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Bronchopulmonary dysplasia (BPD) is a multifactorial chronic lung disease of

premature neonates. BPD development depends on prenatal and postnatal

factors that induce inflammation, altering alveolar growth and pulmonary

vascular development. Animal models are essential to investigate the precise

molecular pathways leading to BPD. The preterm rabbit combines many

advantages of small (e.g., rodents) and large BPD models (e.g., preterm lambs

and baboons). Preterm rabbits display mild-to-moderate respiratory distress at

delivery, which, along with continuous exposure to hyperoxia (95% O2), leads

to functional and morphological lung changes resembling a BPD-like

phenotype. Nevertheless, the molecular pathways leading to the BPD-like

phenotype remain poorly understood. Here, we aimed to characterize the

longitudinal gene expression in the lungs of preterm rabbits exposed to 95%

O2, on postnatal days 3, 5, and 7. Histological analyses confirmed extensive

lung injury and reduced lung development after 7 days of hyperoxia.

Longitudinal transcriptomic analysis revealed different expression patterns for

several genes and pathways. Over time, extracellular matrix organization and

angiogenesis were increasingly downregulated. Apoptosis, RNA processing,

and inflammation showed the opposite trend. We also investigated the

expression of representative genes of these pathways, whose signatures could

aid in developing pharmacological treatments in the context of BPD.

KEYWORDS

bronchopulmonary dysplasia, preterm rabbits, transcriptomics, hyperoxia,

inflammation

1 Introduction

Bronchopulmonary dysplasia (BPD) is a chronic lung disease affecting premature

neonates characterized by inflammation, alveolar simplification, and abnormal

pulmonary vasculature (1, 2). The incidence of BPD increases with decreasing

gestational age, currently affecting approximately 50% of extremely premature neonates
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(i.e., born before 28 weeks of gestation) (2, 3). Extremely premature

babies display surfactant deficiency and underdeveloped lungs at

delivery, which leads to life-threatening respiratory distress soon

after birth. Surfactant replacement, oxygen therapy, and

ventilation are life-saving treatments for these babies (4).

However, long-term exposure to ventilation and supplemental

oxygen induces inflammation and oxidant stress, damaging the

fragile lungs of premature neonates and increasing the risk of

developing BPD (5, 6).

BPD treatment remains an unmet clinical need without an

approved treatment (3). Systemic corticosteroids can reduce

inflammation and improve lung function, but their use remains

controversial due to potential risks, including neurodevelopmental

impairment, increased susceptibility to infections, hypertension,

and growth delays (7). To minimize systemic side effects,

alternative delivery methods, such as inhaled corticosteroids or

corticosteroid-surfactant combinations, have been explored (8, 9).

However, the recent PLUSS trial failed to demonstrate a significant

benefit of budesonide mixed with surfactant in infants born before

28 weeks of gestation (10). While promising BPD therapies, such

as extracellular vesicles and growth factors (11, 12), are currently

under clinical development, there is a critical need for novel

strategies targeting the biological mechanisms driving BPD.

The molecular pathways leading to BPD remain unclear, partly

due to the inherent limitation of collecting lung samples from

premature neonates with evolving BPD. Consequently, most of

the current knowledge on the molecular pathways of the disease

derives from in vivo studies (13–17). The preterm rabbit model

has several advantages. Rabbits are cost-effective, have a large

litter size, a relatively short gestation, and display comparable

lung development to humans (16, 18, 19). Moreover, rabbits

delivered prematurely on the 28th day of gestation, within the

saccular phase (16, 20), display mild to moderate respiratory

distress, thus mimicking the clinical course of human BPD (19).

Adding hyperoxia on top of premature birth results in reduced

alveolar development, as evidenced by significant lung function

deficits (21, 22). Notably, the 28-day gestation preterm rabbit

model exposed to hyperoxia has been utilized in several

pharmacological studies in the context of BPD (23–25). These

studies used lung function and histological parameters as the

main efficacy outcomes. Although useful in assessing drug

efficacy, functional and histological outcomes reflect the overall

lung status after the hyperoxic injury but provide limited

information regarding the molecular changes leading to the

BPD-like phenotype.

“Omics” technologies are powerful tools that enable the

identification of molecular pathways and the discovery of new

biomarkers and drug targets (26). Recently, transcriptomic

analyses have identified dysregulated genes and pathways

involved in the pathophysiology of BPD (27–29), including two

studies in preterm rabbits (30, 31). Salaets et al. (30) conducted a

transcriptome study of the preterm rabbit lungs exposed to 95%

O2. Inflammation, vasculogenesis, and reactive oxygen species

metabolism were the main pathways dysregulated by hyperoxia

at day 7. This study has merit, as it first applied transcriptomics

in preterm rabbits. However, the transcriptome analysis was

performed after a 7-day hyperoxia exposure and did not capture

the evolving molecular changes induced by the hyperoxic insult.

We have recently performed a time-resolved transcriptomic

profiling of the rabbit’s normal lung development, which also

investigated the impact of premature birth (31). Premature birth

alone, without hyperoxia, caused persistent upregulation of TNF-

responsive, NF-κB regulated genes and dysregulated relevant

pathways for normal lung development, such as blood vessel

morphogenesis and epithelial-mesenchymal transition. Applying

a similar approach, we aimed to characterize the longitudinal

molecular changes induced by hyperoxia in the lungs of preterm

rabbits. For this purpose, we first conducted a histopathological

characterization of the preterm rabbit lungs exposed to normoxia

(21% O2) or hyperoxia (95% O2), followed by the sequential

transcriptomic analyses of the lungs at postnatal days 3, 5, and

7. The ultimate goal of this research is to gain molecular insights

into hyperoxia-induced lung injury to identify new targets and,

eventually, new therapies in the context of BPD.

2 Materials and methods

2.1 In vivo protocol and tissue collection

All animal experiments were approved by the intramural

Animal Welfare Body (n°744/2017-PR) and met the Italian

Ministry of Health and the standard European regulations of

animal research.

Pregnant New Zealand white rabbits were provided by Charles

River (Domaine des Oncins, France) and maintained in Chiesi’s

research facility with food and water ad libitum until delivery.

Preterm rabbit pups were extracted on the 28th day of gestation

(term 31 days). At this gestational age, preterm rabbits are

morphologically similar to human premature infants at 26–30

weeks gestation (16).

Does (3.8 ± 0.3 kg of body weight) were initially sedated with

intramuscular (i.m.) medetomidine 2 mg/kg (Domitor®, Orion

Pharma, Finland). Ten minutes later, the animals received

25 mg/kg of ketamine (Imalgene®, Merial, France) and 5 mg/kg

of xylazine (Rompun®, Bayer, Germany) i.m. When adequate

sedation was reached, does were placed in the supine position,

shaved on the abdomen, and euthanized with an overdose of

100 mg/kg of pentothal sodium (50 mg/kg MSD Animal Health,

USA). Pups were then extracted through hysterectomy. After one

hour, surviving pups were weighed and placed into incubators

(Okolab, Naples, Italy) under normoxia (21% O2) or hyperoxia

(95%) conditions for up to 7 days. Animal care and feeding

protocols have been described in detail elsewhere (19, 24). Before

lung harvesting, pups were euthanized with an intraperitoneal

(i.p.) pentothal sodium overdose.

Lung samples (n = 3 per time point) were collected from

preterm pups exposed to 95% O2 hyperoxia (H) and normoxia

(N, room air) at three different time points (T): postnatal days 3

(HT3 and NT3), 5 (HT5 and NT5), and 7 (HT7 and NT7)

(Figure 1). The lungs were surgically dissected to prevent

interaction with the surroundings, weighed, and carefully divided
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into the right and left lungs, which were respectively dedicated to

transcriptomic or histological analyses.

Lung function data (inspiratory capacity, elastance, resistance,

and compliance of the respiratory system) (23) were obtained at

7 days with the flexiVentTM apparatus (SCIREQ, Montréal,

Canada). These experiments were conducted using a different set

of animals to avoid any potential gene expression alteration

associated with lung function testing.

2.2 Lung tissue histomorphometry

The Lung sections of 5 µm were obtained from the left lungs of

preterm rabbits, stained with hematoxylin-eosin, as previously

described (31), and digitally acquired as whole slide images

(WSI) by a digital slide scanner (Nanozoomer S-60, Hamamatsu,

Japan). The Radial alveolar count (RAC) was determined by

dropping a perpendicular line from the center of a respiratory

bronchiole to the edge of the septum or pleura and counting the

number of alveoli traversed by this line (32). A researcher

blinded to the experimental design determined the acute lung

injury (ALI) score. It was calculated considering at least 20

random high-power fields (400X total magnification). Fields

consisting predominately of the lumen of large airways or vessels

were rejected. To generate the ALI, the sum of five histological

findings (neutrophils in the alveolar space, neutrophils in the

interstitial space, hyaline membranes, proteinaceous debris in the

airspace, and alveolar septal thickening) was used, according to

the American Thorax Committee (33).

Medial thickness (MT%) was assessed by selecting ten

random peripheric muscularized vessels with an external

diameter (ED) of at least 100 μm, corresponding to the

pre- and intra-acinar arteries in rabbits (34). Their ED and

internal diameter (ID) along the shortest axis of the vessel were

measured (40X magnification), and MT% was calculated by

applying the following formula (Equation 1) (34):

MT% ¼
(ED� ID)

ED � 100
(1)

This proportional parameter neutralizes the effects of tissue

shrinkage, vasoconstriction, and vasodilation.

2.3 Transcriptomic profiling: mRNA
purification, library preparation, and
sequencing

Immediately after removal, the right lungs were transferred to

RNA later solution (Sigma Aldrich, USA) at −20°C until RNA

extraction. Samples were homogenized in Qiazol® Lysis Reagent,

and mRNA was extracted with the miRNeasy Mini Kit protocol

(QIAGEN, Germany) using an automated method (QIAcube;

QIAGEN, Germany). DNase I treatment was added according to

the manufacturer’s instructions to remove genomic DNA

contamination. The RNA concentration and quality were

measured using the Qubit 4 fluorometer (ThermoFisher, USA).

The RNA integrity number was assessed using the Bioanalyzer

RNA 6,000 Nano Kit analysis (Agilent, USA). The Truseq

Stranded mRNA Library kit (Illumina) was used to build high-

throughput RNA sequencing libraries. Then, they were sequenced

with an Illumina NovaSeq 6,000 platform (Illumina, USA),

allowing each sample to generate at least 20 million reads/sample

(100 × 2 pb PE). 96% of the reads were mapped to the

rabbit genome.

FIGURE 1

Scheme of the experimental design. Preterm rabbits were delivered through C-section on the 28th day of gestation and either maintained under

normoxia (21% Oxygen) or hyperoxia (95% oxygen) for seven days. Lung samples were collected from preterm pups exposed to 95% O2 hyperoxia

(H) and normoxia (N, room air) at three different time points (T): postnatal days 3 (HT3 and NT3), 5 (HT5 and NT5), and 7 (HT7 and NT7).
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2.4 Bioinformatic analysis

Tables Differential expression analysis was performed using the

DESeq2 R package, starting from the raw count matrix. Data are

deposited at the Gene Expression Omnibus (GEO) repository

under the accession number GSE284417. The generated dataset is

provided as Supplementary Material (Supplementary File S1) The

data were transformed using the variance stabilizing

transformation (DESeq2:vst function), and contrasts were tested

between hyperoxia and normoxia groups at each matched time

point (HT3 vs. NT3, HT5 vs. NT5, and HT7 vs. NT7) using the

Wald method. The resulting p-values were adjusted for multiple

hypothesis testing using the Benjamini-Hochberg (BH)

correction. Genes were considered differentially expressed

(DEGs) if the BH-corrected p-value was <0.01 and the log2 fold

change (log2FC) was >2 (upregulated) or <−2 (downregulated).

Gene Set Enrichment Analysis (GSEA) was performed using

differentially expressed genes for each time point (day 3, 5,

and 7) between hyperoxia and normoxia. Genes were ranked

based on the metrics (Equation 2):

m ¼ sign(log2FC) � � log10 ( p value) (2)

Where log2FC and p-value were obtained from the DESeq2 Wald

test, resulting in upregulated genes at the top and downregulated

genes at the bottom of the ranked list. For each contrast, GSEA

was conducted using the corresponding ranked gene list as input

(R package clusterProfiler, function gseGO), with the GO

Biological Process ontology. Only enriched GO terms with a BH-

corrected p-value < 0.05 were retained. The final list of enriched

GO terms was manually inspected, and similar BPD-relevant GO

terms were grouped into “classes” and manually annotated.

For each gene of interest (MMP11, COL23A1, ACE, FGF1,

VEGFD, SERPINE1, MDM2, RPP25, PTGS2, EDA2R, CCL2,

CCL7, and IL1R2), a multiple linear regression model was fitted

to vst-transformed expression data across three time points (day

3, 5, and 7, encoded as a continuous variable) to assess temporal

changes in expression and to quantify the interaction between

hyperoxia and normoxia conditions (Equation 3).

geneexpression ¼ b0 þ b1 � imeþ b2 � conditionþ b3 � time � condition

condition ¼
1 Hyperoxia

0Normoxia

�

(3)

The model included time and condition as independent variables,

allowing for analyzing expression trends over time and identifying

condition-specific effects on gene expression. Each model was

evaluated based on the R2 statistics and the p-value of the β3

coefficient (the interaction term of the linear model).

2.5 Statistical analysis

GraphPad Prism software (GraphPad Prism 8.4.3, San Diego,

CA, USA) was used for statistical analysis. All data are presented

as the mean ± standard deviation. For RAC and ALI, data are

expressed as mean ± SEM and were analyzed with one-way

ANOVA corrected for multiple comparisons; **p < 0.01 and

***p < 0.001, ****p < 0.0001 for the hyperoxia vs. normoxia

comparison. For the lung function parameters, comparisons

between groups were performed using the unpaired, two-sided

t-test. *p < 0.01; **p < 0.001; and ****p < 0.0001.

3 Results

3.1 Histological and lung function
parameters

Hyperoxia exposure caused significant morphologic and

structural changes compared to normoxia (Figure 2a). Hyperoxia

exposure did not impact the lung parenchyma after three days,

although a more rudimentary structure was identified at this time

point. In normoxia samples, the RAC parameter indicates

increased complexity with the formation of alveoli and

subdivision of sacculi from day 3 to day 7, reflecting

parenchymal maturation. In contrast, the airspaces become more

rounded and less complex at these time points in pups exposed

to hyperoxia. Indeed, hyperoxic pups showed larger and

simplified alveoli and thicker septation than pups kept in

normoxia, with increased inflammation and alveolar debris

(Figure 2a). These data were confirmed by the ALI score, which

remained stable in normoxic lung samples, while it rose stepwise

in hyperoxic ones, reaching statistical significance at day 7.

Hyperoxia exposure also impacted peripheral arterial structure,

leading to increased tunica media thickness. By day 7, the

hyperoxia group exhibited a significantly thicker tunica media

compared to the normoxia group (Figure 2b). Consistently, a

significant difference in MT% was observed at day 7.

Hyperoxia had a significant impact on lung function

(Figure 2c). As expected, compliance and inspiratory capacity

were significantly lower in the hyperoxia group. Resistance and

elastance were significantly higher in hyperoxia-exposed animals

than in those kept in normoxia.

3.2 Transcriptomic analysis

Transcription profiling was performed on the left lung samples

from preterm pups exposed to hyperoxia and normoxia. PCA

analysis showed a clear separation between normoxia and

hyperoxia samples, especially at HT5 and HT7, which appear

separated along PC1 (Figure 3, black circle). Instead, HT3

samples (red circle) appeared clustered with normoxia samples

(green circle), although they started to separate from the

central cluster.

Accordingly, the DEGs analysis revealed that only a few genes

(n = 23) were dysregulated on day 3 (5 genes downregulated, and

18 upregulated) (Figure 4, Supplementary File S2). On day 5, the

number of DEGs started to rise (n = 286, 151 genes

downregulated, and 135 upregulated), reaching the highest
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FIGURE 2

(a) The images depict hematoxylin-eosin (H&E)-stained lung slides, along with outcomes related to radial alveolar count (RAC) and acute lung inflammatory

scores (ALI) from preterm rabbit pups delivered by C-section on day 28 of gestation and either kept in normoxia (green) or hyperoxia (orange) for 7 days

(scale bar = 250 μm) (n=3). Samples were obtained on postnatal days 3 [time (T) 3], 5 (T5), and 7 (T7). Terminal bronchiole (TB), alveolar ducts (AD), alveolar

sacs (AS), alveoli (a), pre-acinar arteries (black arrows). (b) Representative images of lung peripheral arteries stained with H&E from preterm rabbit pups

delivered by c-section on day 28 of gestation and kept in normoxia (left) or hyperoxia (right) for 7 days (scale bar = 50 μm). Histological sections

showed thickening of tunica media in the hyperoxia group (red arrowhead, scale bar = 50 μm). Black arrows indicate the pre- and intra-acinar arteries.

The percentage medial thickness of lung peripheral arteries (MT%) is shown in the graph. Data are expressed as mean± SEM and were analyzed with

one-way ANOVA corrected for multiple comparisons; **p < 0.01 and ***p < 0.001, ****p < 0.0001 for the hyperoxia vs. normoxia comparison. (c) Lung

function parameters in rabbit pups delivered by c-section on day 28 of gestation and kept in normoxia or hyperoxia for 7 days (n=6 in each group).

Comparisons between groups were performed using the unpaired, two-sided t-test. *p <0.01; **p < 0.001; and ****p < 0.0001.
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number (n = 673, 427 genes downregulated, and 246 upregulated)

on day 7 (Figures 4A,B, Supplementary File S2). Figure 4C

represents the heatmap of the comparison of the top 100

dysregulated genes between hyperoxia and normoxia on days 3,

5, and 7 (n = 23 genes at day 3). While gene expression profiles

do not change appreciably in normoxia samples in the three time

points, a gradual up-regulation and downregulation is evident in

hyperoxia-treated animals.

Pathway enrichment analysis of DEGs revealed the activation of

pathways related to apoptosis, immune response, inflammation,

RNA processing, and metabolic processes. In contrast, pathways

associated with angiogenesis, vasculogenesis, extracellular matrix

organization, embryonic and organ development, cell migration

and proliferation were inhibited. Most of these pathways were

dysregulated on days 5 and 7 (Figure 4D).

The temporal expression patterns of representative genes

of the most relevant pathways dysregulated by hyperoxia

are shown in Figure 5. Figure 5A shows representative genes

that are significantly dysregulated in the temporal analysis

and display different trajectories. The expression of key genes

for the extracellular matrix organization and angiogenesis

(MMP11, COL23A1, ACE, FGF1, and VEGFD) declined over

time in response to hyperoxia, while genes representative of

apoptosis, RNA processing, and inflammation pathways

(SERPINE1, MDM2, RPP25, PTGS2, and EDA2R) were

significantly upregulated by hyperoxia. Figure 5B shows the

temporal expression patterns of representative inflammatory

genes (CCL2, CCL7, and IL1R2). While these genes did not

show statistically significant temporal differences, their

expression patterns were different between normoxic and

hyperoxic conditions.

4 Discussion

We performed a longitudinal transcriptomic analysis at three

postnatal time points to investigate the impact of 95% O2

hyperoxia in preterm rabbits. Histomorphometry analyses

showed that hyperoxia induces inflammation, reduces

alveolarization, and increases peripheral arterial medial thickness

at day 7. The transcriptomic analysis revealed an increase in the

number of dysregulated genes over time. On day 3, a few but

potentially important genes associated with inflammation, such

as CCL2, CCL7, and IL1R2, appeared upregulated. The number

of dysregulated genes subsequently increased through days 5 and

7. Pathways enriched by these genes included inflammation,

angiogenesis, extracellular matrix organization, and embryonic

organ development. All these processes play a relevant role in the

BPD pathogenesis.

We found that the hyperoxia and normoxia groups started to

diverge from day 5 regarding RAC, ALI, and MT%, reaching

statistical significance in histomorphometry outcomes at day

7. These observations agree with the results reported by Jimenéz

et al. (22) in the same model, who found extensive and

homogeneous lung damage with interstitial and alveolar edema

starting on postnatal day 5. As expected, hyperoxia exposure was

associated with significantly lower compliance and inspiratory

capacity and higher resistance and elastance. These changes can

be attributed not only to structural lung injury caused by

prolonged hyperoxia but also to the disruption of surfactant

function and metabolism induced by high oxygen levels (35).

These observations, and that of others, confirm that the severe

BPD-like phenotype becomes apparent in terms of lung function

and histology after 7 days of hyperoxia (19, 36).

FIGURE 3

Principal component analysis (PCA) derived from transcriptomic analysis on lung samples collected from preterm pups exposed to either 95% O2

hyperoxia (H) and normoxia (N, room air) at three different time points (T): postnatal days 3 (HT3 and NT3), 5 (HT5 and NT5), and 7 (HT7 and

NT7). Point shapes and colors indicate the condition (N or H) and the postnatal day the samples were harvested. The green circle underlies the

normoxia samples, the red circle represents HT3 samples, and the black circle represents HT5 and HT7 samples.
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FIGURE 4

Identification of differentially expressed genes and dysregulated processes. (A) Number of differentially expressed genes (BH p-value < 0.01 and |

log2FoldChange | >2) resulting from comparing hyperoxia and normoxia samples on days 3, 5, and 7. (B) Volcano showing differentially expressed

genes on days 3, 5, and 7. (C) Top 100 (n= 23 at day 3) differentially expressed genes (DEGs) for each time point (day 3, T3; day 5, T5; and day 7,

T7 when comparing preterm samples exposed to hyperoxia (H) vs. normoxia (N). (D) Heatmap representing the pathway enrichment analysis using

normoxia as a reference: blue represents downregulated pathways, while red represents upregulated ones. The three time points are indicated on

the x-axis. Rows of the heatmap represent a custom selection of biological processes relevant to the study of BPD and lung development from

the Gene Ontology Database, which are significantly enriched (BH adjusted p-value < 0.05) according to the gene set enrichment analysis (GSEA)

performed at each time point (on ranked input list of genes) when comparing preterm rabbits exposed to hyperoxia vs. normoxia. For clarity, the

biological processes are grouped based on the “class” manually curated annotation, as indicated by the vertical-colored track and described by

the corresponding label on the right side. Each biological process at each time point is depicted as upregulated (Normalized Enrichment Score:

NES > 0, red shades) or downregulated (NES < 0, blue shades).
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The number of DEGs markedly increased through days 5 and

7. The heatmaps show a different gene expression pattern between

hyperoxic and normoxic samples. The pathway enrichment

analysis revealed that hyperoxia increased the expression of

several pro-inflammatory pathways, such as inflammation,

inflammatory response, immune response, and response to

extracellular stimulus. Notably, inflammation is a key feature in

the pathogenesis of BPD since the dysregulation of inflammatory

processes alters the alveolarization and vascular development in

the immature lungs of preterm infants (33, 34). Our findings

comply with the study by Salaets et al. (30), who found

inflammation to be one of the main dysregulated pathways in

preterm rabbits after a 7-day hyperoxia exposure. Notably, the

gene expression pattern of the inflammatory gene PTGS2 reflects

the trend of the pathway. PTGS2 was progressively upregulated

by hyperoxia from day 3 to day 7. In this regard, the expression

of PTGS2, also known as COX2, has been shown to increase in

hyperoxia-exposed animals, while its inhibition reduces

inflammation and improves alveolarization (37, 38). Several

therapeutic strategies targeting inflammation are currently under

clinical development to reduce BPD (39), including anakinra

(IL-1 receptor antagonist) (40) and the recombinant human

surfactant protein D, an anti-inflammatory collecting protein (41).

Metabolic-related pathways were also upregulated in hyperoxia-

exposed preterm rabbit pups. In line with this observation, in vivo

(42, 43) and in vitro (44, 45) studies have previously reported

higher glucose utilization induced by hyperoxia. Moreover, amino

acid and fatty acid metabolite profiles change in infants with BPD

(46, 47). Hyperoxia also upregulated apoptosis processes. Such

processes play an important role in lung development and may

contribute to BPD onset (48, 49). Indeed, in a premature model of

baboons with BPD, Das et al. (50) showed that p53 and p21

expression were increased, underlying the presence of an apoptosis

phenotype in the lung tissues. In the present study, SERPINE1

and MDM2 were two of the most upregulated genes linked to

apoptotic processes. Serpine 1, also known as plasminogen

activator inhibitor 1 (PAI-1), can lead to alveolar type II

senescence by activating p53-p21 in pulmonary fibrosis (51), while

MDM2, the direct ligand of p53, seems to be phosphorylated in

BPD, increasing its stability and thereby promoting apoptosis (52).

RPP25 is related to RNA processing and was predominantly

upregulated on days 5 and 7, complying with Karim et al. (53),

FIGURE 5

Temporal expression patterns of representative genes of the most relevant pathways dysregulated by hyperoxia (normoxia brown colored, hyperoxia

green colored). (A) Representative genes that are significantly dysregulated in the temporal analysis, displaying different trajectories of a set of 9 genes

of interest. (B) temporal expression patterns of inflammatory genes.
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who demonstrated that alterations in mitochondrial and ribosomal

structures during RNA formation can lead to can lead to an

accumulation of dysfunctional mitochondrial and ribosomal

subunits, potentially contributing to pulmonary abnormalities.

These findings could plausibly explain the upregulation of RPP25

in preterm rabbits (53).

Several pathways of paramount relevance in BPD were

downregulated by hyperoxia, including angiogenesis, vasculogenesis,

embryonic and organ morphogenesis pathways, and cell

development and proliferation. Angiogenesis and vasculogenesis

were significantly downregulated on days 5 and 7, while they were

not dysregulated on day 3. The downregulation of these pathways

at a later stage suggests an arrest of lung development in response

to the earlier upregulation of the inflammatory pathways. In line

with the molecular findings, the ALI score gradually increased from

day 3 to day 7, and differences in the arterial MT% and

alveolarization (i.e., RAC) were only significant at day 7, without

significance at earlier time points. These observations align with

previous studies showing reduced capillary cells and anomalies in

the expression of angiogenic factors in hyperoxia-exposed animals

(36, 54, 55). Revhaug et al. (56) showed that more than 100

vascular-related genes were dysregulated in a mouse model of BPD.

In our study, ACE, FGF1, and VEGFD were three of the most

downregulated genes associated with these pathways in hyperoxic

rabbit pups. Exposure to high oxygen levels reduces the expression

of ACE in models of acute lung injury and acute respiratory

distress syndrome (57). FGF1 plays a protective role against

hyperoxia-induced lung injury, and therefore, a reduction in FGF1

expression due to hyperoxia may contribute to the BPD

pathophysiology. Moreover, VEGFD belongs to the VEGF signaling

system and is fundamental to angiogenesis and, consequently, to

lung alveolarization. Angiogenesis and vasculogenesis play a crucial

role in lung development due to their link with the alveolarization

process (58–60), which occurs mainly in postnatal life and is

disrupted in preterm BPD babies (13, 61–63).

Our analysis also demonstrates that the expression of genes

involved in organ and tissue development is also affected by

hyperoxia. Cell development and proliferation, mesenchyme

morphogenesis, extracellular matrix organization, and embryonic

organ development pathways were significantly downregulated in

the lungs of hyperoxic animals at days 5 and 7. MMP11 and

COL23A1 are the most representative genes linked to these

pathways. MMP11 is a matrix metalloproteinase, a class of

proteolytic enzymes regulating airway remodeling in lung

diseases (64). MMP11 upregulation is linked with an increased

alveolar surface density. COL23A1 is a transmembrane collagen

expressed in the lung mesenchyme during development, playing

a role in linking intracellular and extracellular structural elements

(65, 66). This gene was significantly downregulated by hyperoxia

in the present rabbit model. Interestingly, Wang et al. described

that a single-nucleotide polymorphism of this gene correlated

with the incidence of BPD (67). Additional studies demonstrated

that a decrease or functional impairment in resident

mesenchymal cells in lung tissue contributes to the development

of BPD (68–70). For this reason, mesenchymal stromal cell-based

therapies were developed in order to prevent and treat BPD (71).

The present study has some limitations. First, we used a high

percentage of oxygen (95%), which is not typically applied in

neonatal intensive care units. However, prolonged exposure to

lower oxygen concentrations, such as 50%, does not induce a

BPD-like phenotype in preterm rabbits. Therefore, we opted for

a high degree of hyperoxia, a common approach in rodent

models of BPD. We acknowledge that this level of hyperoxia

may more closely resemble the “old BPD” phenotype,

characterized by severe lung injury and fibrosis, rather than the

“new BPD” observed in preterm neonates, which is characterized

by impaired alveolarization and abnormal vascular development.

Nevertheless, 95% O2 hyperoxia in the rabbit model disrupts

molecular pathways that are also implicated in the

pathophysiology of human BPD, making it a valuable tool for

studying disease mechanisms. The sample size is another

limitation of the study. Although in transcriptomic studies it is

common practice to analyze three independent lung samples per

time point (28, 72), we unfortunately missed one of the

hyperoxic samples on day 5 due to technical issues. We included

the postnatal day 5 timepoint in our study because the two

hyperoxia samples appeared clustered together and were

distinctly separated from the postnatal day 5 normoxia samples

along the PC1. Nevertheless, we acknowledge that the limited

sample size provides only directional insights into the gene

expression in the premature lung exposed to hyperoxia, which

should be validated in future studies with a larger sample size.

5 Conclusion

Sustained hyperoxia from birth and through postnatal day 7

produced a time-dependent dysregulation of several lung

molecular pathways implicated in the pathophysiology of BPD.

Although the impact of continuous hyperoxia on

histomorphometry outcomes (ALI, RAC, and MT%) was only

evident on day 7, the dysregulation of gene expression was

already apparent on postnatal day 3. On day 3, just a few

potentially relevant genes associated with inflammation appeared

upregulated, highlighting the role of inflammation as the earliest

response to oxygen toxicity. The number of dysregulated genes

increased through days 5 and 7, reaching >600 dysregulated

genes on day 7. Apoptosis and metabolic processes were

upregulated at postnatal days 5 and 7, while embryonic organ

morphogenesis and development, angiogenesis, epithelial and

endothelial cell development, and endothelial and mesenchymal

cell migration pathways were downregulated at these later time

points. This transcriptomic signature suggests that the BPD-like

phenotype observed on day seven in the histological analyses of

the lungs of preterm rabbits exposed to hyperoxia arises from the

downregulation of key developmental pathways that are preceded

by the upregulation of inflammatory genes.
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