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Case Report: A case of Poirier– 
Bienvenu neurodevelopmental 
syndrome manifesting primarily 
as eyelid myoclonia

Yuanyuan He, Qingqing Deng, Chen Chen, Zhanli Liu* and  

Lingwei Weng*

Department of Neurology, Hangzhou Children’s Hospital, Hangzhou, China

Variants in the CSNK2B gene are known to cause Poirier–Bienvenu 

neurodevelopmental syndrome (POBINDS). Since its first report in 2017, 

nearly 100 cases have been documented. Epileptic seizures and intellectual 

disabilities are core symptoms of POBINDS. While the CSNK2B genotype and 

phenotype exhibit increasing diversity, the genotype-phenotype correlation 

remains unclear. In this study, we identified a novel CSNK2B heterozygous 

mutation NM_001320.7:c.268A > C (p.Thr90Pro) in a child with Jeavons 

syndrome, classified as a likely pathogenic under ACMG guidelines. 

Computational analyses predicted that the change of c.268A > C 

(p. Thr90Pro) might have an impact on the stability of the protein. This 

pathogenic mutation enriches the spectrum of CSNK2B gene mutations and 

suggests that CSNK2B may be a causative gene for Jeavons syndrome.
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1 Introduction

Poirier–Bienvenu neurodevelopmental syndrome (POBINDS; OMIM 618732) is a 

rare autosomal dominant disorder characterized by early onset epilepsy, language 

impairment, varying degrees of intellectual disability, developmental delay, and 

autism. It was first reported by Poirier et al. in 2017 and is caused by variants in the 

CSNK2B gene (1). CSNK2B is located on chromosome 6p21.33, consists of 7 exons, 

and spans 3988 base pairs. It encodes a CK2 regulatory subunit (β, CK2β) that 

contains 215 amino acids. This subunit includes multiple domains such as the KET 

box-like domain, disruptive domain, Asp/Glu acidic domain, and zinc finger motif, 

making it an essential component of casein kinase (CK2). Recent studies have 

demonstrated that CK2 activity is negatively regulated via proteasome-mediated 

degradation of CK2β, while increased CK2β expression can enhance CK2 activity (2, 

3). CK2 is a widely expressed serine/threonine kinase complex composed of two 

catalytic (CK2α/α′) and two regulatory (CK2β) subunits that form heterotetramers in 

three configurations: α2β2, αα′β2, or α′2β2. This complex phosphorylates hundreds 

of substrates and regulates various signaling pathways, including the Wnt signaling 

pathway, playing a critical role in cell proliferation, differentiation, apoptosis, and 

DNA repair (4–7). CK2β is essential for central nervous system development. Its 

knockout in mice results in post-implantation lethality, whereas conditional CSNK2B 

knockout impairs the proliferation and differentiation of embryonic neural stem cells 
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in the telencephalon. Additionally, CSNK2B knockout in mouse 

embryonic stem cells leads to altered neuronal morphology, 

reduced dendritic number and length, and synaptic 

transmission defects (8, 9).

Epileptic seizures and intellectual disability are core 

symptoms of POBINDS. Besides craniofacial abnormalities, 

dysmorphic facial features and growth anomalies are 

common phenotypes. Some patients also present with 

vascular, lymphatic, skeletal, ectodermal, and other 

abnormalities (10, 11). In this study, we identified a novel 

CSNK2B mutation in a pediatric patient presenting with 

Jeavons syndrome features. Through computational 

structural analysis and ACMG-based variant interpretation, 

we characterized the mutation’s potential impact on CK2β 
conformation within the topoisomerase II interaction 

domain, expanding the phenotype spectrum of CSNK2B- 

related disorders, and the first reported association between 

POBINDS and Jeavons syndrome.

2 Materials and methods

2.1 Patient

The patient was admitted to the Neurology Department of 

Hangzhou Children’s Hospital in August 2023. A 

multidisciplinary team comprising specialists in neurology, 

electrophysiology, and pediatric health evaluated the patient’s 

clinical manifestations and disease episodes. Electroclinical and 

radiological data, neuroimaging, cognitive and behavioral tests, 

morphological abnormalities, and anthropometric data were 

collected and assessed. The study was conducted with informed 

consent obtained from the patient’s parents and was approved 

by the Ethics Committee of Hangzhou Children’s Hospital.

2.2 Sample collection and peripheral blood 
genomic DNA

Following informed consent, 5 ml of venous blood was drawn 

from the patient using an EDTA anticoagulant tube. Genomic 

DNA was extracted using the MagPure Buffy Coat DNA Midi 

KF kit, following the standard protocol.

2.3 Whole exome sequencing, sequence 
analysis, and functional prediction

The extracted genomic DNA was fragmented into 200– 

250 bp segments using the Covaris LE220 ultrasonicator 

(Massachusetts, USA). The resulting fragments were purified, 

end-repaired, A-tailed, and ligated to adapters to construct a 

sequencing library. The target libraries were hybrid-captured 

using the SureSelect Human All Exon V8 capture chip 

(Agilent, USA), followed by library amplification. Quality 

control was conducted using an Agilent 2,100 Bioanalyzer and 

ABI StepOne. Finally, high-throughput sequencing was 

performed using the DNBSEQ-T7 sequencer (BGI, China).

Raw sequencing data were quality-checked using AfterQC, 

and low-quality or adapter-contaminated reads were removed. 

Filtered reads were aligned to the human hg19 reference 

genome using the Burrows–Wheeler Aligner software to 

evaluate capture efficiency. Single nucleotide variants (SNVs) 

and insertions and deletions (indels) were identified using the 

Genome Analysis Toolkit and filtered against population 

databases, including 1,000 Genomes, Genome Aggregation 

Database (gnomAD), and Exome Aggregation Consortium 

(ExAC). The pathogenicity of missense and splice-site 

mutations was predicted using the dbNSFP database, and the 

reported mutations were screened against the Human Gene 

Mutation Database and ClinVar. All mutation sites were 

classified according to the American College of Medical 

Genetics and Genomics (ACMG) guidelines for variant 

interpretation (12).

Differences in secondary structure between mutant and wild- 

type (WT) proteins were analyzed using the Self-Optimized 

Prediction Method with Alignment (SOPMA) database 

(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/ 

npsa_sopma_f.html). The WT protein model (AF-P67870-F1-v4) 

was retrieved from the AlphaFold database (https://alphafold.com/) 

(13), and site-directed mutagenesis and structural comparison of 

the pre- and post-mutation protein models were performed using 

the PyMOL visualization software (https://pymol.org/). Surface 

electrostatic potentials of the CNSK2B protein before and after 

mutation were analyzed and visualized using the Adaptive 

Poisson-Boltzmann Solver (APBS) plugin in ChimeraX software 

(https://www.cgl.ucsf.edu/chimerax/) (14). Finally, mutation- 

induced changes in protein stability were predicted using three 

computational tools: DUET, SAAFEC-SEQ, and DynaMut2.

2.4 Sanger sequencing for mutation 
validation

The identified potential mutation sites were validated by 

Sanger sequencing. PCR amplification primers were designed 

using Primer 3 (http://primer3.ut.ee/) and synthesized by 

Wuhan Yingjun Biological Engineering Technology Services. 

The PCR reaction mixture contained 25 µl of 2× GC buffer II, 

8 µl of dNTPs, 1 µl of LA Taq enzyme, 2 µl each of forward 

and reverse primers (10 µmol/L), 1 µl of genomic DNA 

solution, and 11 µl of distilled water. All reagents, except 

primers, were procured from Takara Bio (Dalian, China). The 

PCR conditions were as follows: Pre-denaturation at 94 °C 

for 5 min; 35 cycles of denaturation at 94 °C for 30 s; 

annealing at 60 °C for 60 s; extension at 72 °C for 120 s; and 

final extension at 72 °C for 10 min. All reactions were 

performed using an ABI Gradient PCR machine. The 

amplified products were sent to Wuhan Yingjun Biological 

Engineering Technology Services for purification and 

sequencing. Sequencing results were analyzed using 

Chromas software.
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2.5 Copy number variation sequencing 
(CNVseq)

The genomic DNA library was constructed as described above 

and sequenced on a DNBSEQ-T7 platform (BGI, China). Raw 

sequencing data were quality-checked, and low-quality or 

adapter-contaminated reads were removed. High-quality reads 

were aligned to the hg19 genome sequence using the Short 

Oligonucleotide Analysis Package (SOAP; Beijing Institute of 

Genomics). PCR duplicates were removed, the observed regions 

were divided based on the alignment results, and read counts 

within each observed region were calculated. The data were 

normalized to rePect Puctuations in sequencing depth, and GC 

content correction was applied. Candidate CNVs were filtered 

based on predefined thresholds to obtain final CNV results.

3 Results

3.1 Clinical case report

The patient was a 5-year-and-10-month-old male. His parents 

were non-consanguineous with no known genetic conditions or 

family history of hereditary or metabolic disorders. He was a 

full-term G1P1 infant delivered via cesarean section, with a 

birth weight of 3.65 kg. The patient had no history of hypoxia 

or asphyxia. Motor development was normal, and height and 

weight were within the standard ranges. No distinctive facial 

features, limb deformities, or organ malformations were 

observed. However, the patient exhibited delayed language 

development, poor cognitive ability, inattention, and 

hyperactivity. An intelligence assessment using the WPPSI-IV 

yielded the following scores: Full-scale IQ, 75; verbal 

comprehension index, 69; visual spatial index, 75; Puid 

reasoning index, 79; working memory index, 79; and processing 

speed index, 83.

The first epileptic seizure occurred at 46 months of age. The 

primary seizure type was eyelid myoclonia with absence, which 

was characterized by the sudden cessation of ongoing activities, 

eyelid twitching, and unresponsiveness. These episodes lasted 

from a few to tens of seconds and occurred several times daily. 

Occasionally, seizures were accompanied by fumbling 

movements of the upper limb. During the interictal period, the 

child exhibited normal mental status with no limb 

movement impairment.

At 50 months of age, the child was diagnosed with “epilepsy” 

at a local hospital and treated with an adequate dose of 

“Depakine” syrup for 20 months. However, the seizures were 

uncontrolled. After adding clobazam as an adjunctive 

antiepileptic treatment, the child has remained seizure-free for 

the past year, with significant improvements observed on 

electroencephalography (EEG).

Comprehensive laboratory and auxiliary examinations, 

including complete blood count, liver and kidney function tests, 

blood ammonia, trace element analysis, thyroid function tests, 

and vitamin D levels, yielded normal results. Tandem mass 

spectrometry of the blood and organic acid analysis of the urine 

revealed no abnormalities. Abdominal ultrasound and 

electrocardiogram were also normal.

Cranial magnetic resonance imaging (MRI; Figure 1A) 

revealed punctate FLAIR hyperintensities in the local white 

matter of both frontal lobes. Video EEG monitoring 

(Figures 1B–D) detected multifocal epileptiform activity, which 

was more prominent during sleep, and identified eyelid 

myoclonia with or without absence seizures induced by eye 

closure during wakefulness.

3.2 Genetic findings

Chromosomal CNV analysis revealed no abnormalities. 

Whole-exome sequencing revealed a missense mutation in exon 

4 of CSNK2B (NM_001320.7: c.268A > C; p.Thr90Pro) 

(Figures 2A,B). According to ACMG guidelines, this variant was 

classified as a likely pathogenic variant based on supporting 

evidence from the PM2_Supporting, PM6, PP2, and PP3_Strong 

criteria. Sanger sequencing confirmed the heterozygous variant, 

which was absent in both parents (Figure 2C). This variant has 

not been reported in the 1,000 Genomes, ExAC, or 

gnomAD databases.

SIFT analysis predicted a negative effect of mutation on 

protein function, while Polyphen-2 predicted it as “probably 

damaging.” The variant received a BayesDel_noAF score of 

0.487074, a REVEL score of 0.962, and a VEST4 score of 0.833. 

Comparative analysis of CK2β protein homologs encoded by 

CSNK2B revealed that threonine at position 90 was 

evolutionarily conserved across all examined species (Figure 2D).

Analysis using the SOPMA database indicated that the 

p.Thr90Pro mutation alters the secondary structure of the CK2β 
protein, affecting alpha helices (Hh), extended strands (Ee), beta 

turns (Tt), and random coils (Cc) (Supplementary Materials 

1, 2). AlphaFold modeling and PyMOL visualization revealed 

the impact of the p.Thr90Pro mutation on the three- 

dimensional structure of CK2β protein (Figures 3A–D). APBS 

analysis in ChimeraX revealed that the electrostatic potential on 

the protein surface remained within a neutral to negative range 

before and after the mutation, suggesting that the mutation may 

not significantly alter the electrostatic potential of the CSNK2B 

protein (Figure 3B). However, the stability analysis (ΔΔG) of 

p.Thr90Pro using DynaMut2, SAAFEC-SEQ, and DUET 

indicated that the mutation would lead to slight instability of 

the protein (ΔΔG < 0), yet with a relatively small difference 

(ranging from −0.3 to −0.06), suggesting that the mutation 

might affect protein function by disrupting local hydrogen 

bonds rather than inducing global unfolding (Figure 3E).

4 Discussion

The clinical features of this case, including early childhood- 

onset epilepsy and neurodevelopmental deficits, align with the 
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FIGURE 1 

Neuroimaging and electrophysiological results. (A) Axial T2-weighted MRI demonstrating symmetrical frontal lobes with mild hyperintensity, 

suggestive of either physiologically delayed myelination or non-specific benign changes. (B–D) Video-EEG monitoring (international 10–20 

system; average reference; LARM/RARM: bilateral upper eyelid EMG electrodes): (B) Wakefulness: Eye closure induces 8–8.5 Hz alpha rhythm 

(posterior dominance). (C) Sleep stage: Frequent sharp-slow wave complexes (maximal frontal) and sporadic spike-wave discharges. (D) Eye 

closure triggers 1. eyelid myoclonia (EMG onset, 1s), 2. generalized 3 Hz spike-wave activity (frontal predominance), and 3. behavioral arrest 

consistent with typical absence seizures (9 s duration). Supplementary Videos S1, S2 provide additional documentation of eyelid myoclonic 

seizures and analogous ictal events.
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FIGURE 2 

Structural diagram of the CSNK2B mutation site. (A) Genome structure of human CSNK2B with seven exons (displayed in boxes) and a mutation 

located in exon 4. (B) Schematic representation of the 215 amino acid-long CK2β protein and Mut variants. (C) Sanger sequencing map for the 

child and both parents. (D) Cross-species comparison revealing evolutionary conservation of Thr90 in CK2β.
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FIGURE 3 

Computational analysis of mutant proteins: structural alignment, electrostatic analysis, and stability prediction. (A,B) Structural consequences of 

amino acid substitutions analyzed using AlphaFold modeling and PyMOL visualization. (A) Superimposed backbone/side-chain conformations of 

WR and mutant residues. (B) Comparative analysis of mutation-induced changes in the electrostatic surface potential. (C,D) Structural 

comparison of the WT and mutant CSNK2B models. (C) WT model (green, PDB: AF-P67870-F1 from AlphaFold DB) and mutant model (lilac) 

after structural alignment, demonstrating preserved core architecture. (D) WT (green), mutant (red), and overlapping regions (yellow), highlighting 

the conformational divergence. (E) Computational prediction of p.Thr90Pro-induced destabilization using consensus tools. DynaMut2: 

ΔΔG = –0.X kcal/mol (neutral/mild destabilization). DUET (mCSM/SDM consensus): ΔΔG = –0.X kcal/mol (neutral trend with mild destabilization 

tendency). mCSM: ΔΔG = –0.X (neutral/weak effect). SDM: ΔΔG = –0.X (neutral/mild effect). SAAFEC-SEQ: ΔΔG = –0.X kcal/mol (mild 

destabilization, |ΔΔG| < 0.5 suggests experimentally undetectable impact). Interpretation thresholds: DynaMut2: ΔΔG > 0 (stabilizing), −0.5–0 

(neutral/mild), <–0.5 (destabilizing). mCSM: >+0.5 (stabilizing), −0.5 to +0.5 (neutral), <–0.5 (destabilizing). SDM: >+1.0 (highly stabilizing), −1.0 to 

+1.0 (neutral), <–1.0 (destabilizing). SAAFEC-SEQ: |ΔΔG| < 0.5 (weak), 0.5–1.0 (moderate), ≥1.0 (severe).
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POBINDS phenotypic spectrum. Whole exome sequencing 

identified a de novo missense mutation in CSNK2B (c.268A > C; 

p.Thr90Pro), classified as a likely pathogenic under ACMG 

guidelines (PM2, PM6, PP2, PP3). Computational modeling 

revealed localized structural perturbations, including disrupted 

hydrogen bonding between TYR87 and GLY93 (Figure 3E), yet 

predicted minimal thermodynamic destabilization (ΔΔG < 1 kcal/ 

mol). This dichotomy highlights the challenge of interpreting in 

silico data for dynamic complexes like protein kinase CK2, where 

subtle conformational changes may impair subunit interactions 

without compromising global stability (2, 3). Growing evidence 

supports CSNK2B haploinsufficiency as the central pathogenic 

mechanism in POBINDS (15, 16). Truncation mutations 

(nonsense mutations/frameshift mutations) account for the 

majority of reported pathogenic alleles (17), which are likely to 

result in complete loss of function through nonsense-mediated 

decay. In contrast, hypomorphic missense variants such as 

p.Thr90Pro may reduce functional CK2β availability, disrupting 

holoenzyme stoichiometry (2, 3) and contributing to the observed 

phenotypic continuum (18). Structural analyses suggest the 

Thr90 → Pro substitution, located within the topoisomerase II 

interaction domain (18), introduces torsional constraints that alter 

local backbone Pexibility (Figures 3A,D), potentially impairing 

CK2β’s scaffolding role in DNA damage response complexes (6). 

The patient’s mild phenotype contrasts with severe manifestations 

typical of truncating variants (1, 19), possibly rePecting residual 

CK2β activity due to the mutation’s location outside catalytically 

critical domains (e.g., KET box-like/zinc finger motifs) (5). While 

missense variants generally associate with attenuated phenotypes 

(10, 17), exceptions exist depending on mutation location and 

modifier factors (16, 20), underscoring the absence of definitive 

genotype-phenotype correlations (17).

Epileptic seizures are the most prominent clinical feature of 

POBINDS, with generalized tonic-clonic and myoclonic seizures 

being the primary seizure types (11, 16, 17, 19–22). Other 

reported seizure types include absence, tonic, and tonic-clonic 

seizures. While the mechanism underlying these seizures remains 

unclear, it may involve CK2-mediated phosphorylation of 

calmodulin, which promotes its binding to KCNQ2 and enhances 

KCNQ2 channel activity (23). Eyelid myoclonia with absence, 

also known as Jeavons syndrome, is a genetic generalized epilepsy 

with childhood-onset recognized by the International League 

Against Epilepsy (ILAE) as a distinct epilepsy syndrome (24). It is 

characterized by eyelid myoclonia (with or without absence 

seizures), typically triggered by eye closure or photic stimulation. 

Although its etiology is strongly linked to genetics, a definitive 

causative gene has yet to be identified. Candidate genes reported 

in association with Jeavons syndrome include SYNGAP1, 

KIA02022/NEXMIF, RORB, CHD2, GABRA1, SLC2A1, KCNB1, 

and NAA10, which are involved in neuronal development, 

migration, function, and genetic regulation (25). Gokce-Samar 

Z et al. reported a case meeting all electroclinical criteria for 

epilepsy with eyelid myoclonia and absences (EMA) associated 

with an Xq25 microduplication spanning the entire STAG2 

sequence (26). STAG2 encodes a core subunit of the cohesin 

complex that is involved in chromatin organization, transcriptional 

regulation, DNA repair, and control of downstream gene 

expression (27). ATP1A3, a member of the sodium-potassium 

ATPase gene family, has also been implicated in the pathogenesis 

of Jeavons syndrome (28, 29). ATP1A3 maintains ion gradients, 

modulates electrophysiological activity, and participates in various 

signaling pathways. Mutations in ATP1A3 may disrupt ion 

gradient-dependent signaling required for neuronal migration, 

ultimately leading to cortical laminar organization abnormalities 

(30, 31). Intriguingly, CSNK2B, the causative gene identified in this 

case, is involved in regulating analogous biological processes 

through its role in neuronal progenitor proliferation via Wnt/β- 

catenin signaling, apoptosis modulation through BCL2 

phosphorylation, and cell migration by cytoskeletal reorganization. 

In this case, the patient exhibited seizures triggered by eye closure 

lasting approximately 2 s, with or wiathout absence seizures, along 

with the characteristic EEG features of 3–3.5 Hz spike-and-wave 

complexes. This phenotypic overlap, combined with CSNK2B’s 

established neurodevelopmental functions, positions CSNK2B as a 

novel candidate gene for Jeavons syndrome. Further studies 

replicating this association across independent cohorts are warranted.

Intellectual and developmental disabilities are the key features 

of POBINDS. Cognitive impairment is often correlated with 

epilepsy severity, and intellectual and developmental disabilities 

may persist even after seizure control. Studies have reported that 

over 80% of patients experience language impairment, and one- 

third have moderate to severe cognitive impairment (11, 21). In 

this case, the child’s intelligence was near the borderline range 

with mild cognitive impairment. However, with appropriate 

education and consistent training, the child may develop 

sufficient functional abilities to achieve independent daily living.

In conclusion, we report a novel missense variant (c.268A > C; 

p. Thr90Pro) in the CSNK2B gene, which is the underlying cause of 

a case of Pobinds syndrome (POBINDS) characterized by Jevons 

syndrome. This finding expands the spectrum of mutations 

associated with CSNK2B-related diseases and provides preliminary 

evidence that the CSNK2B gene may be involved in the pathogenesis 

of eyelid myoclonus. Future studies may consider functional 

characterization of nerve cell models derived from children to 

explore genotype-phenotype correlations, particularly to determine 

whether missense variants located outside the catalytic domain are 

associated with reduced phenotypes such as Jevons syndrome.
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