; NB, Gaussian naive Bayes; LDA,

linear discriminant analysis; KNN, k-nearest neighbors; GB, gradient boosting classifier; MLP, multilayer perceptron.
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The etiological characteristic analysis of blood cultures from

the groups with BPD complicated by EOS and BPD complicated

by LOS revealed that in the group with BPD complicated by LOS,

gram-positive bacteria accounted for 37.8%, with Staphylococcus

epidermidis and Enterococcus faecalis being the main bacteria, each

accounting for 16.2%, followed by Streptococcus hemolyticus and

Staphylococcus aureus. Clinically suspected fungal infections

accounted for 23.4%, and Candida spp. accounted for 3.6%.

A greater proportion of infants with LOS had coinfections with

more than one pathogen. In contrast, the clinically suspected rate

was higher in patients with EOS (64.4%), indicating that the

positive rate of pathogen detection is lower in patients with EOS

and that fungal infections are rare (Table 5).

Discussion

BPD is a common complication in premature infants and a

chronic lung disease in neonates. A recent study revealed that in

the United States, the incidence of chronic lung disease in

extremely preterm infants born between 24 and 28 weeks of

gestation has been increasing since 2012 (23). In the past decade,

the survival rate of extremely preterm infants in China has

improved significantly. However, the incidence of BPD has not

decreased significantly, reaching 40.7% (24). In addition to

chronic lung disease, the incidence of long-term complications in

BPD patients, such as those involving the cardiovascular,

nervous, digestive, and endocrine systems, has also increased (24).

Neonatal sepsis, especially early-onset sepsis (EOS), often

presents with subtle and nonspecific symptoms, making prompt

diagnosis challenging. ML models can identify high-risk neonates

before symptoms become apparent. This early detection enables

timely intervention, which is crucial for reducing morbidity and

mortality associated with sepsis (25). ML models can integrate

TABLE 3 Predictive performance comparison of the ten types of machine
learning algorithms.

Models AUC
Mean,
95% CI

F1 Mean,
95% CI

Sensitivity
Mean, sd

Specificity
Mean, sd

LR 0.790

(0.784 0.794)

0.679

(0.650 0.706)

0.593, 0.026 0.846, 0.017

RF 0.934

(0.913 0.952)

0.877

(0.851 0.902)

0.875, 0.023 0.879, 0.024

SVM 0.794

(0.772 0.804)

0.692

(0.658 0.728)

0.622, 0.041 0.827, 0.033

DTREE 0.891

(0.858 0.919)

0.865

(0.834 0.894)

0.851, 0.025 0.885, 0.027

ADB 0.848

(0.824 0.867)

0.760

(0.718 0.798)

0.725, 0.044 0.818, 0.042

NB 0.778

(0.771 0.785)

0.619

(0.484 0.643)

0.489, 0.040 0.911, 0.016

LDA 0.791

(0.788 0.794)

0.666

(0.641 0.694)

0.568, 0.026 0.864, 0.021

KNN 0.878

(0.854 0.901)

0.810

(0.778 0.839)

0.821, 0.029 0.794, 0.031

GB 0.905

(0.885 0.925)

0.840

(0.808 0.867)

0.815, 0.030 0.874, 0.030

MLP 0.801

(0.790 0.810)

0.699

(0.663 0.730)

0.636, 0.036 0.818, 0.027

LR, logistic regression; RF, random forest; SVM, support vector machine; DTREE, decision

tree; ADB, AdaBoost; NB, Gaussian naive Bayes; LDA, linear discriminant analysis; KNN,

k-nearest neighbors; GB, gradient boosting classifier; MLP, multilayer perceptron. AUC,

area under the curve; SD, standard deviation.

TABLE 4 Laboratory characteristics and clinical signs of EOS vs. LOS in
infants with BPD with sepsis.

Variables EOS
(N= 47)

LOS
(N= 56)

t/χ2 P

Laboratory variables

nSOFAa 1 (0,2) 2 (1,4) −1.837 0.066

WBCb (109/L) 16.85 ± 12.29 14.55 ± 7.74 −0.331 0.741

Nb (109/L) 7.13 ± 6.14 10.81 ± 20.03 −0.156 0.876

HGB (g/L) 131.08 ± 26.74 122.13 ± 31.12 1.397 0.166

PLTb (109/L) 200.18 ± 158.55 130.43 ± 95.60 −2.412 0.016

Peak episode CRP, mg/L

(median ± SD)b
23.71 ± 37.44 41.00 ± 37.22 −2.902 0.004

Clinical signs associated episode

Decreased oxygen

saturation

46 (97.9%) 56 (100%) 1.203 0.273

Fever or hypothermia 5 (10.6%) 15 (26.8%) 4.258 0.039

Abdominal distension/

increased abdominal girth

8 (17.0%) 29 (51.8%) 13.417 <0.001

Feeding intolerance 1 (7.7%) 12 (21.4%) 8.632 0.003

Increased bradycardic

episodes

8 (17%) 15 (26.8%) 1.405 0.236

Apnea 12 (25.5%) 31 (55.4%) 9.347 0.002

Continuous data are presented as the mean ± SD values except for median (interquartile

range, Q1, Q3); categorical data as n/N (%); figures in parentheses are percentages.

nSOFA, sequential organ failure assessment score; WBC, white blood cell; N, neutrophil

count; HGB, hemoglobin; PLT, platelet; CRP, C-reactive protein; SD, standard deviation.
aThe data was shown as median (interquartile range, Q1, Q3).
bMann–Whitney U test, Z value.

TABLE 5 Microbiological characteristics of infants and manifestations of
EOS and LOS episodes [results are reported as N(%) unless otherwise
specified].

Clinical diagnosis EOS(N= 47) LOS (N= 56)

29 (64.4%) 7 (12.7%)

Organisms from blood culture

Gram-nagative bacteria(total) 4 (8.7%) 16 (28.8%)

Klebsiella pnenmoniae 1 (2.1%) 8 (14.4%)

Serratia marcescens - 3 (5.4%)

Enterobacter cloacae 2 (4.2%) 1 (1.8%)

Enterobacter aerogenes - 3 (5.4%)

Escherichia coli 1 (2.1%) 1 (1.8%)

Gram-positive bacteria(total) 10 (21%) 25 (45.0%)

Staphylococcus epidermidis 5 (10.6%) 9 (16.2%)

Staphylococcus aureus - 4 (7.2%)

Enterococcus faecalis 2 (4.2%) 1 (1.8%)

Enterococcus faecalis group D) 3 (6.3%) 9 (16.2%)

Hemolytic staphylococcus - 1 (1.8%)

Staphylococcus human subspecies - 1 (1.8%)

Fungal infection(total) 2 (4.2%) 12 (21.6%)

Pseudohyphae - 2 (3.6%)

Candida guilliermondii 1 (1.8%)

Probable fungal infection 2 (4.2%) 9 (16.2%)

Other organisms 3 (6.3%) 3 (5.4%)

2 organisms 1 (2.1%) 3 (5.4%)

3 organisms - 2(3.6%)
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various clinical data points, such as vital signs and laboratory

indicators, to identify risk factors more accurately. This approach

significantly improves diagnostic sensitivity and overall accuracy.

In addition, ML models can help allocate medical resources

more efficiently by rapidly screening high-risk neonates, ensuring

that critical interventions are directed toward those who

need them most, enhancing the overall efficiency of healthcare

delivery (26).

Inflammation/infection, including chorioamnionitis in utero

and postnatal systemic infectious inflammation, has been shown

to be a risk factor for neonatal sepsis (27, 28). Sepsis-induced

systemic inflammation is a cause of neonatal mortality (29, 30).

In this study, we conducted a retrospective analysis of the

clinical characteristics of preterm infants with BPD from

December 2019 to December 2021 and used ML methods to

rank the importance of various features and fit a predictive

model. All risk factors were ranked in terms of their importance

in deciding whether to include or reject them. The most

important factor is the CRIB II score for neonates, followed

by invasive mechanical ventilation, intrauterine infection

(chorioamnionitis), and the subsequent development of acute

NEC. This finding is consistent with the results of a previous

questionnaire survey study (31). Early chorioamnionitis was

suspected to be the main cause of EOS triggered by intrauterine

infection, whereas late-onset NEC in later stages of enteral

feeding was the main cause of LOS. In terms of the predictive

performance of the ten models adopted, the mean area under the

ROC curve of all the models can approach or reach 0.8. The RF

model showed the best predictive performance, with a value of

0.93. Its clinical and practical value has been determined by

DCA and CIC curves. Moreover, the nomogram constructed

from these findings can intuitively predict the risk of sepsis, and

when combined with the results of etiological analysis, it is

beneficial to further guide clinical doctors in the diagnosis,

treatment, and rational use of antimicrobial drugs. In the

etiological analysis of blood for EOS and LOS in preterm infants

with BPD in our hospital, gram-positive bacteria were commonly

observed in LOS, and clinically suspected fungal infections, such

as Candida albicans and Candida parapsilosis, were frequently

observed. In this study, the changes in the platelet count and

CRP level were the most significant for LOS, whereas the change

in the WBC count was more pronounced for the early detection

of sepsis. The platelet count has good sensitivity and specificity

for diagnosing neonatal sepsis and can be used as a diagnostic

tool for neonatal sepsis (32, 33). In addition, the PLT can serve

as a diagnostic indicator of late-onset neonatal pneumonia (34).

However, considering that CRP is nonspecific for diagnosing

sepsis and has poor sensitivity, a single standard for diagnosing

sepsis must be more accurate. In clinical practice, a

comprehensive assessment is needed, which should be combined

with clinical symptoms, blood cell counts, and other indicators.

The advent of big data and the artificial intelligence era has also

driven medical progress. In recent years, the combination of ML

with medical data has not only aided scientific research output

but has also been continuously applied in clinical work.

Statistical models are the best way to analyze and predict

outcomes (35). A recent study revealed that ML models

constructed from the vital signs of newborns within 24 h before

infection can also predict sepsis quite well, with the area under

the ROC curve reaching 0.82 (36).

In summary, our study indicated that sepsis is a risk factor for

BPD. The ML algorithm suggests that the CRIB II score, duration

of invasive mechanical ventilation, incidence of chorioamnionitis,

and incidence of neonatal necrotizing enterocolitis are high-risk

factors for the co-occurrence of sepsis. By combining the

nomogram and characteristics of etiology, the risk of sepsis can

be calculated, which may further reduce the exposure to and

duration of antibiotic use in preterm infants and has a certain

guiding significance for clinical diagnosis and treatment.

Limitations

Our study was a retrospective case analysis study from a single

center with a relatively small number of case samples. The

etiological characteristics of the samples included only peripheral

blood and did not include samples from other sources, such as

oropharyngeal or tracheobronchial secretions or sputum. Further

studies are needed to expand the sample size and to conduct

prospective multicenter cohort studies. Additionally, in this

study, the subjects were preterm infants, making it difficult to

collect sufficient blood samples for the detection of

inflammation-related indicators. In the future, given the

availability of technologies that can measure these indicators, we

will also incorporate these indicators into our analysis. Although

ML models have shown promise in predicting sepsis, their

generalizability and clinical interpretability still require further

research and validation. Moreover, to increase predictive

accuracy, future studies may need to incorporate more patient

data and vital sign indicators as well as further refine the

algorithms and structure of the models.
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