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Introduction: Acute kidney injury (AKI) frequently complicates pediatric cardiac

surgery with high incidence and outcomes. Conventional markers (KDIGO

criteria) often fall short for pediatric patients undergoing cardiac surgery.

Emerging machine learning models offer improved early detection and risk

stratification. This review evaluates ML models’ feasibility, performance, and

generalizability in predicting pediatric AKI.

Method: This systematic review adheres to PRISMA-DTA guidelines. Search was

conducted on PubMed and Medline (Ovid/Embase) on March 24, 2024, using

PICOTS-based keywords. Titles, abstracts, and full texts were screened for

eligibility. Data on study characteristics and best-performing ML models’ AUROC,

sensitivity, and specificity were extracted. PROBAST evaluated risk of bias and

applicability comprehensively. A narrative synthesis approach was employed to

summarize findings due to heterogeneity in study designs and outcome measures.

Results: Nine unique studies were identified and included, eight focused on

post-cardiac surgery, and one on both PICU admissions and post-cardiac

surgery patients. PROBAST demonstrated high risk of bias and low applicability

amongst the studies, with notably limited external validation.

Conclusion: While ML models predicting AKI in post-cardiac surgery pediatric

patients show promising discriminatory ability with prediction lead times up to

two days, outperforming traditional biomarkers and KDIGO criteria, findings

must be interpreted cautiously. High risk of bias across studies, particularly

lack of external validation, substantially limits evidence strength and clinical

applicability. Variations in study design, patient populations, and outcome

definitions complicate direct comparisons. Robust external validation through

multicenter cohorts using standardized guidelines is essential before clinical

implementation. Current evidence, though promising, is insufficient for

widespread adoption without addressing these methodological limitations.

Systematic Review Registration: PROSPERO CRD420250604781.
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Introduction

Acute kidney injury (AKI) is a common complication in children

following cardiac surgery, affecting 44% to 60% of patients and

contributing to increase adverse events such as chronic kidney

disease (CKD), extended hospital stays, hemodynamic instability,

and increased mortality and morbidity (1–7).

At present, an increase in serum creatinine (sCr) of at least

0.3 mg/dl within 48 h or 50% from baseline within seven days

and/or a urine output of less than 0.5 ml/kg/h within six hours,

as defined by the Modified Kidney Disease: Improving Global

Outcomes’ (KDIGO) criteria, remains widely used in clinical

practice (8, 9), but might have limited applicability in more

critically ill younger population (10).

In the context of pediatric cardiac surgery with cardiopulmonary

bypass (CPB), significant stress and inflammatory response is

imposed on multiple organ systems, resulting in a complex

interplay that is not yet fully understood (11–14). In pediatric

patients, immature organ systems render them inherently more

vulnerable and sensitive to surgical insults; hence, minor

intraoperative fluctuations can lead to significant adverse effects

compared to adults (15). Furthermore, unique surgical risk factors,

such as prolonged CPB time, extended cross-clamp time, and

factors that cause hypoperfusion, kidney injury and inflammation,

may not be adequately captured by the KDIGO criteria (16). In

the pediatric population, factors such as young age, fluid overload,

and the duration of CPB are well known as major risk factors for

post-cardiac surgery acute kidney injury (CS-AKI) (4), whereas in

adults, more prevalent co-existing comorbidities like hypertension

and diabetes, along with variations in CPB techniques, play a

larger role in the prognosis of AKI post-surgery (17). Ultimately,

these differences in physiology, risk factors, and intraoperative

variables between adults and children necessitate the development

of a more dependable clinical prediction model.

Following initiatives such as AWAKEN and AWARE, to redefine

and address the lack of consensus of AKI in the neonatal and

pediatric population (18, 19). Identifying clinically significant AKI,

that is, kidney injury which not only meets biochemical thresholds

but also demonstrably impacts patient outcomes, particularly

morbidity and mortality, may serve as a better alternative to the

current criteria (20). As such, a rise in serum creatinine or a

decrease in urine output does not always accurately indicate AKI,

or necessitate treatment. Moreover, given the often-delayed

presentation of AKI, a clinical prediction model could be more

appropriate, as preemptive treatment can lead to significantly

improved prognoses in the pediatric population (21).

Promising serum and urinary biomarkers, such as neutrophil

gelatinase-associated lipocalin (NGAL), have been correlated with

AKI severity and can rise within 2–6 h post-injury, significantly

earlier than creatinine (22), which typically rises after 24–36 h.

Other biomarkers, including kidney injury molecule-1 (KIM-1),

cystatin C (23), interleukin-18 (24), and L-FABP, have an earlier

detection window of 4–6 h (25, 26). Although these markers

exhibit high (Area Under the Receiver Operating Characteristic

Curve) AUROC values, their clinical implementation remains

limited due to issues with non-specificity, high cost, lack of

validation, and insufficient consideration of significant age-

dependent risk factors (27, 28).

Clinical prediction models that incorporate machine learning

(ML) frameworks show great promise in analyzing and handling

complex relationships between numerous factors involved in AKI

development (29). By enabling clinicians to stratify patients by

risk and adjust practices accordingly, ML models can offer

individualized predictions of AKI by integrating preoperative,

intraoperative, and postoperative data (30–36). Models that

incorporate real time dynamic data have outperformed KDIGO-

based criteria, achieving AUROC values of up to 0.90 in some

studies (25). These models provide earlier risk prediction and

facilitate timely treatment. This review aims to assess the

feasibility, performance, and generalizability of machine learning

in predicting pediatric CS-AKI.

Although our search approach focused specifically on patients

following cardiac surgery, we included two studies from pediatric

cardiothoracic or cardiac ICU environments because they offered

important insights into high-risk patient groups, despite not

being limited to post-surgical cases.

Methods

Search strategy

This systematic review is written and reported according to The

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses of Diagnostic Test Accuracy Studies (PRISMA-DTA)

statement (37). The search was conducted on PubMed

(Supplementary Material S1) and Medline via Ovid (including

Embase) (Supplementary Material S2), Web of Science

(Supplementary Material S3), and Scopus (Supplementary Material

S4) on the 24th of March, and was updated on the 27th of June

2025. Grey literature sources such as conference proceedings,

clinical trial registries, and institution repositories (StarPlus

Library) was searched to identify relevant studies. Initial title and

abstract of all retrieved articles were screened for eligibility. Two

authors (SLS and AL) independently screened all the articles

during initial title/abstract screening and full-text screening phases.

A third author (JCM) review and resolve any conflicts that arose

during the screening process. Full text was retrieved following

initial screening and reviewed against the eligibility criteria.

Population, index, comparison, outcome,
timing, and setting (PICOTS)

This study focuses on pediatric patients (<21 years) admitted to

the Pediatric Intensive Care Units (PICU)/ Intensive Care Units

(ICU) following cardiac surgery (38).

The primary index is the application of a machine learning

framework to predict clinical outcomes. A typical ML framework

was defined by three main themes: data collection and

processing, model development (including feature selection,

optimization, and ML algorithm selection), and model validation
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and training (covering training and validation sets, cross-

validation, and data splitting).

The outcome of interest is the development of AKI of any

stage, with a specific focus on severe AKI occurring post cardiac

surgery during the ICU or PICU admission period. The

prediction and assessment of these outcomes are conducted

during the immediate postoperative phase, and the study is set in

ICU and PICU in healthcare institutions that perform cardiac

surgery on pediatric patients.

Studies were excluded if they did not meet the PICOTS

framework, including those that involved adults (>21 years), did

not utilize an ML framework, did not mention pediatric cardiac

surgery patients, were not published in English, failed to report

diagnostic accuracy metrics of interest, had incomplete full texts,

or were conference abstracts, review articles, or editorials.

Data extraction and narrative synthesis

The same multi-author approach was maintained throughout

data extraction with the same authors (SLS and AL) working

independently and third author (CSC) resolving discrepancies.

Basic study and population characteristic, inclusion, and

exclusion criteria, primary outcome, and objective were compiled

and presented in tabular format. Only the best-performing ML

model’s metrics, AUROC, sensitivity, and specificity, related to

this review’s objective were extracted. For studies that conducted

external validation, both internal and external results were

reported. Data were recorded as means with standard deviations

or 95% confidence intervals, as provided. A qualitative review

analyzed study limitations and author recommendations, while

descriptive analysis summarized study characteristics.

Risk of bias assessment

The Prediction model study of Risk of Bias Assessment Tool

(PROBAST) was used to assess the risk of bias and applicability

of the models, covering four domains (Participants, predictors,

outcomes, analysis) (39). All authors conducted the assessment

independently; responses were reviewed at the end to address

any disagreements.

Results

A total of 48 studies were identified via specified databases.

After de-duplication, 25 unique studies remain and was screened.

Initial title and abstract screening excluded 11 articles. Full text

was retrieved for 14 studies, and five full-text articles were

excluded with reasons provided (Figure 1) (40–44). Nine unique

studies were identified and included in this review, with eight

including post-cardiac surgery patients, and one on both

cardiothoracic and ICU units (30–32, 34–36, 45–47) (Table 1).

Most studies were published between 2023 and 2024, with four

from China (32, 35, 36, 47), two from the US (30, 34), one from

Italy (46), one from the UK (31), and one a collaborative effort

between the UK and US (45). All studies were conducted in

accordance with the Kidney Disease Improving Global Outcomes

(KDIGO) criteria.

Four studies evaluated only a single ML model (30, 34, 45, 46),

while one study assessed multiple advanced deep learning models

(32) and an additional four studies evaluated more than one model

(31, 35, 36, 47) (Table 2). In terms of predictive performance for CS-

AKI, random forest emerged as the best performing model in two

studies (31, 46), with LightGBM also reported as superior in two

studies (34, 36). Logistic regression was identified as the top model in

two studies (30, 35), whereas extreme gradient boosting and the

time-aware attention-based recurrent neural network were each

reported as the best performing model in one study (47) (Table 3).

Key predictors

Recurring risk factors identified across studies using various

feature selection methods to optimize AKI prediction can be

stratified into several categories. Renal function parameters—

including baseline, postoperative day one, and the rate of change

of SCr, blood urea nitrogen, and urine output—were found to be

particularly significant. Intraoperative metrics such as CPB

duration, surgery duration, perfusion time, and intraoperative

blood loss also play a key role. Patient demographics, notably

body weight and age, alongside respiratory and hemodynamic

measures like mechanical ventilation time, mean arterial blood

pressure, shock index, and mean airway pressure, correlate with

the severity of AKI. Additionally, laboratory and biomarker data,

including lactate dehydrogenase, white blood cell count, bilirubin,

serum albumin, serum chloride, anion gap, and PaCO₂, provide

indirect indicators of AKI risk (Table 3).

ML frameworks

Various machine learning (ML) pipelines can be applied to

data analysis depending on the research objectives and the nature

of the dataset. Certain ML techniques perform better when

applied to appropriately preprocessed data. In many studies,

multiple models are evaluated to identify the best-performing

one based on interpretability, predictive accuracy, or

computational efficiency (48). The models used can generally be

categorized into linear models, ensemble learning methods, tree-

based methods, and neural networks or deep learning approaches.

Linear models, such as logistic regression, are typically

supervised and assume a linear relationship between input

features and the outcome. Ensemble learning methods build

upon multiple decision trees and combine the outputs from

different subsets of data to produce more robust and unbiased

predictions. Tree-based methods, like decision trees, classify data

by recursively splitting it into subsets based on feature

thresholds. Lastly, deep learning involves complex architectures

with multiple interconnected layers of nodes, capable of

capturing intricate, non-linear patterns in the data (49).
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Ensemble and tree-based models

Fragasso et al. (2023) enrolled 419 patients and reported an

AKI incidence of 53.2% (223/419) overall: specifically, 30% (125/

419) at stage 1, 18% (75/419) at stage 2, and 35% (148/419) at

stage 3. A random forest ML model was implemented under four

different definitions: (1) no AKI vs. AKI, (2) no/mild AKI vs.

severe AKI, (3) the maximum AKI stage, and (4) the most

frequent AKI stage. Each approach achieved respective AUCs of

0.93, 0.99, 0.92, and 0.95 at 48 h (46).

Hayward et al. (2023) analyzed 396 pediatric surgery patients

on CPB. They found that maintaining an oxygen delivery level

above 350 ml/min/m³ was crucial; patients below this threshold

had a significantly higher risk of postoperative AKI. Using a

random forest method, the model reached an AUC of 0.67. The

overall AKI incidence was 25.8% (102/396), with diminished

urine output occurring in more patients than elevated creatinine

(18.9% vs. 6.9%, respectively, among the 102 cases) (31).

Meanwhile, Tong et al. (2024) analyzed 23,000 children

undergoing congenital heart surgery, where 2% (458/23,000)

developed renal failure. Their Light GBM framework accurately

forecasted adverse outcomes with an AUC of 0.963 and a

sensitivity of 87%. Including both clinical and laboratory features

led to more accurate predictions than using clinical parameters

alone (36).

In a smaller retrospective study, Nagy et al. (2024) focused on

402 pediatric patients following cardiac surgery. LightGBM

effectively differentiated no/mild AKI from moderate/severe AKI

FIGURE 1

PRISMA flow diagram.
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TABLE 1 Summary of studies’ objectives, primary outcomes, and eligibility criteria.

Eligibility criteria

Study (Year)
(reference)

Country Study
design

Collection date Inclusion Exclusion Primary outcome;
additional outcome

Population
size

Demographics
[Median age (IQR),

Female %]

Dong. et al.a (25) US and UK Multicenter

retrospective

observational

study

2003–2019 Pediatric patients from

PICU and cardiothoracic

intensive care units

(CTICU) from (1 months

to 21 years)

Neonates, AKI within 12 h, ICU

stay <24 h

Prediction of moderate to severe AKI

up to 48 h–6 h in advance; Prediction

of any stage AKI and RRT use

16,863 Hospital 1: 4 years [0.7, 12.1];

46%

Hospital 2: 2 years [0.6, 6.0];

46%

Hospital 3: 7 years [3.8, 14.7];

48%

Fragasso. et al.a

(46)

Italy Retrospective

observational

study

January 1, 2018–February

29, 2020

Pediatric patients with in

pediatric cardiac ICU stay

of at least 48 h

Adults’ patients (>18 years), with

missing data and chronic kidney

disease

Prediction of severe AKI (KDIGO

stages 2 and 3) after 48 h; Binary AKI

prediction (no AKI vs any AKI);

Multiclass AKI (Maximum and

Mode AKI)

419 164 days (31–999), 46%

Hayward. et al.

(31)

UK single- center

Retrospective

cohort study

April 2019–April 2021 Cardiac surgery with CPB

Pediatric patients

Preexisting AKI, univentricular

anatomy, preterm, reoperation,

incomplete data, selective

cerebral perfusion, deep

hypothermic circulatory arrest

Post surgical AKI within 48 h;

Association of cumulative time with

DO2i < 350 ml/min/m²; AKI risk

factors

396 No AKI group: 7 months (3–

27)

AKI group: 4 months (2–11);

42%

Kong. et al. (35) China Retrospective

cohort study

Jan 2002–Jan 2022 Pediatric patients

undergoing aortic arch

reconstruction with CPB

Patients with severe preoperative

renal injury (eGFR < 30 ml/min/

1.73 m² or urine output <0.5 ml/

kg/h), sepsis, or incomplete data

Occurrence of AKI post-surgery

within 7 days; Risk factors and

evaluation of ML models

134 AKI: 2 months (1.0–7.0); 28%

Non-AKI: 3 months (1.5–

9.6); 36%

Overall Female: 32%

Loomba. et al.

(30)

USA Retrospective

single center

study

September 2022–March

2023

Neonates with Norwood

procedure with available

data

Patients requiring ECMO prior

to surgery.

AKI post cardiac surgery; Change in

creatinine to baseline creatinine ratio

9 Mean 20.5 days (± 32.0); NR

Luo. et al. (47) China Multicenter

Retrospective

cohort study

January 2015–March 2022

(Derivation cohort), January

2016 to December 2021

(External validation cohort)

Pediatric cardiac surgery

patients with CPB and SCr

measurement pre- and

post-surgery

Congenital renal malformation

and eGFR (<15 ml/min/1.73 m²)

Development of cardiac surgery-

associated acute kidney injury (CS-

AKI); CS-AKI (stage 2–3); In-hospital

mortality; ICU length of stay; Total

postoperative hospital stays

3,863 (Derivation:

3,278, External:

585)

Derivation: 1 year (0.5–4),

47.9%; External Validation: 4

years (1–8), 50.8%

Nagy. et al. (34) USA Retrospective

cohort study

September 1, 2007–June 31,

2003

Pediatric cardiac surgery

patients

Patient with patent ductus

arteriosus

Prediction of moderate-to-severe CS-

AKI (KDIGO stages 2 or 3) on

postoperative day 2 (POD2); Hospital

Survival Prediction

402 6 months (2–27), 56%

<21 years

Tong. et al. (36) China Retrospective

cohort study

August 2014–December

2021

Pediatric patients

undergoing congenital

heart surgery

Patients with missing or unclear

data

Major Adverse Postoperative

outcomes (Low cardiac output

syndrome, pneumonia, renal failure,

Deep vein thrombosis); Prediction of

ICU/Hospital length of stay

Total: 23,000 11.6 months (5.2–32.7); 46%

Renal failure: 458

(2.0%)

Zeng. et al. (32) China Retrospective

cohort study

2018 Pediatric patient with

congenital heart surgery

Patient with insufficient missing

data, surgery without CPB, or

death

Prediction of postoperative acute

kidney injury; Continuous prediction

of AKI during stays post-surgery;

Prediction of AKI development

within a random given time window

3,386 11.9 months (4.5–28.9);

50.6%

aStudies exploring pediatric patients in ICU, did not explicitly mention cardiac surgery.
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TABLE 2 Summary of machine learning algorithm used, and key predictors identified.

Author
(Year)

Overall incidence
of AKI; Moderate-
severe incidence

(%)

Machine Learning Algorithm
used (Best performing

model)

Lead time
prediction

window; primary
outcome (criteria)

Input data inputs (No) Key Variables identified (Feature
selection method)

Dong. et ala

(45)

10.6%–19.8%; 3.5%–5.3%

(across three hospitals)

Ensemble model (age dependent) 48–6 h before AKI onset

(KDIGO stage 2/3)

Electronic health record, vital signs,

laboratory, medication, and ventilation

parameters

15 Shock index, SpO2, blood urea nitrogen, serum

creatinine rate of change, bilirubin, PaCO₂, anion gap,

white blood cell count, serum albumin, serum

chloride, gentamicin trough, number of vasoactive

drugs, number of high nephrotoxic potential drugs,

mean airway pressure (for ventilated patients), and

time since admission. (Univariate and multivariate

model-based selection)

Fragasso.

et ala (46)

53.2% (223/419); 30%

severe; 18% stage 1; 35%

stage 3

Random forest (Ensemble learning

method)

Two days (48 h) post ICU

admission; Severe AKI

(KDIGO 2, 3)

Admission and post-admission data

(Demographics, clinical scores, basal

serum creatinine, CPB, cross clamp

duration) Vital signs, Fluid, Blood gas

analysis, Laboratory, Therapeutic

36 Creatinine, CPB duration, Basal creatinine, Platelet

count, Lactate dehydrogenase (Important matric plot)

Hayward.

et al. (31)

25.8% (102/396) Random forests (Best performing model);

Logistic regression

Within 48 h post-surgery;

All stages of AKI (KDIGO)

Pre-operative (e.g demographics) and time

series (minute by minute) intraoperative

CPB data (e.g oxygen delivery, CPB,

inotrope usage)

15–20 Duration under DO2i < 350 ml/min/m² without body

surface area (≥ 30 min), patient age (<4.7 or≥ 6), CPB

duration (<71 min or≥ 86 min), mean arterial blood

pressure, and VIS (Multicollinearity analysis of

variable importance)

Kong. et al.

(35)

50% (Propensity scored/

matched)

Extreme gradient boosting, logistic

regression (Best performing model), light

gradient boosting machine, GaussianNB,

multilayer perceptron, and support vector

machine.

Within 7 days post-

surgery; Any stage AKI

(KDIGO and RIFLE)

Pre-operative, intraoperative and

postoperative surgical data.

15–16 weight, eGFR, cyanosis, PDA, newborn status, and

duration of renal ischemia. (Univariate logistic

regression and LASSO regression)

Loomba.

et al. (30)

22% (2/9) LASSO logistic regression 2–4 days post-surgery; All

stages of AKI (KDIGO)

Hemodynamic data collected every 5 s and

linked to serum creatinine measurements

collected every 24 h

∼18 variables Net fluid balance and renal oxygen extraction

(LASSO)

Luo. et al.

(47)

8.7%–17.2%; 4.4%–6.3%

(Across multiple samples)

XGBoost (Best performing), K-nearest

neighbor, Naive Bayes, Support Vector

Machines, Random Forest, Neural

Networks

Within two to seven days

post cardiac surgery; All

stages of AKI (KDIGO)

Preoperative data and intraoperative data Preoperative only model:

25, Combined

(Preoperative and

intraoperative): 20

Baseline serum creatinine. perfusion time, body

length, operation time, and intraoperative blood loss.

(Least Absolute Shrinkage and Selection Operator;

LASSO, Boruto algorithm, random-recursive feature

elimination, and random forest-filtering)

Nagy. et al.

(34)

13.7% (55/291 for

moderate–severe AKI)

Light GBM with SHAP Postoperative day 2; AKI

stages 2 or 3 (KDIGO)

Demographic, preoperative, intraoperative,

and immediate postoperative (POD0)

clinical and laboratory data. POD0 are

obtained within 60 min upon arrival at

ICU

34 Preoperative serum creatinine, Total duration of

surgery. POD0 serum pH, POD0 lactate,

Cardiopulmonary bypass duration, POD0 vasoactive

inotropic score, Sex, POD0 hematocrit, Preoperative

weight, POD0 serum creatinine (SHAP)

Tong. et al.

(36)

2% (458/23,000; renal

failure incidence)

LightGBM (Best performing model),

Logistic regression, Support vector

machine, Random Forest, CatBoost

Post cardiac surgery to

discharge; All stages of

renal failure (KDIGO)

Combined clinical and laboratory data 39 Mechanical ventilation time, STAT score, and

operative time (SHAP)

(Continued)
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by postoperative day 2, delivering an AUC of 0.88 and a sensitivity

of 0.63—substantially higher than the 0.70 AUC achieved by the

cardiac renal angina index (cRAI). Among these 402 children,

13.7% (55/402) experienced moderate or severe AKI (34).

Dong et al. (2021) developed a single predictive model using

data from 16,863 patients across three hospitals. The study

reported that all stages of AKI occurred in approximately 10.6%

to 19.8% of patients, while moderate to severe AKI was observed

in 3.5%–5.3% of cases. The model achieved an AUROC of 0.89

and was able to identify stage 2/3 AKI a median of 30 h (within

a range of 24–48 h) before its onset. It successfully identified

40% of all AKI episodes, had a 58% sensitivity for stage 2/3 AKI,

and detected 70% of cases that eventually required renal

replacement therapy. However, the model’s performance was

reduced in the UK hospital, likely due to a smaller, imbalanced

dataset and cohort size. Every six hours, the ensemble assigns

age-adjusted weights to each predictor and sums them to

generate an overall AKI risk probability, facilitating timely

monitoring during critical shifts (45).

Luo et al. (2023) evaluated 3863 pediatric patients using the

extreme gradient boosting model, finding an overall AKI

incidence between 8.7% and 17.2% and a moderate-to-severe

AKI rate of 4.4%–6.3% across internal and external validations.

They developed six models under two scenarios: one using only

preoperative data and another that combined preoperative with

intraoperative data. The XGBoost model proved most effective,

and including intraoperative data improved performance in both

cohorts, with the AUROC increasing from 0.890–0.912 in the

derivation cohort and from 0.857–0.889 in the external validation

cohort (47).

Linear model

Kong et al. (2023) studied 134 propensity-matched children

having aortic arch reconstruction and found a 50% rate of AKI.

Renal ischemia time was the strongest predictor (OR 1.169, 95%

CI 1.092–1.251), and most AKI cases involved preoperative

cyanosis. Their logistic regression model, outperforming other

algorithms, yielded an AUC of 0.89 in training and 0.84 in

testing, with AKI assessed within a seven-day window. They also

built a nomogram projecting AKI risk one year later (35).

Loomba et al. (2024) examined nine neonates with

univentricular hearts undergoing the Norwood procedure, where

22% developed AKI. Key drivers were net fluid balance and

oxygen extraction, yielding an AUC of 0.73. By continuously

tracking hemodynamics through T3 software, they concluded

that pressures (blood or renal perfusion) had little bearing on

AKI onset (30).

Neural network

In a cohort of 3,386 pediatric patients, Zeng et al. (2023) tested

seven models in three different analyses using data captured 24 h

post-surgery, where AKI occurred in 9.8% of cases (331/3,386).T
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TABLE 3 Summary of performance metric of machine learning models.

Author
(Year)

ML model; Stage of AKI (Criteria) Accuracy Area under the
curve

Sensitivity or
recall

Specificity PPV/Precision NPV F1-score; Brier
score loss (95%

CI)
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Dong. et ala

(45)

Ensemble ML; Stages 2/3 and All stages of AKI

(KDIGO)

NR Any stage AKI (Stages

1, 2 or 3): 0.83 to 0.89

Any stage AKI (Stages 1,

2 or 3): 0.41

NR ML model NR NR

Any stage AKI: 0.47

Moderate to Severe

AKI (stages 2 or 3):

0.89

Moderate to Severe AKI

(stages 2 or 3): 0.58

AKI stage 2/3: 0.22

Fragasso.

et ala (46)

Random forest; Stages 2/3 and Binary AKI/ All

stages of AKI (KDIGO)

NR Severe: 0.99 (0.98–1) Severe: 0.74 Severe: 0.99 Severe: 0.94 Severe: 0.97 NR

Binary: 0.71 Binary: 0.98 Severe: 0.92 Severe: 0.92Binary: 0.93 (0.92–

0.94)

Hayward.

et al. (31)

Random forests (500 decision trees); All stages

AKI (KDIGO)

0.66 0.67 NR NR NR NR NR

Kong. et al.

(35)

Logistic Regression; All stages AKI (KDIGO

and RIFLE)

0.821 0.889 0.832 0.816 NR NR NR; 0.129

Loomba. et al.

(30)

LASSO logistic regression; All stages AKI

(KDIGO)

0.89 0.73 0.96 0.90 0.12 0.99 NR

Luo. et al.

(47)

Extreme Gradient Boosting model (Combined

model with 27 variables); All stages AKI

(KDIGO)

NR Derivation: 0.912

(0.899–0.924)

Derivation: 0.95 (Cut off

value: 0.099)

Derivation: 0.58 (Cut off

value: 0.099)

Derivation: 0.32 (Cut

off value: 0.099)

Derivation: 0.98 (Cut

off value: 0.099)

Derivation: 0.085; NR

External Validation:

0.889 (0.8444–0.920)

External: 0.060; NR0.60 (Cut off value: 0.374) 0.95 (Cut off value:

0.374)

0.72 (Cut off value:

0.374)

0.92 (Cut off value:

0.374)External Validation: 0.80

(Cut off value: 0.099) External Validation: 0.81

(Cut off value: 0.099)

External Validation:

0.28 (Cut off value:

0.099)

External Validation:

0.98 (Cut off value:

0.099)
0.28 (Cut off value: 0.374)

0.99 (Cut off value:

0.374)

0.67 (Cut off value:

0.374)

0.93 (Cut off value:

0.374)

Nagy. et al.

(34)

Light GBM; Stages 2/3 (KDIGO) 0.91 (0.82–

1.00)

0.88 (0.72–1.00) 0.63 (0.32–0.96) NR 0.92 (0.70–1.00) NR 0.73 (0.46–0.99); 0.09

(0.00–0.17)

Tong. et al.

(36)

LightGBM; All stages of AKI (KDIGO) 0.871 0.963 (0.947–0.979) 0.870 0.958 NR NR NR

Zeng. et al.

(32)

Time aware attention based recurrent neural

network, LSTM network (Perspective 2 at 24 h);

All stages AKI (KDIGO)

0.832 (0.830–

0.833)

0.908 (0.907–0.909) 0.911 (0.904–0.918) NR NR NR NR; 0.127 (0.126–0.128)

aStudies exploring pediatric patients in ICU, did not explicitly mention cardiac surgery.
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These models offered lead times from 6 h up to 7 days. Notably, the

Time-Aware Attention-Based LSTM outperformed all other

methods across every analysis, achieving an AUC of 0.908 (95%

CI 0.907–0.909). Moreover, results were strongest when using

data collected 24 h after surgery. The approach handles time-

based clinical data in a recurrent architecture that captures

sequential measurements, highlighting key shifts over time. An

attention mechanism emphasizes the most critical segments for

predicting AKI, and the resulting probabilities are fine-tuned

through Platt scaling and isotonic regression (32).

Risk of concerns -PROBAST

Across the nine included studies, most demonstrated high risk

of bias in participant selection, predictor assessment, outcome

measurement, and analysis domain due to the lack of external

validation of their predictive models, limiting confidence in

generalizability (30–32, 34–36, 46). Sample sizes were often

small, further restricting robust analysis and replication

(Figure 2). Moreover, one study included ICU populations

raising concerns about its applicability in predicting CS-AKI (46).

Limitations of ML reported by authors

Each study faced unique challenges in the diagnosis of AKI (see

Supplementary Table S1). Common limitations reported across

studies were retrospective (n = 9) (30–32, 35, 36, 45–47, 47) and

single-center designs (n = 7) (30–32, 34–36, 46). Small or

homogenous cohorts (n = 4) (30, 34, 35, 46) limits the

generalizability of the model. Missing or limited variables, such

as exclusion of key predictors (e.g., urine output data,

nephrotoxic medications, surgical risk scores) (n = 5) (30, 32,

45–47), and reliance on estimated baseline measures or

incomplete intraoperative details (n = 2) (34, 36). Advanced ML

methods, while good at handling complex data, could introduce

“black box” models that are less interpretable (n = 3) (32, 36, 47),

limiting clinical integration. Lack of external validation raises

concerns about the robustness and generalizability of the

predictive model (n = 6) (30, 32, 35, 36, 46, 47).

Discussion

The high heterogeneity across each study, due to differences

in study design, ML frameworks, populations, and input

variables makes direct comparison via meta-analysis

challenging. The use of ML models to predict AKI development

in post cardiac surgery demonstrated strong discriminatory

power. Several retrospective (30–32, 34–36, 45–47) and in a

prospective study reported AUC values in the range of 0.80–

0.90, often outperforming conventional and novel investigative

tools, urine and serum biomarkers (32, 34–36, 45–47). These

models can provide early warnings up to 24–48 h prior to

conventional diagnostic tools thereby facilitating timely

prophylactic interventions and potentially more efficient

resource allocation.

Many studies in this review utilized random forests and gradient

boosting, which generally outperformed other algorithms. The

ensemble approaches offers greater interpretability compared to deep

learning models, which are often criticized as “black boxes” due to

the lack of transparency in its decision-making process (32, 36, 47).

However, when it comes to unstructured data, such as analyzing

continuous time-series data, unsupervised deep learning techniques

could potentially outperform classical supervised framework.

The benefits of using ML over traditional statistical methods are

its ability to detect complex interactions among many parameters.

Furthermore, several studies were large multi-center investigations

with external validation, which indicated potential broad

applicability and integration into existing clinical frameworks.

With larger population sizes and higher-quality data, predictions

are likely to be more accurate and applicable. Most studies

included feature identification and interpretability tools such as

SHAP (32, 34, 36), LASSO (30, 35, 47), and other forms of feature

reduction techniques (31, 35, 45–47) to enhance transparency and

provide clinicians with insights into its decision-making process.

The potential weaknesses of ML, as with any approach, include

the crucial dependency on the data fed into the framework. Single-

center data can restrict generalizability, as it often reflects specific

on-site practices and protocols (such as inotropic medications or

fluid transfusion protocols), demographics (such as ethnicity),

and epidemiology. This can encourage overfitting, making the

model less suitable when applied to other cohorts, as noted by

several studies (45). While the use of time-series or temporal

measurements, where data is collected frequently, can facilitate

more precise monitoring of the inherently labile pediatric

physiology, missing data may pose issues that limit the model’s

robustness. Lastly, many of the studies conducted were offline

retrospective analyses (30–32, 34–36, 45–47)—a necessary first

step that should ideally be followed by prospective studies to

provide insights into real-time clinical workflows.

Timing plays an important role in determining the accuracy of

the model, several studies found that a short lead time or prediction

window, as early as 6–48 h pre surgery or post-surgery produces

greater diagnostic accuracy compared to longer periods (32, 45).

Preoperatively, low baseline kidney function, younger age, and

cyanosis or ventricular anomaly is found to be major contributor to

AKI risk (47, 50). Intraoperative risk factors specific to cardiac

surgery patients were prolonged CPB and renal hypoperfusion,

longer operation time, and greater surgical complexity were

linked with higher risk of AKI development (31, 35). As for

post-operative risk factors, longer mechanical ventilation and

higher vasoactive inotrope use were correlated with AKI risk (36).

Several studies explored the application of machine learning in

predicting AKI in PICU/ICU patients, achieving high

discriminatory power. Hu et al. (2023) studied 957 critically ill

PICU patients across four hospitals (for a total evaluated

population of 1,843), with an AKI incidence of 24.6% (449/

1,843). Compared to non-AKI patients, those with AKI were

more likely to require renal replacement therapy, had extended

PICU stays, a higher rate of serious complications, and increased
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mortality. Of 11 ML algorithms tested, the random forest model

performed best when focusing on eight key features, yielding

AUCs of 0.929 (internal validation) and 0.910 (external testing).

It predicted AKI more accurately on day 1 (AUC 0.977) than on

days 2–7 (AUC 0.927), and its predicted risk closely aligned with

adverse clinical outcomes (50).

Xu et al. (2024) investigated eight distinct predictive algorithms

for acute kidney injury (AKI) and acute kidney disease (AKD) in a

cohort of 1,685 hospitalized pediatric patients, reporting an AKI

incidence of 14.90% (251/1,685) and an AKD incidence of 16.26%

(274/1,685). Among the evaluated models, Light Gradient Boosting

Machine (LightGBM) achieved the highest area under the curve

(AUC) at 0.813 for AKI, outperforming Naïve Bayes (AUC 0.791)

and Random Forest (AUC 0.784). Future studies should explore

whether the use of generalized AKI prediction models can achieve

high accuracy and be applicable in post-CS-AKI patients (33).

FIGURE 2

PROBAST risk of bias summary and applicability of summary.

Cheong et al. 10.3389/fped.2025.1581578

Frontiers in Pediatrics 10 frontiersin.org

https://doi.org/10.3389/fped.2025.1581578
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Serum and urinary NGAL, serum cystatin C,
urine IL-18, and urine L-FABP

Serum or urine biomarkers offer an earlier prediction compared

to serum creatinine; however, implementation remains limited due

to a lack of standardized assay methodologies. This area is still

under active research (51, 52). Serum NGAL, evaluated in a 2023

meta-analysis (five studies, 634 patients) indicated a sensitivity of

0.68, specificity of 0.88, and AUROC of 0.74 (27). Meanwhile, a

2024 prospective study (post–cardiopulmonary bypass) reported a

higher sensitivity of 0.83, but a lower specificity of 0.64, with an

AUROC of 0.67 (53). In contrast, urinary NGAL, assessed in a

meta-analysis of 12 studies (1,391 participants) achieved a

sensitivity of 0.75, specificity of 0.87, and an AUROC of 0.87 (27),

although its clinical applicability of NGAL post cardiac surgery

with CPB remains controversial (28, 54). Additional pooled data

from 11 studies (1,541 participants, mostly PICU/post–cardiac

surgery), revealed a sensitivity of 0.76, specificity of 0.77, and an

AUROC of 0.77 for serum cystatin C (27), while urine IL-18,

based on five studies (744 participants), yielded a sensitivity of

0.46, specificity of 0.78, and an AUROC of 0.76 (27). Moreover,

the meta-analysis of four studies (585 patients) reported a an

AUROC of 0.86 for the L-FABP, which is subsequently higher

than serum cystatin, IL-8, and serum NGAL but comparable to

urine NGAL (27).

Plasma mRNA, miR-184, miR-6766-3p and
combined

In a single-center pediatric study (20 patients), combining

miR-184 and miR-6766-3p improved diagnostic accuracy

(sensitivity 0.75, specificity 0.875), and accuracy of 0.8645

(Youden index: 0.625), indicating that a combined biomarker

approach may enhance diagnostic performance in this setting (53).

KIM-1, TIMP-2*IGFBP7, CHI3L1, VCAM,
CCL14, and C-X-CL 10

Urine KIM-1 showed an AUROC of 0.72 in a pooled meta-

analysis, while TIMP-2*IGFBP7 reached 0.77. Beta-2-microglobulin

and serum IL-6 both averaged around 0.71–0.72 (27). In pediatric

cardiac surgery, urine CHI3L1 and IGFBP7 had only moderate

performance when not corrected for dilution, and serum creatinine

change still performed better overall (55). Elevated VCAM levels

were noted in AKI cases at six-hour intervals, whereas CCL14

appeared similar between AKI and non-AKI groups. CXCL10 rose

significantly in AKI patients at 24–72 h post-bypass (56, 57).

Limitations of this review

Most studies relied on robust internal and cross-validation

across multiple cohorts or centers instead of external validation.

Notably, two studies with large sample sizes may offer sufficient

validation (36, 45), although one study cautioned that the

absence of external validation combined with high-dimensional

data could lead to overfitting in small cohorts.

Recommendations

To validate the use of ML in predicting post-cardiac surgery-

associated acute kidney injury (CS-AKI), future studies should be

designed as prospective, multi-site trials (50). Additional research

is needed to determine whether pretrained ML frameworks that

incorporate dynamic, real-time temporal sequence, which provide

continuous risk scores, can outperform models trained on static

pre-collected data. Alternatively, deep networks employing multi-

head attention, rather than single-head attention, might offer a

more efficient processing and in-depth understanding of the data

(58). Furthermore, greater emphasis should be placed on

exploring and understanding the risk factors and associations of

clinically significant AKI post-cardiac surgery in relation to

mortality, and on evaluating whether pre-emptive detection and

intervention in high-risk cases can reduce subsequent mortality.

While numerous investigations demonstrate strong predictive

accuracy, translating these algorithms into clinical practice encounters

significant barriers that current research fails to adequately examine

(59). Live system deployment demands robust technological

frameworks capable of handling complex computational demands,

yet the incorporation of AI tools into existing clinical processes

remains insufficiently studied (60). Though advanced warning

systems and early alerts may facilitate timely interventions, their

effectiveness depends on synchronization with relevant clinical

workflows and actionable treatment windows (61). Zeng et al. (2023)

noted that once trained, a model applies its fixed parameters to new

patient data without needing to be retrained, thereby reducing

computational demands and enabling real-time predictions (32).

Similarly, ML data were used to develop a nomogram that lets

clinicians calculate the one-year post-surgery AKD risk (35).

Economic evaluations examining implementation costs should

be standard practice across machine learning healthcare

applications, extending beyond CS-AKI research (62). These

assessments must weigh the potential clinical advantages of early

intervention against the financial burden of system deployment,

including technology infrastructure, personnel education, and

operational overhead (63). The absence of rigorous economic

analysis leaves questions about the practical viability of

integrating ML tools into clinical practice (64, 65).

Additionally, the research community should pivot from

emphasizing predictive accuracy alone toward conducting real-

world validation trials that reveal deployment obstacles (66).

Future investigations need to examine practical applicability,

healthcare system integration, and cost-effectiveness across varied

institutional environments, rather than relying solely on statistical

performance indicators (67).

Conclusion

ML models predicting AKI in post-cardiac surgery pediatric

patients demonstrate excellent discriminatory performance with
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prediction lead times up to two days, potentially outperforming

traditional biomarkers and KDIGO criteria that often exhibit

delayed presentations. These computational models appear superior

to existing biomarkers and standard KDIGO classifications, which

typically recognize kidney dysfunction only after significant damage

has occurred. The strength of these algorithms lies in their capacity

to synthesize complex perioperative data, from baseline patient

characteristics through surgical variables like bypass time and

perfusion adequacy to postoperative monitoring parameters. Despite

these encouraging results, several critical concerns temper

enthusiasm for immediate clinical adoption. The quality of available

evidence suffers from significant methodological weaknesses, most

notably the absence of rigorous external validation across different

institutions and patient populations. This limitation is particularly

troubling given the predominance of single-site retrospective studies,

which create substantial risk for model overfitting and poor

generalizability. Furthermore, the heterogeneity in study designs,

patient selection criteria, and outcome measurements makes it

difficult to draw definitive conclusions about true clinical

effectiveness. A substantial gap persists between promising research

outcomes and practical healthcare implementation. Current models

largely rely on static data inputs rather than the continuous,

dynamic monitoring that characterizes modern intensive care.

Moving forward, the field requires well-designed prospective trials

conducted across multiple centers with standardized protocols and

outcome measures. Only through such rigorous validation can we

determine whether these promising tools will truly enhance patient

care in diverse clinical settings.
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