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Iron infusion in pregnancy and
dental dysplasia in children—is
there a link?

Gabriela Amstad* and Tilo Burkhardt

Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland

Some intravenous iron preparations cause hypophosphatemia mediated by

increased fibroblast growth factor 23. This hypophosphatemia lasts for weeks

or months and, when administered to pregnant women, could affect fetal

tooth mineralization, which starts in the fourth month of pregnancy. The fetus

requires increased calcium and phosphate levels to meet the increased

demand for bone and tooth mineralization, development, and growth. As

bone mineralization is a priority, calcium and phosphate deficiency could be

compensated for by impaired primary and permanent tooth mineralization.

Since there is an association between calcium and phosphate deficiency

and dental dysplasia in X-linked hypophosphatemic rickets, we hypothesize

a possible similar association between hypophosphatemia induced by

intravenous iron infusion and dental dysplasia. As the long-term clinical impact

of maternal hypophosphatemia on the fetus has not yet been investigated,

studies are required to examine the effects of maternal hypophosphatemia on

the fetus. Close cooperation between obstetricians, pediatric dentists, and

pediatricians is essential to study the effect of hypophosphatemia induced by

intravenous iron infusion on the primary and permanent tooth maturation and

mineralization, growth, and development in children.
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Introduction

The administration of iron infusions to pregnant women is common, as it is very

effective in one or two doses, with a low risk of allergic reactions and rare adverse side

effects (1). One of the most common side effects is hypophosphatemia (2), which is

usually mild without clinical symptoms or clinical consequence. But is it really so?

A normal calcium (Ca) and phosphate (P) content during pregnancy is necessary for

normal mineralization of the child’s bones and teeth. The normal serum P and Ca

concentrations in fetus and children are significantly higher compared to adults (3).

Therefore, even mild (asymptomatic) maternal hypophosphatemia may lead to severe fetal

and neonatal hypophosphatemia. The relatively low P levels in neonates increase shortly

after birth, likely associated with increased gluconeogenesis and endogenous P release, or

secondary to a low glomerular filtration rate and reduced P excretion (4). The mean serum

P level rises until the first week and then falls to levels corresponding to those in childhood

(4). The prenatal and postnatal period is a vulnerable phase in the development and

mineralization of the teeth due to mineralization of the second primary molars starting

from fourth month of pregnancy, the first permanent molars starting from the eighth

month of pregnancy and the mineralization of the incisors starting from third month after
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birth. Therefore, P deficit in this vulnerable phase canhave undesirable

effects on tooth maturation and mineralization.

The main mechanisms by which Ca and P homeostasis are

regulated to meet increased demand during pregnancy is a

doubling of maternal intestinal Ca and P absorption (Figure 1).

Mineral metabolism of fetus is differently regulated than in adults

(4, 5). Fetal mineral metabolism and mineral transplacental

transport are regulated by the placenta (4, 5). The placenta is the

main source of minerals rather than the kidneys, intestines, or

skeleton of the fetus (5). Mineral transplacental transport is

regulated by parathyroid hormone-related protein (PTHrP) and

possibly by parathyroid hormone (PTH), but not by fibroblast

growth factor 23 (FGF23), calcitonin, calcitriol, or the sex steroids

(6). As PTH levels are physiologically very low during pregnancy,

it is likely that the main hormone regulating transplacental Ca and

P transport is PTHrP produced by the placenta (7). To meet their

high mineral requirements, the fetus maintains high Ca and

P levels through active, sodium-dependent Ca and P transport

across the placenta against a concentration gradient (8). As 80% of

transplacental Ca and P transport occurs in the third trimester, it

follows that preterm infants suffer from Ca and P deficiency (4, 8).

Known Ca and P deficiencies are routinely supplemented in

preterm infants according to the European Society of Pediatric

Gastroenterology, Hematology and Nutrition (ESPGHAN)

recommendations (9). It is noteworthy that the recommended

dose for Ca and P supplementation in preterm infants has doubled

in the last 12 years (9). However, P and Ca are not routinely

measured in term infants and therefore not substituted. Other

groups of newborns in which P deficiency due to placental

insufficiency are expected are “small-for-gestational age babies”

and infants with “intrauterine growth restriction” (4). While

the mechanism of Ca homeostasis in pregnancy is known, the

mechanisms of P homeostasis and transplacental P transport at

the molecular level are not yet fully understood (10). P is

responsible for several functions in the human body. One of these

is the development and mineralization of all structural

components of the teeth, as P is an essential component of enamel,

dentin, cementum, and alveolar bone (7). In neonates, the total

body P is about 16 g and, similar to Ca, about 80% of P is

transported in fetuses during the last trimester of pregnancy at a

rate of 75 mg/kg weight/day (7). About 85% of total body P is

found in bone, primarily as hydroxyapatite and as complex

amorphous forms of bone crystals (7). In contrast to Ca, 15% of

P is widely distributed in non-skeletal tissues, in inorganic forms

and as a component of structural macromolecules (7).

Fetal and neonatal availability of P is essential for the

mineralization process, and thus, the direct link between

hypophosphatemia and dental alterations is obvious (11). As fetal

and neonatal bone mineralization is a priority, P deficiency could

be compensated for by impaired tooth mineralization (11–13).

Maternal and subsequent fetal P deficiency could therefore affect

tooth mineralization.

FIGURE 1

Mineral metabolism during pregnancy..
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Some intravenous iron preparations, particularly ferric

carboxymaltose, cause increased FGF23 concentrations by inhibiting

its cleavage. FGF23 inhibits renal reabsorption of P in the proximal

tubule, causing phosphaturia and subsequent hypophosphatemia

(Figure 2). FGF23 also inhibits the activation of 25-hydroxyvitamin

D (25OHD) to 1,25-dihydroxyvitamin D (14). Decreased calcitriol

leads to reduced intestinal Ca and P absorption, which causes

hypocalcemia. Hypocalcemia induces an increase in PTH, which

leads to phosphaturia and prolongs hypophosphatemia after the

FGF23 increase has returned to normal (15). It follows that some

intravenous iron infusions during pregnancy result in a condition

that is the opposite to the physiological changes in pregnancy.

Although FGF23 does not regulate and therefore does not

affect transplacental Ca and P transport, its non-physiological

increase in the mother induces hypophosphatemia, hypocalcemia,

hypovitaminosis D, and secondary hyperparathyroidism. The non-

physiological increase in PTH (which is normally very low in

pregnancy) after intravenous iron infusion may directly affect Ca

and P transport across the placenta, and indirectly through PTHrP.

The consequent deficiencies of P, Ca, and calcitriol in the fetus may

then lead to insufficient mineralization. Other effects of increased

FGF23 include stimulation of sodium reabsorption in the kidneys

and increased plasma volume and thus an increase in blood

pressure; inhibition of erythropoiesis leading to anemia (16) and

induction of hyperglycemia (17).

There are two important issues concerning hypophosphatemia

after iron infusions. The first is the long duration of

hypophosphatemia after iron infusions as it lasts weeks or months

(18–20). The second important issue is the vulnerable period of their

administration as iron infusions are usually administered at the end

of the second and the beginning of the third trimester (about 80% of

iron infusions), when Ca and P transport across the placenta is

maximal. On the other side, critical appraisal of studies addressing

the management of iron deficiency anemia in pregnancy leads to the

conclusion that the increase in intravenous iron use in the last 10

years has been driven by marketing and convenience rather than

evidence of clinical benefit (21). For instance, data from Australia

show that the number of women of reproductive age receiving iron

infusion has more than doubled between 2014 and 2017 (21).

Discussion

As there is an association between Ca and P deficiency and dental

disruptions in X-linked hypophosphatemia rickets (XLH) (11, 22, 23),

we hypothesize a possible similar association between maternal

hypophosphatemia after some iron infusions and dental dysplasia in

children. The clinical dental findings in XLH cases are very diverse

and hypophosphatemia is the cause of multiple alterations in the

dentin and enamel in both the primary and permanent teeth

(11, 22, 23). The dentin shows various structural abnormalities

resulting in the dysplastic and hypomineralized circumpulpal dentin

with large areas of interglobular dentin and reduced thickness of the

dentin (22). Enamel hypoplasia and thin enamel layer is

significantly more common, but generally does not seem to be the

predominant sign in XLH (11). Odontogenic abscesses and/or

fistulas in caries-free teeth in both the primary and permanent teeth

are the most common finding in XLH cases (11, 22). The most

FIGURE 2

Maternal mineral changes after some iron infusions.
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frequently affected teeth are incisors and canines followed by molars

and premolars (11). Although dental abnormalities are very

common in XLH, not all persons with XLH are affected by the

clinical dental hard tissue defects, which may point to the existence

of varying XLH subtypes (22).

The oral conditions of an individual are the result of various

factors, such as the subject`s genotype, perinatal influences,

nutritious diet, oral hygiene habits and other lifestyle habits.

Hypoplastic and hypomineralized teeth derive from disturbances in

tissue matrices formation and/or mineralization during

odontogenesis. These teeth are more porous, undergo posteruptive

tissue breakdown, and are predisposed to caries (24). Furthermore,

when the incisors are affected, the associated opacities on these

anterior teeth may result in cosmetic and psychosocial issues

(13, 24). The etiology is still unknown, probably multifactorial and

there have been over 100 different sources identified in causing

hypoplastic and hypomineralized teeth (13, 24). The most common

teeth to be affected are the second primary molars and the first

permanent molars. Management of dental dysplasia can be

challenging, and treatment approaches vary widely in different

countries and in specialist and non-specialist services (24). The

potential burden relating to dental dysplasia, from both an

individual and a population perspective, is well recognized and

continues to stimulate wide public and professional interest.

As the long-term clinical impact of maternal hypophosphatemia

on the fetus has not yet been investigated, studies are required

to examine the effects of maternal hypophosphatemia on the

fetus. Downplaying this problem may have long-lasting health-

psychosocial consequences for individuals and may represent a

major socioeconomic burden. Close cooperation between

obstetricians, pediatric dentists, and pediatricians is essential to

study the effect of hypophosphatemia induced by intravenous iron

infusion on the primary and permanent tooth maturation and

mineralization, growth, and development in children.
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