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Construction and validation
of a machine learning based
prognostic prediction model
for children with traumatic
brain injury

Yongwei Wei, Jiandong Wang, Yu Su, Fan Zhou and Huaili Wang*

Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,

Hennan, China

Objective: This study aimed to establish a prediction model for the short-term

prognosis of children with traumatic brain injury (TBI) using machine

learning algorithms.

Methods: The clinical data of children with TBI who were treated in the First

Affiliated Hospital of Zhengzhou University were retrospectively analyzed. All

children were divided into a modeling group and a validation group. In the

laboratory indicators of the modeling group, the least absolute shrinkage and

selection operator (LASSO) and multivariate Logistic regression analysis were

used to screen out the independent influencing factors of poor prognosis in

TBI, and a laboratory indicator model (LIM) was established. The risk scores of

all patients were calculated. Then, the risk scores and other indicators were

used to construct an extended prediction model through the extreme gradient

boosting (XGBoost) algorithm. The discrimination, calibration, and clinical

utility of the model were evaluated, and the extended model was explained

using SHAP analysis. Finally, a subgroup analysis was performed using the risk

scores to assess the robustness of the laboratory indicator model.

Results: Among the laboratory indicators, lactate dehydrogenase (LDH),

N-terminal pro-B-type natriuretic peptide (NT-proBNP), hydrogen ion

concentration index (pH), hemoglobin (Hb), serum albumin (Alb), and

C-reactive protein to albumin ratio (CRP/Alb) were the independent

influencing factors for the prognosis of children with brain injury. The

extended model demonstrated excellent predictive performance in both the

modeling and validation populations. SHAP analysis showed the contribution

values of the Glasgow Coma Scale (GCS), the laboratory indicator model, the

location of the head hematoma, the pupillary light reflex, and the injury

severity score in the prediction of the overall patient prognosis. The subgroup

analysis showed that there were differences in the risk scores of children with

different GCS scores, pupillary light reflexes, and head hematoma locations,

and there were also differences in the prognosis between the high-risk score

group and the low-risk score group within them.

Conclusion: The extended model can accurately predict the prognosis of TBI

patients and has strong clinical utility. The core model has good stratification

ability and provides an effective risk stratification and personalized patient

management tool for clinicians.
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Introduction

Traumatic brain injury (TBI), a common type of accidental

injury in children, is one of the leading causes of severe disability

and death among children (1). A sampling survey in hospitals

from six provinces in central China found that among 231,162

hospitalized children from 2011 to 2020, there were 15,807 TBI

patients, accounting for 6.84% (2). The global burden of disease

study reported that the global age standardized incidence rate of

TBI was 369/100,000 in 2016 and 346/100,000 in 2019 (3). After

traumatic brain injury, children are more prone to epilepsy and

other complications than adults (4). Objective and accurate

assessment of the condition and prognosis of TBI is the

foundation of TBI treatment. The prognosis of TBI is related to

multiple factors, including clinical features, laboratory test results,

and neuroimaging findings.

The clinical manifestations of TBI patients include headache,

dizziness, altered level of consciousness, neurological

dysfunction, etc. (5). The Glasgow Coma Scale (GCS) is

commonly used clinically to assess the level of consciousness of

TBI patients and evaluate their condition and prognosis. In

addition, in actual clinical work, children with TBI often have

injuries in other parts of the body, which can also affect the

prognosis of the children. The Injury Severity Score (ISS) is

used clinically to assess the overall severity of trauma in patients

(6, 7). However, the GCS score and ISS score are highly

influenced by the subjective experience of the evaluators,

and patients with the same score at admission often have

different clinical prognoses. Therefore, it is necessary to combine

laboratory indicators reflecting systemic metabolism and organ

function and imaging examinations reflecting head injury

conditions to judge the prognosis. Arslan et al. reviewed 161

patients with moderate to severe TBI in the ICU of Istanbul

Kanuni Sultan Suleyman Training and Research Hospital of

Istanbul Health Sciences University in Turkey from June 2020

to June 2022 and found that the systemic immune-inflammation

index (SII), neutrophil - lymphocyte ratio (NLR), and platelet -

lymphocyte ratio (PLR) at admission had predictive value

for the prognosis of severe TBI patients (8). However, the

prediction models based on laboratory indicators are easily affected

by testing methods and the selection of different cut-off values,

and their universality is poor (5, 9, 10). Therefore, the predictive

role of clinical manifestations and imaging data on patient

prognosis also needs to be considered. Head CT is currently the

most commonly used imaging examination method for children

with TBI (11). Researchers have developed many CT scores to

assess the condition and prognosis of TBI patients, and the

increase in scores is closely related to the risk of death (12, 13).

A retrospective study of 250 TBI patients showed that the

Marshall, Rotterdam, and NIRIS scoring systems provided good

predictions of mortality and outcomes, and subarachnoid

hemorrhage was the most common CT finding in death cases (14).

However, imaging findings cannot reflect secondary damages such

as delayed intracerebral hemorrhage and often require repeated

examinations, increasing the radiation harm to patients (15).

Therefore, establishing a prognosis prediction model based on

multimodal data of patients can comprehensively reflect the

complex pathophysiological state of children.

Most traditional TBI prognosis models are constructed based on

the assumption of linear relationships and fail to fully consider the

nonlinear relationships and interaction effects among variables,

resulting in low prediction accuracy of the models (16, 17). Based on

the above deficiencies, researchers have begun to seek new methods

to more accurately and efficiently grasp these complex relationships.

XGBoost (Extreme Gradient Boosting) belongs to the supervised

learning algorithm in machine learning (18). It is an ensemble

algorithm based on gradient boosting decision trees, with powerful

computational efficiency and nonlinear modeling ability. It is mainly

used to solve regression and classification problems and has been

widely used in risk assessment, prognosis prediction, survival

analysis, and other tasks in the medical field. It is increasingly

regarded as a viable alternative to traditional linear models (such as

logistic regression or Cox regression) for predicting various clinical

outcomes (19–22). A retrospective study of 1,123 elderly TBI

patients showed that the use of machine learning algorithms to

predict the mortality of elderly patients with traumatic brain injury

was significantly better than the traditional Logistic algorithm (23).

A retrospective study of 1,200 TBI patients by Matsuo et al. showed

that XGBoost was significantly better than the logistic regression

model in predicting severe disability/vegetative state (24).

Although there have been several previous studies on the

prognosis prediction of TBI patients using machine learning, there

is a lack of interpretable analysis of the models. SHAP (Shapley

Additive exPlanations) is a method used to explain the output of

machine learning models. It is based on the Shapley value in

cooperative game theory and provides model explanations by

calculating the contribution of each feature to the model prediction

result. Deeply exploring how changes in feature values affect the

model prediction output is crucial for understanding machine

learning models (25).

Considering that laboratory indicators are related to the overall

physiological state and disease process of patients, the model based

on laboratory indicators can perform risk stratification of patients’

clinical features. A modeling study of biomarker levels in patients

with acute myocardial infarction found that the level of

high-sensitivity troponin T (hs - cTnT) had important predictive

value for the short-term prognosis of patients. Then, combining

the clinical features of patients such as Killip classification

(a clinical classification reflecting the degree of heart failure) with

the hs - cTnT level could divide patients into different risk

groups (26). Therefore, in this study, after establishing a

laboratory indicator model, risk stratification of clinical features

was performed to improve the practicability of the model.

This study intends to collect the clinical data of children with

TBI in the Pediatric Intensive Care Unit (PICU) of the First

Affiliated Hospital of Zhengzhou University. Firstly, a Logistic

core prediction model containing only laboratory indicators will

be established. Secondly, an extended prediction model of

XGBoost algorithm for the short-term prognosis of children with

TBI will be established. Then, an interpretable method will be

applied to enhance the readability of the model. Finally, LIM will

be used to perform risk stratification on all patients.
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Methods

Study design

This retrospective study collected 532 patients with TBI admitted

to the Pediatric Intensive Care Unit (PICU) of the First Affiliated

Hospital of Zhengzhou University from June 2019 to June 2024.

The patients were randomly divided into a modeling group and a

validation group at a ratio of 7:3, and were further classified into a

good prognosis group and a poor prognosis group based on the

prognosis of the children 6 months after the injury.

Participants

The inclusion criteria were as follows: (1) aged under 18 years;

(2) a clear history of head trauma; (3) diagnosed with TBI within

24 h after injury based on symptoms, signs, or imaging (head CT

or MRI); (4) completion of all examinations and tests within

24 h after TBI and before surgical or other drug treatment

measures; (5) first admission with basically complete clinical data.

The exclusion criteria were as follows: (1) death within 24 h of

admission; (2) a history of multiple previous brain injuries, such as

craniotomy, spinal cord injury, or penetrating head injury; (3)

suffering from severe underlying diseases, such as heart, liver, or

kidney insufficiency; (4) having clinical manifestations of

hematological diseases, malignant tumors, chronic inflammation,

or acute infection before injury; (5) recent use of steroids,

immunosuppressants, antiplatelet agents, or oral anticoagulants.

Study procedures

(1) Basic information: age, gender, past medical history, time of

injury, place of injury (Road/Home/Other), cause of injury

(Traffic injury/Falling - related injuries/Other), injured area

(Single site or Multiple sites).

(2) Clinical information: vomiting after injury, disturbance of

consciousness after injury, seizure after injury, pupillary light

reflex (PR), presence or absence of coagulation disorder,

Glasgow Coma Scale (GCS), Injury Severity Score (ISS).

(3) Imaging findings: location of hematoma in the head (LH)

(epidural/subdural/subarachnoid/intracerebral/mixed),

presence or absence of skull fracture, open or closed.

(4) Laboratory indicators: pH, blood sugar, chloride ion, white blood

cells, red blood cells, hemoglobin (Hb), platelets, neutrophils,

lymphocytes, monocytes, alanine aminotransferase, aspartate

aminotransferase, albumin, globulin, total protein, serum

creatinine, creatine kinase, creatine kinase isoenzyme, lactate

dehydrogenase (LDH), N-terminal pro-brain natriuretic

peptide (NT - pro BNP), procalcitonin, C-reactive protein

(CRP), interleukin-6, neutrophil-to-lymphocyte ratio (NLR),

platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte

ratio (LMR), C-reactive protein to albumin ratio (CAR).

(5) Study outcome: Telephone follow-up was conducted on the

180th day after admission. According to the Glasgow

Outcome Scale-Extended, Pediatric Revision (GOSE-peds)

score, patients were divided into a good prognosis group

and a poor prognosis group.

The good prognosis group included: GOSE score of 8,

indicating full recovery; GOSE score of 7, indicating good

recovery (with slight functional deficits but close to full

recovery); GOSE score of 6, indicating moderate mild

disability (partial recovery of occupational or social

functions); GOSE score of 5, indicating mild moderate

disability (independent living with limited ability).

The poor prognosis group included: GOSE score of 4,

indicating moderate severe disability (requiring significant

assistance but partial independence); GOSE score of 3,

indicating severe disability (completely dependent on others,

requiring 24-h care); GOSE score of 2, indicating vegetative

state; GOSE score of 1, indicating death.

(6) Missing value handling: The VIM package in R language was

used to appropriately fill in the missing values after fully

considering the distribution of variable values.

Statistical analysis

All statistical analyses, model construction, validation, and

interpretation in this study were based on R software (version 4.4.2).

The significance level was set at α = 0.05, and a P-value less than 0.05

was considered statistically significant. Firstly, to improve the

predictive performance of the model, the cut-off values of all

continuous variables were calculated and dichotomized. Categorical

variables were expressed as percentages, and comparisons between

groups were analyzed using the chi-square test or Fisher’s exact test.

LASSO regression was applied to 27 laboratory indicators in the

modeling population to screen for factors influencing poor prognosis

of TBI. The screened variables were then included in multivariate

Logistic regression to further screen for independent influencing

factors of poor prognosis of TBI and establish a core prediction

model. The ROC curve was drawn and the AUC was calculated to

evaluate the discrimination of the prediction model. Then, the risk

scores of all patients were calculated based on the established

laboratory model. Five important features were screened out through

XGBoost together with the risk scores and other indicators to

construct an XGBoost prediction model. To visualize the model for

clinical use, the five important features screened out by XGBoost

were modeled using Logistic regression and a nomogram was drawn.

To test the effectiveness of the model, a confusion matrix was first

drawn to evaluate the robustness of the XGBoost model. Then, the

ROC curve was drawn and the AUC was calculated to evaluate the

discrimination of the model. The calibration curve was drawn to

evaluate the calibration of the model, and the clinical decision curve

was drawn to evaluate the clinical utility of the model. SHAP was

used to explain the XGBoost model. A waterfall plot was drawn to

present the contribution values and directions of each feature in

promoting the model prediction results. A swarm plot and a bar plot

of feature importance were drawn to macroscopically display the

feature importance and SHAP values of the entire model.

A dependence plot was drawn to show the relationship between

individual feature values and SHAP values. Finally, a stratified
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analysis of the prognostic risk of patients was performed based on the

Glasgow Coma Scale, pupillary light reflex, and location of head

hematoma using the risk scores, as shown in Figure 1.

Ethics

All procedures in this study complied with the principles of the

institutional and/or national research committee and the

Declaration of Helsinki. The study was approved by the Scientific

Research and Ethics Committee of the First Affiliated Hospital of

Zhengzhou University (Ethics Approval No.: 2023-KY-1242-001).

Results

The data were randomly divided into a training set and a validation

set at a ratio of 7:3. There were 374 patients in the training group and

158 patients in the validation set, as shown in Table 1.

Core model construction and validation

Firstly, a heatmap was drawn using the training set data to

display the correlations among the 27 laboratory indicators, as

shown in Figure 2A. Then, the ROC curves of the 27 variables

were drawn to show the predictive performance, as shown in

Figure 2B. A histogram was drawn to display the AUC of the 27

variables, as shown in Figure 2C.

LASSO regression was used to screen variables among the

27 laboratory indicators in the modeling population. As

shown in Figure 3A. To achieve a good model fit, the λ

corresponding to the minimum mean square error was

selected after cross-validation, as shown in Figure 3B.

Through LASSO regression analysis, 13 variables were

obtained, namely: pH, Hb, Alb, LDH, NT - pro BNP, CAR,

neutrophils, lymphocytes, serum creatinine, creatine kinase,

creatine kinase isoenzyme, procalcitonin, and blood glucose,

as shown in Figure 3C.

FIGURE 1

Flow chart of the study.
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TABLE 1 Baseline characteristics of traumatic brain injury patients stratified by prognostic Status and cohort.

Characteristics Whole Prognostic status p Cohort p

Groups Patients Favorable Unfavorable Training Validation

n (n = 532) (n = 399) (n = 133) (n = 374) (n = 158)

Gender, n (%) 0.39 0.841

Female 170 (32) 123 (31) 47 (35) 49 (31) 121 (32)

Male 362 (68) 276 (69) 86 (65) 109 (69) 253 (68)

Age, n (%) 0.144 0.292

≤4.5 year 239 (45) 187 (47) 52 (39) 77 (49) 162 (43)

>4.5 year 293 (55) 212 (53) 81 (61) 81 (51) 212 (57)

Injured area, n (%) 0.012 1

Single site 323 (61) 255 (64) 68 (51) 96 (61) 227 (61)

Multiple sites 209 (39) 144 (36) 65 (49) 62 (39) 147 (39)

Causes of injury, n (%) <0.001 0.049

Other 33 (6) 29 (7) 4 (3) 15 (9) 18 (5)

Falling - related injuries 251 (47) 203 (51) 48 (36) 65 (41) 186 (50)

Traffic injuries 248 (47) 167 (42) 81 (61) 78 (49) 170 (45)

Site of injury, n (%) 0.008 0.253

Other 46 (9) 41 (10) 5 (4) 17 (11) 29 (8)

Home 200 (38) 157 (39) 43 (32) 52 (33) 148 (40)

Road 286 (54) 201 (50) 85 (64) 89 (56) 197 (53)

Emesis, n (%) <0.001 0.821

No 321 (60) 222 (56) 99 (74) 97 (61) 224 (60)

Yes 211 (40) 177 (44) 34 (26) 61 (39) 150 (40)

Disturbance of awareness, n (%) <0.001 0.168

No 220 (41) 210 (53) 10 (8) 73 (46) 147 (39)

Yes 312 (59) 189 (47) 123 (92) 85 (54) 227 (61)

Post - traumatic seizure, n (%) <0.001 1

No 446 (84) 362 (91) 84 (63) 132 (84) 314 (84)

Yes 86 (16) 37 (9) 49 (37) 26 (16) 60 (16)

Pupil reflex, n (%) <0.001 0.397

Normal 396 (74) 360 (90) 36 (27) 122 (77) 274 (73)

Abnormal 136 (26) 39 (10) 97 (73) 36 (23) 100 (27)

GCS, n (%) <0.001 0.052

≤9 179 (34) 64 (16) 115 (86) 43 (27) 136 (36)

>9 353 (66) 335 (84) 18 (14) 115 (73) 238 (64)

ISS, n (%) <0.001 0.625

≤15 364 (68) 339 (85) 25 (19) 111 (70) 253 (68)

>15 168 (32) 60 (15) 108 (81) 47 (30) 121 (32)

Coagulation dysfunction, n (%) <0.001 0.355

Normal 285 (54) 238 (60) 47 (35) 90 (57) 195 (52)

Abnormal 247 (46) 161 (40) 86 (65) 68 (43) 179 (48)

Location of hematoma, n (%) <0.001 0.934

Epidural hematoma 270 (51) 257 (64) 13 (10) 83 (53) 187 (50)

Subdural hematoma 60 (11) 46 (12) 14 (11) 15 (9) 45 (12)

Subarachnoid hematoma 65 (12) 37 (9) 28 (21) 19 (12) 46 (12)

Intracerebral hematoma 102 (19) 44 (11) 58 (44) 30 (19) 72 (19)

Multiple hematomas 35 (7) 15 (4) 20 (15) 11 (7) 24 (6)

Cranial CT, n (%) <0.001 0.609

Normal 122 (23) 117 (29) 5 (4) 39 (25) 83 (22)

Abnormal 410 (77) 282 (71) 128 (96) 119 (75) 291 (78)

Skull fracture, n (%) 0.023 0.552

No 231 (43) 185 (46) 46 (35) 65 (41) 166 (44)

Yes 301 (57) 214 (54) 87 (65) 93 (59) 208 (56)

Craniocerebral injury, n (%) 0.042 0.845

Open 412 (77) 318 (80) 94 (71) 121 (77) 291 (78)

Closed 120 (23) 81 (20) 39 (29) 37 (23) 83 (22)

(Continued)
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TABLE 1 Continued

Characteristics Whole Prognostic status p Cohort p

Groups Patients Favorable Unfavorable Training Validation

PH, n (%) 0.07 0.111

≤7.429 290 (55) 227 (57) 63 (47) 95 (60) 195 (52)

>7.429 242 (45) 172 (43) 70 (53) 63 (40) 179 (48)

Bs, n (%) <0.001 0.264

≤6.85 343 (64) 275 (69) 68 (51) 108 (68) 235 (63)

>6.85 189 (36) 124 (31) 65 (49) 50 (32) 139 (37)

Cl, n (%) <0.001 0.453

≤109.5 450 (85) 352 (88) 98 (74) 137 (87) 313 (84)

>109.5 82 (15) 47 (12) 35 (26) 21 (13) 61 (16)

WBC, n (%) 1 0.324

≤10.91 4 (1) 3 (1) 1 (1) 0 (0) 4 (1)

>10.91 528 (99) 396 (99) 132 (99) 158 (100) 370 (99)

RBC, n (%) <0.001 0.6

≤3.715 135 (25) 68 (17) 67 (50) 43 (27) 92 (25)

>3.715 397 (75) 331 (83) 66 (50) 115 (73) 282 (75)

Hb, n (%) <0.001 0.888

≤105.45 161 (30) 85 (21) 76 (57) 49 (31) 112 (30)

>105.45 371 (70) 314 (79) 57 (43) 109 (69) 262 (70)

Plt, n (%) <0.001 0.514

≤249.5 181 (34) 110 (28) 71 (53) 50 (32) 131 (35)

>249.5 351 (66) 289 (72) 62 (47) 108 (68) 243 (65)

Neu, n (%) 0.03 0.311

≤8.735 233 (44) 186 (47) 47 (35) 75 (47) 158 (42)

>8.735 299 (56) 213 (53) 86 (65) 83 (53) 216 (58)

Lym, n (%) 0.016 0.076

≤1.2 169 (32) 115 (29) 54 (41) 41 (26) 128 (34)

>1.2 363 (68) 284 (71) 79 (59) 117 (74) 246 (66)

Mon, n (%) 0.009 0.106

≤0.715 317 (60) 251 (63) 66 (50) 103 (65) 214 (57)

>0.715 215 (40) 148 (37) 67 (50) 55 (35) 160 (43)

ALT, n (%) <0.001 0.689

≤14.5 227 (43) 200 (50) 27 (20) 70 (44) 157 (42)

>14.5 305 (57) 199 (50) 106 (80) 88 (56) 217 (58)

AST, n (%) <0.001 0.228

≤38.5 280 (53) 241 (60) 39 (29) 90 (57) 190 (51)

>38.5 252 (47) 158 (40) 94 (71) 68 (43) 184 (49)

TP, n (%) <0.001 0.451

≤63.25 193 (36) 116 (29) 77 (58) 53 (34) 140 (37)

>63.25 339 (64) 283 (71) 56 (42) 105 (66) 234 (63)

Alb, n (%) <0.001 0.372

≤40.25 192 (36) 103 (26) 89 (67) 52 (33) 140 (37)

>40.25 340 (64) 296 (74) 44 (33) 106 (67) 234 (63)

Glb, n (%) 0.001 0.599

≤18.95 89 (17) 54 (14) 35 (26) 29 (18) 60 (16)

>18.95 443 (83) 345 (86) 98 (74) 129 (82) 314 (84)

Cre, n (%) <0.001 0.444

≤43.5 464 (87) 360 (90) 104 (78) 141 (89) 323 (86)

>13.5 68 (13) 39 (10) 29 (22) 17 (11) 51 (14)

CK, n (%) <0.001 0.131

≤208.5 312 (59) 272 (68) 40 (30) 101 (64) 211 (56)

>208.5 220 (41) 127 (32) 93 (70) 57 (36) 163 (44)

CKL, n (%) <0.001 0.15

≤22.85 144 (27) 127 (32) 17 (13) 50 (32) 94 (25)

>22.85 388 (73) 272 (68) 116 (87) 108 (68) 280 (75)

(Continued)
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To further screen the independent influencing factors

affecting the prognosis of children with TBI, the above 13

variables were included in the multivariate Logistic regression

analysis. The results showed that pH, Hb, Alb, LDH, NT – pro

BNP, and CAR were the independent influencing factors for

poor prognosis in TBI patients, as shown in Figure 3D.

A laboratory indicator prediction equation was constructed

using the 6 screened independent influencing factors:

Y =−1.96 + 1.414X1 + 0.8647X2 + 0.7137X3 + 0.5456X4-0.7328X5-

1.0892X6 (X1 represents LDH, X2 represents NT - pro BNP, X3

represents CAR, X4 represents pH, X5 represents Hb, X6

represents Alb).

The risk scores were calculated according to the regression

equation, and the ROC of the subjects was drawn, and the AUC

was calculated to evaluate the discrimination of the prediction

model. The AUC of the training set was 0.833 (95% CI: 0.789–

0.877), as shown in Figure 3E. The AUC of the validation set

was 0.812 (95% CI: 0.734–0.890), as shown in Figure 3F. This

indicates that the core model based on laboratory indicators has

good discrimination.

Extended model establishment and
validation

XGBoost analysis was used to rank the important features of

the risk scores and other indicators in the modeling population.

The top 5 in the order of importance were: GCS, LIM, pupillary

light reflex, hematoma location, and ISS, as shown in Figure 4A.

These 5 indicators were included in the XGBoost algorithm to

establish a machine learning model.

To test the effectiveness of the model, the confusion matrix

showed that the overall accuracy of the XGBoost model in the

training set reached 94.1%, as shown in Figure 4D. The overall

accuracy in the test set was 90.5%, as shown in Figure 4F. This

indicates that the model has good classification ability.

Then, the ROC curves were drawn in the training set and the

validation set respectively, and the AUC was calculated to

evaluate the discrimination of the prediction model. The AUC of

the training set was 0.978 (95% CI: 0.962–0.994), as shown in

Figure 5A. The AUC of the validation set was 0.910 (95% CI:

0.847–0.974), as shown in Figure 5B. This indicates that XGBoost

TABLE 1 Continued

Characteristics Whole Prognostic status p Cohort p

Groups Patients Favorable Unfavorable Training Validation

LDH, n (%) <0.001 0.008

≤349.5 238 (45) 214 (54) 24 (18) 85 (54) 153 (41)

>349.5 294 (55) 185 (46) 109 (82) 73 (46) 221 (59)

NT – pro BNP, n (%) <0.001 0.961

≤242.515 405 (76) 330 (83) 75 (56) 121 (77) 284 (76)

>242.515 127 (24) 69 (17) 58 (44) 37 (23) 90 (24)

PCT, n (%) <0.001 0.267

≤0.366 350 (66) 302 (76) 48 (36) 110 (70) 240 (64)

>0.366 182 (34) 97 (24) 85 (64) 48 (30) 134 (36)

CRP, n (%) <0.001 0.677

≤3.235 312 (59) 269 (67) 43 (32) 90 (57) 222 (59)

>3.235 220 (41) 130 (33) 90 (68) 68 (43) 152 (41)

IL-6, n (%) <0.001 0.367

≤19.325 282 (53) 241 (60) 41 (31) 89 (56) 193 (52)

>19.325 250 (47) 158 (40) 92 (69) 69 (44) 181 (48)

NLR, n (%) 0.002 1

≤2.64 126 (24) 108 (27) 18 (14) 37 (23) 89 (24)

>2.64 406 (76) 291 (73) 115 (86) 121 (77) 285 (76)

PLR, n (%) 0.031 0.14

≤247.195 166 (31) 114 (29) 52 (39) 57 (36) 109 (29)

>247.195 366 (69) 285 (71) 81 (61) 101 (64) 265 (71)

LMR, n (%) 0.002 0.268

≤3.87 347 (65) 245 (61) 102 (77) 97 (61) 250 (67)

>3.87 185 (35) 154 (39) 31 (23) 61 (39) 124 (33)

CAR, n (%) <0.001 1

≤0.08 317 (60) 275 (69) 42 (32) 94 (59) 223 (60)

>0.08 215 (40) 124 (31) 91 (68) 64 (41) 151 (40)

Notes: The p-values in the above table are calculated by chi-square test.

Abbreviations: GCS, Glasgow coma scale; ISS, injury severity score; PH, PH value; Bs, blood sugar; Cl, chloride ion; WBC, white blood cells; RBC, red blood cells; Hb, hemoglobin; Plt, platelets;

Neu, neutrophils; Lym, lymphocytes; Mon, monocytes; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TP, total protein; Alb, albumin; Glb, globulin; Cre, serum creatinine;

CK, creatine kinase; CKL, creatine kinase isoenzyme; LDH, lactate dehydrogenase; NT-proBNP, N-terminal pro-brain natriuretic peptide; PCT, procalcitonin; CRP, C-reactive protein; IL-6,

interleukin-6;NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; CAR, C-reactive protein to albumin ratio.
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has good discrimination. The Bootstrap internal resampling

method was used to repeat sampling 1,000 times in the modeling

group data, and the concordance index (C-index) was 0.925.

Calibration plots were drawn in the training set and the

validation set, as shown in Figures 5C,D. The figure shows that the

predicted situation of poor prognosis of TBI is basically consistent

with the actual situation, indicating that the prediction model has

good calibration.

Finally, decision curves were drawn in the training set and the

validation set, as shown in Figures 5E,F. The abscissa represents the

threshold probability, and the ordinate represents the net benefit of

patients receiving treatment. The horizontal green line above the

abscissa represents the net benefit of assuming that all patients

are not treated, the red line represents the net benefit of

assuming that all patients are treated, and the blue line

represents the net benefit of using the XGBoost model to guide

treatment. This indicates that the prediction model has good

clinical utility. To facilitate clinical use, the top 5 important

features selected by XGBoost were incorporated into a Logistic

regression model to develop a nomogram, as shown in Figure 6.

SHAP explanation

To explain the XGBoost model, firstly, a SHAP waterfall plot was

drawn to show the contribution values and directions of each feature in

FIGURE 2

LIM variable filtering. (A) Laboratory index correlation heat map. (B) Laboratory index ROC. (C) Laboratory index AUC value.
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affecting the model prediction results. Starting from the baseline value,

each feature value pushes the baseline forward or backward. For these

two patients, the feature values “GCS”, “LIM” and “PR” contributed

the most to the prognosis prediction, as shown in Figures 7A,B.

The SHAP feature importance swarm plot and feature

importance bar plot were drawn, and the features were sorted

in descending order by feature importance. The horizontal

axis represents the Shapley value of the corresponding

FIGURE 3

LIM model construction and validation. (A) Lasso regression coefficient path map. (B) Lasso regression cross validation chart. (C) Minimum mean

square error time variable. (D) Multivariate logistic regression forest map. (E) ROC curve of training set. (F) ROC curve of validation set.
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feature. The feature “GCS” is the most important, as shown

in Figures 7C,D.

Finally, the SHAP multivariate dependence plot was drawn to

represent the marginal effect of a single feature on the model

prediction result, showing the linear, monotonic or more

complex relationship between the feature and the Shapley value.

Each point in the partial dependence plot represents a sample.

The horizontal axis represents the value of the corresponding

FIGURE 4

Construction and validation of XGBoost model. (A) Characteristic gain ordering. (B) Ranking of the number of feature splitting points. (C) Sorting of

sample number of characteristic sub nodes. (D) Training set confusion matrix. (E) Validation set confusion matrix. Abbreviations: RS, risk score; PR,

pupillary light reflex; LH, location of hematoma; EPS, early post-traumatic seizures; Cf, coagulation function; P, injured area (single site or multiple

sites); OC, craniocerebral injury (open or close); Type, causes of injury (traffic injury/falling - related injuries/other); Eme: vomiting after injury;

Doc, disturbance of consciousness after injury; Site, place of injury (Road/Home/Other); Fra, Skull fracture; CT, Cranial CT.
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feature of the sample, and the vertical axis represents the Shapley

value of the feature. The lower the GCS score, the higher the

Shapley value, and the worse the prognosis of TBI patients. The

higher the LIM score, the higher the Shapley value, and the

worse the prognosis of TBI patients. The abnormal PR, the

higher the Shapley value, and the worse the prognosis of TBI

patients. The higher the ISS score, the higher the Shapley value,

and the worse the prognosis of TBI patients. The Shapley value

FIGURE 5

XGBoost model validation. (A) Training set ROC. (B) Validation set ROC. (C) Training set calibration curve. (D) Validation set calibration curve.

(E) Training set decision curve. (F) Validation set decision curve.
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of epidural hematoma is significantly lower than that of the

other four types of hematoma, and the prognosis is better,

as shown in Figure 7E.

Through SHAP explanation, we identified the specific

contribution values of important features in the prognosis

prediction of different children with TBI, and intuitively

demonstrated the complex prediction process of the model.

Risk stratification

To better apply the laboratory indicator model in clinical

practice, we used risk scores to group the clinical features by risk.

The cut - off value of the risk score calculated in the training set

was −1.26, and all patients were divided into a high - risk score

group and a low - risk score group. When we compared the risk

scores of the high GCS group and the low GCS group, the

difference was statistically significant (P < 0.001), as shown in

Figure 8A. Then, when we compared the prognosis of the high -

risk score group and the low - risk score group within the high

GCS group and the low GCS group respectively, the difference was

statistically significant (P < 0.001). Comparing the risk scores of the

normal pupil reflex group and the abnormal pupil reflex group, the

difference was statistically significant (P < 0.001), as shown in

Figure 8B. Then, comparing the prognosis of the high-risk score

group and the low-risk score group within the normal pupil reflex

group and the abnormal pupil reflex group respectively, the

difference was statistically significant (P < 0.001). Comparing

the risk scores of patients with different head hematoma locations,

the difference was statistically significant (P < 0.001), as shown in

Figure 8C. Then, comparing the prognosis of the high-risk score

group and the low-risk score group within the epidural hematoma

group, the difference was statistically significant (P < 0.05).

Comparing the prognosis of the high-risk score group and the low-

risk score group within the subarachnoid hematoma group, the

difference was statistically significant (P < 0.001). Comparing the

prognosis of the high-risk score group and the low-risk score group

within the intracerebral hematoma group, the difference was

statistically significant (P < 0.001). Comparing the prognosis of the

high-risk score group and the low-risk score group within the mixed

hematoma group, the difference was statistically significant

(P < 0.05). This indicates that among patients with the same

Glasgow Coma Scale score, pupil reaction, and head hematoma

location, patients with higher risk scores have a worse prognosis,

which greatly improves the clinical applicability of the laboratory

indicator model.

Discussion

TBI is a common critical illness in pediatrics. Its heterogeneity

brings numerous challenges to clinical treatment, and accurate

assessment of the condition and prognosis of children with TBI is

of great significance for their treatment. In this study, the clinical

data of 532 children with TBI who visited the Pediatric Intensive

Care Unit (PICU) of the First Affiliated Hospital of Zhengzhou

University were collected, including clinical features, laboratory

indicators, and imaging findings. Firstly, a laboratory indicator

model was established using LASSO-Logistic regression, and the

risk scores of all patients were calculated. Then, the XGBoost

FIGURE 6

Predictive model of prognosis nomogram of children with TBI. GCS, 1 = GCS ≥9, 0 =GCS <9; RS, Risk score; PR (pupil to light reflex), 1 = positive,

0 = negative; ISS (Injury Severity Score), 1 = ISS ≥15, 0 = ISS<15; LH (location of hematoma in the head): 0 = Epidural hematoma, 1 = Subdural

hematoma, 2 = Subarachnoid hematoma, 3 = Intracerebral hematoma, 4 =Multiple hematomas.
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algorithm of machine learning was used to screen out 5 features

with high contribution from the risk scores, clinical features, and

imaging findings to establish an XGBoost model, and the model

was tested. Since the XGBoost model is a “black box” system and

cannot be directly used in clinical practice, the features with high

contribution in XGBoost were incorporated into the Logistic

regression model in this study and visualized in the form of a

nomogram for clinical use. To explore the influence of each

feature in the XGBoost model on the outcome index and the

accurate contribution of different features in different samples,

waterfall plots, importance swarm plots, importance bar plots,

and partial correlation dependence plots were drawn based on the

FIGURE 7

SHAP interpretation of XGBoost model. (A) Waterfall diagram of sample 3 (good prognosis). (B) Waterfall diagram of sample 4 (poor prognosis).

(C) Feature importance bee colony graph. (D) Feature importance histogram. (E) Multivariate partial correlation dependence graph.
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SHAP algorithm to explain the XGBoost model. Finally, this study

found that the laboratory indicator model can subgroup clinical

features such as Glasgow Coma Scale score, pupil reaction, and

head hematoma location.

In this study, lactate dehydrogenase passed the LASSO-Logistic

regression and was included in the laboratory indicator model as

an independent influencing factor, indicating that the increase in

lactate dehydrogenase in TBI patients is related to poor

prognosis. Lactate dehydrogenase is a glycolytic enzyme widely

present in various tissues of the human body. After TBI, lactate

dehydrogenase is rapidly released into the intercellular space and

finally enters the bloodstream through the damaged blood-brain

barrier, resulting in a rapid increase in serum lactate

dehydrogenase levels (27). Liu Y et al. found that the level of

lactate dehydrogenase in the poor prognosis group of children

with TBI was significantly higher than that in the good prognosis

group, suggesting that lactate dehydrogenase may be an

important indicator for evaluating the severity and prognosis of

TBI, which is consistent with the findings of this study (28). In

children with TBI, lactate dehydrogenase detection can help

evaluate the severity of the injury and the prognosis of the disease.

This study found that an increase in pH value is an independent

risk factor for poor prognosis in children with TBI. Studies have

shown that under alkalosis conditions, cerebrovascular constriction

reduces the oxygen supply to brain tissue, thereby exacerbating the

metabolic burden in the damaged area (8). Richter et al. found

that inflammatory markers such as GFAP and UCH-L1 were

more significant under increased pH conditions, suggesting that

systemic alkalosis may enhance the neuroinflammatory response

and exacerbate neuronal damage (29). Korhone et al. pointed out

in an analysis of abnormal values of blood biomarkers in patients

with acute TBI that abnormal changes in pH value may be

associated with higher mortality, especially in the presence of

other metabolic disorders (30). Chen et al. proposed a model for

predicting the prognosis of TBI by combining the inverse shock

index (rSIG) with the metabolic state, emphasizing that an

increase in pH value may be an indicator of systemic metabolic

disorder and is closely related to poor 90-day prognosis (31). In

conclusion, the increase in pH value is of great significance in the

prognosis assessment of TBI patients. Future studies can further

investigate the relationship between the dynamic changes of pH

value and long-term functional recovery to improve the prognosis

of TBI patients.

This study found that an increase in NT-pro BNP is an

independent risk factor for poor prognosis in children with TBI.

Ru et al. found that the levels of NT-pro BNP in plasma and

cerebrospinal fluid of patients with TBI were significantly

increased (32). Richter et al. analyzed the data of 872 patients

with moderate to severe TBI and found that patients with

increased NT-pro BNP levels had a poor prognosis, especially in

patients with mild imaging lesions (Marshall score <3) (29).

These studies are consistent with the findings of this study. The

mechanism may be that brain injury triggers cardiac dysfunction

by exciting the sympathetic nervous system, resulting in an

increase in NT-pro BNP levels, suggesting that NT-pro BNP may

be a potential marker of the severity of TBI.

This study found that a decrease in albumin is an independent

risk factor for poor prognosis in children with TBI. Nayak et al.

found that in patients with severe TBI, those with an albumin

level lower than 3.5 g/dl at admission had a significantly

increased mortality rate and poor functional outcome (33). The

study also indicated that albumin is an independent prognostic

factor and recommended its inclusion in routine prognostic

assessment. Luo et al. found that an albumin level lower than

30 g/L at admission was significantly associated with higher

mortality and disability risk in children with TBI (34). Hashim

et al. showed that dynamic monitoring of changes in albumin

levels (especially in the first 5 days after trauma) is of great

significance for predicting 90-day functional recovery in patients

with TBI (35). In conclusion, low albumin levels are closely

related to poor prognosis, suggesting continuous monitoring for

early intervention.

This study found that an increase in CAR level is an

independent risk factor for poor prognosis in children with TBI.

FIGURE 8

Subgroup analysis. (A) Comparison of risk scores between low and high Glasgow score groups. (B) Comparison of risk scores between negative and

positive pupillary reflex groups. (C) Comparison of risk scores of different parts of head hematoma.
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Dogan et al. studied the predictive role of CAR in intracranial

injury in patients with TBI and found that an increase in CAR

level was associated with more severe intracranial lesions,

especially in patients with cerebral edema or hematoma (36).

Wang et al. showed that an increase in CAR is an independent

prognostic risk factor and emphasized that incorporating CAR

into the comprehensive assessment model of TBI can improve

the prediction accuracy (37). A meta-analysis of 5 studies

involving 1,040 patients showed that CAR is related to the

mortality rate of patients with TBI (38). In conclusion, the CAR

ratio is a convenient and comprehensive inflammation-nutrition

assessment tool. Its increase may indicate a higher mortality rate

and poorer functional outcome, and it has important value in

early risk stratification and management strategies.

This study found that a decrease in Hb level is an independent

risk factor for poor prognosis in children with TBI. Hifumi et al.

found that an early high Hb level (>13.5 g/dl) in patients with

severe TBI was significantly associated with a good neurological

prognosis at 6 months, while a low Hb level significantly

increased the risk of poor prognosis (39). Lee et al. found that a

decrease in Hb ratio was an independent factor for predicting

poor neurological outcome in infants with TBI. The study

further pointed out that Hb level is related to the degree of

increased intracranial pressure and cerebral edema (40). Boutin

et al. analyzed the influence of the red blood cell transfusion

threshold in patients with TBI and found that a lower Hb

transfusion threshold (<7 g/dl) was associated with a higher in-

hospital mortality rate, indicating that maintaining an

appropriate Hb level is of great significance for ICU management

(41). In conclusion, low Hb levels are significantly related to

poor prognosis in patients with TBI, suggesting that clinical

personalized Hb management strategies can be formulated to

improve the clinical outcome of patients with TBI.

The above six laboratory indicators constitute the core

prediction model of this study. The AUC in the training set is

0.833 (95% CI: 0.789–0.877), and the AUC in the validation set

is 0.812 (95% CI: 0.734–0.890), indicating that the core model

based on laboratory indicators has good discrimination.

Compared with a prognostic model of TBI patients that included

10 indicators including clinical features in a study by Lu et al.,

with similar discrimination, this study included fewer indicators,

had a lower risk of overfitting, and was more convenient for

clinical use (42).

The Glasgow Coma Scale is the most important instrumental

variable for predicting the prognosis of TBI screened by

XGBoost. According to many studies, the Glasgow Coma Scale is

an important factor for predicting the prognosis of TBI patients.

A Glasgow Coma Scale score lower than 8 is generally

considered a sign of poor prognosis (43–46). King et al. showed

that a low Glasgow Coma Scale score is not only related to the

short-term risk of death but also can effectively predict long-

term neurological dysfunction (47). The study analyzed that

patients with a low Glasgow Coma Scale score for a long time

required more rehabilitation treatment and had a slow

neurological recovery process and poor prognosis. A study using

machine learning technology to predict the prognosis of adult

patients with isolated moderate and severe TBI showed that the

most influential factor for model prediction was the Glasgow

Coma Scale score, which is consistent with the results of this

study (45).

The pupillary light reflex is a sensitive indicator for detecting

the integrity of the optic nerve and oculomotor nerve function

and the functional state of the midbrain (48). As a non-invasive

neurological function assessment method, it has gradually

received attention in evaluating the prognosis of brain injury.

Trent et al. showed that quantitative pupillometry could predict

neurological deterioration in patients with acute TBI, with a

specificity of 91.67%, indicating that abnormal PR is an early

indicator of neurological deterioration (49). Dengler et al. showed

through a study of military TBI patients that pupillometry could

be used to dynamically monitor changes in patients’ neurological

function and effectively predict the duration and severity of

symptoms (50). Oddo et al. showed in a multicenter cohort

study that PR was closely related to the 6-month prognosis of

patients with TBI, and its change trajectory could significantly

improve the accuracy of prognosis assessment (51). In addition,

studies have shown that the combination of PR and the Glasgow

Coma Scale can further improve the prediction effect of the

prognosis of TBI, which further supports the universality of the

variable structure of this model (52, 53).

Head hematoma is a common pathological manifestation of

TBI. The location of the hematoma has a significant impact on

the neurological function, mortality rate, and complications of

patients with TBI. A retrospective analysis of 14,075 patients

with TBI hospitalized in a tertiary hospital in southern Thailand

showed that the location types of head hematomas such as acute

subdural hematoma and subarachnoid hemorrhage were

prognostic factors related to in-hospital mortality and were used

together with age, hypotension, antiplatelet drugs, Glasgow Coma

Scale score, pupillary light reflex, skull base fracture, acute

subdural hematoma, subarachnoid hemorrhage, and midline shift

to construct a nomogram (54). A meta-analysis of 10,733

patients with TBI showed that the presence of subdural

hematoma with cerebral edema was associated with a worse

outcome, and epidural hematoma (EDH) was associated with a

better outcome (55). A 5-year, six-center retrospective cohort

study showed that the acute onset of chronic isolated subdural

hematoma was identified as an independent risk factor for

neurosurgical intervention (56).

ISS is a tool for comprehensively assessing the severity of

trauma. It mainly considers the injury conditions of different

regions of the body (including the head, face, neck, chest,

abdomen, limbs, and pelvis). Each region’s injury is assigned a

score (from 1 to 6 points) according to its severity, and then the

sum of the squares of the scores of the three most severely

injured regions of the body is calculated to obtain ISS. Because

in real life, children with TBI often have concomitant injuries

in other parts of the body, this scoring method can

comprehensively reflect the overall trauma degree of the children.

Roepke et al. showed in a retrospective cohort study that ISS has

advantages in multisystem blunt trauma (57). Brown et al.

studied the data of children with trauma under 16 years old in
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the Pennsylvania Trauma Registry in the United States and found

that the children’s ISS threshold was 25 points, and children with

ISS ≥25 points benefited the most from appropriate triage (58).

Conclusions

This study has some limitations. First of all, after the model is

established, only internal validation has been carried out, and other

external data are still needed to verify its prediction efficiency.

Secondly, this model is based on the data of a single regional

research center, and it still needs large sample research based on

the data of multi regional research centers to establish a more

accurate and efficient prognosis prediction model for children

with TBI.

The core model established in this study using LDH, NT Pro

BNP, pH, Hb, ALB, car has a good discrimination for the poor

short-term prognosis of children with TBI, and provides a

powerful risk stratification and personalized patient management

tool for clinicians. The extended model based on XGBoost

machine learning algorithm has good predictive ability for the

prognosis of children with TBI. The developed nomogram can

accurately predict the prognosis of patients with TBI, and has

strong clinical practicability.
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