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Introduction: Pneumonia is globally recognized as a significant disease burden,

particularly among pediatric patients in intensive care units (ICU), where its

etiology is complex and prognosis often poor.

Methods: Data were extracted from a pediatric-specific intensive care (PIC)

database, selecting 795 pediatric pneumonia patients in ICUs (2010–2018).

After applying rigorous inclusion/exclusion criteria, 543 cases formed the

study cohort. We analyzed patient baseline information and 70 laboratory

indicators to identify 25 prognosis-associated biomarkers. For prognostic

model construction, we used stepwise regression to filter 28 variables, then

Spearman and Pearson correlation analyses to identify an intersection of 14

key indicators from the top 20 features. Twelve machine learning algorithms

underwent parameter tuning and combination, forming 113 model

combinations for survival outcome prediction.

Results: The “Stepglm [both] + GBM” combination achieved the highest average

accuracy (79.4%) in both training and testing sets. Twelve prognostic variables

were identified: WBC Count, Glucose, Neutrophils Count, Cystatin C,

Temperature (body), Sodium (Whole Blood), Cholesterol (Total), Absolute

Lymphocyte Count, Urea, Lactate, and Bilirubin (Total).

Discussion: These 12 variables provide a dependable basis and novel insights for

prognostic evaluation, supporting clinical diagnosis, treatment, and early

intervention.
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1 Introduction

Pneumonia is a severe lung infection caused by bacteria, viruses, or other

microorganisms that predominantly affect the alveoli. Among these, bacterial and viral

pneumonia are the most common forms (1). Besides infectious agents, it may also be

triggered by various physical and chemical factors, immune damage, allergies, and

medications. The mortality rate for pneumonia patients ranges from 15.5% to 38.2%

(2). A systematic analysis of data from the Global Disease Burden Database between

1990 and 2021 indicates that an estimated 344 million cases of lower respiratory

infections (LRIs), primarily due to pneumonia or bronchitis, were recorded. This

number has a 95% uncertainty range of 325–364 million cases. Notably, 502,000 of

these fatalities (with a range of 406,000–611,000) were children under five years old,

and 254,000 deaths (ranging from 197,000 to 320,000) occurred in countries with a low
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Socio-Demographic Index (3). Due to the complex etiological

factors and diagnostic processes of pediatric pneumonia, relying

solely on a single indicator cannot accurately predict outcomes,

necessitating the introduction of new approaches and methods to

address existing challenges.

There is substantial evidence suggesting that artificial intelligence

(AI) has shown clinical utility across various realms of medical

practice (4). In laboratory diagnostics, AI has been effectively

utilized in tasks such as malaria diagnosis and antimicrobial

resistance profiling (5, 6). Similarly, in clinical imaging analysis, AI

has aided in diagnosing pulmonary tuberculosis (7, 8). Furthermore,

clinical decision support tools incorporating AI have demonstrated

their value in predicting sepsis, assisting with antimicrobial

prescribing, and other related tasks (9, 10). Additionally, AI has

played a crucial role in managing public health outbreaks,

particularly in the context of the COVID-19 pandemic (11). With

the burgeoning volume and complexity of biomedical data, machine

learning (ML) techniques have emerged as sophisticated and

popular instruments for developing predictive models of

fundamental biomedical processes (12). In the realm of disease

prediction using clinical data, supervised ML algorithms, such as

support vector machines, naïve Bayes, and random forests,

predominate (13). In biomedical applications, feedforward neural

networks, convolutional neural networks, and recurrent neural

networks are primarily employed (12). In clinical big data research,

suitable ML algorithms can specifically address a multitude of issues

from diagnosis and prognosis to treatment recommendations (14).

ML holds the potential to become a reliable tool for clinical

decision support. While its widespread adoption in clinical practice

is apparent, efforts to validate clinically adapted ML algorithms are

ongoing. By enhancing quality standards, transparency, and

interpretability of ML models, acceptance thresholds can be

further lowered.

In this study, addressing the challenges of prognostic

assessment for pediatric pneumonia in intensive care units, we

extracted, cleansed, and analyzed data from a pediatric-specific

intensive care database. Among 113 machine learning algorithm

combinations evaluated, the “Stepglm [both] + GBM”

combination achieved the highest average accuracy of 79.4% in

both training and testing sets. Overall, by integrating statistical

methods with machine learning algorithms, we successfully

identified twelve key indicator variables that are closely linked to

the prognosis of pediatric pneumonia patients in intensive care,

and established a predictive model with high accuracy. This

research not only offers new insights for clinical diagnosis and

treatment but also provides a reliable foundation for early

warning, intervention, and improving patient survival rates.

2 Data and methods

2.1 Data sources and preprocessing

The Paediatric Intensive Care (PIC) database (http://pic.nbscn.

org) is an extensive, bilingual, single-centre repository dedicated to

paediatric cases, containing data on children admitted to critical

care units at a major children’s hospital in China (15). This de-

identified database encompasses a range of information,

including vital sign measurements, medication details, laboratory

results, fluid balance records, diagnostic codes, hospital stay

durations, survival statistics, and additional data (16). The PIC

database comprises 13,499 unique hospital admissions involving

12,881 distinct paediatric patients (ages 0–18 years) who were

admitted to the critical care unit between 2010 and 2018 (16).

After undergoing the Collaborative Institutional Training

Initiative (CITI) training and receiving the completion report

from the collaborating institution, we submitted a request to the

administrators and obtained authorization to use this database.

2.2 Inclusion and exclusion criteria

Under the purview of this study, we identified 795 individuals

diagnosed with pneumonia using the ICD-10 code “J69.101”. The

exclusion criteria were delineated as follows: initially, for patients

with multiple admissions, only data from the first hospitalization

were retained. Subsequently, entries lacking a unique identifier

(SUBJECT_ID), an indicator of mortality (HOSPITAL_EXPIRE_

FLAG), and “LABEVENTS” data were excluded from the data set.

To ensure data integrity, we also eliminated incomplete

“LABEVENTS” test records and those with missing values

exceeding 20 percent. Missing values were filled in and predicted

using the method of interpolation of mean, median and regression.

2.3 Baseline statistics

For laboratory test results, the database explicitly distinguishes

between ranges of indicators (low, Z-core, high), and imputation

for such missing values needs to be stratified according to these

ranges. First, normality tests were conducted for each variable;

continuous variables that follow a normal distribution are

described using the mean ± standard deviation (17). For

continuous data that do not follow a normal distribution, the

median and interquartile range represent central and dispersion

tendencies (18). Qualitative categorical data were described by the

frequency and probability of each category (19). Differences

between groups for normally distributed continuous variables were

analyzed using independent sample t-tests to compare means (20).

When the overall distribution of two sample groups differs, the

rank-sum test is used to compare medians across multiple

independent samples (21). Chi-square tests were used to analyze

group differences in categorical data (22). All statistical analyses

and inter-group difference tests were performed using R language

scripts, with necessary R packages including “Hmisc”, “car”,

“mice”, “openxlsx”, “dplyr”, “tidyverse”, “stats”, and “reshape2”.

2.4 Regression analyses

Linear regression is a widely used technique in clinical medical

statistics for addressing various research questions and objectives
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(23). Multiple linear regression is more aligned with clinical

practice, modeling the relationship between multiple independent

predictors and a single outcome variable, with results dependent

on the diagnostic and therapeutic research of multiple factors

(24, 25). The intrinsic logic of logistic regression is to convert

binary results into continuous results, i.e., the log odds or logit of

the event (26). For the aforementioned analyses, R language’s

base package, which includes basic statistical functions, as well as

packages like “caret” and “e1071”, provide advanced model

training and evaluation capabilities.

2.5 Variable screening

In this study’s stepwise regression method, the “readr” function

was first used to read the data and check for missing rows. To

enhance algorithm efficiency, both forward and backward

stepwise regression were used iteratively. Finally, the Akaike

Information Criterion (AIC), a standard for assessing the

goodness of fit of statistical models, was compared; the model

with the lowest AIC value was considered the optimal one.

After the initial screening, the correlation of variables with

patient survival outcomes was analyzed. The Pearson correlation

coefficient is suitable for linear relationships between two

variables that are both continuous and normally distributed (27).

The Spearman correlation coefficient uses ranks for analysis,

making it applicable to a wider range of distributions compared

to Pearson’s coefficient (28). Due to the complexity of clinical

data, we combined the results from both methods to obtain the

variables for modeling.

To observe the impact of selected features on decision

outcomes and their interactions, the RF algorithm was used to

assess feature importance, indicating each feature’s contribution

to the random forest. Higher importance reflects greater

influence on the forest composition and decision outcomes (29).

Gray relational analysis, a multi-factor statistical method, was

used to measure the degree of association between factors based

on their development trends, referred to as “gray relational

degree” (30). Visualization of the analysis results was

accomplished using the “ggplot2” package.

2.6 Machine learning model construction

We selected the following twelve common ML algorithms to

form a total of 113 combinations: Lasso, Stepglm, Generalized

glmBoost, SVM, Ridge, Enet, Partial Least Squares Regression

with Generalized Linear Model (plsRglm), RF, GBM, Linear

Discriminant Analysis (LDA), XGBoost, and Naive Bayes. Most

of these algorithms have been widely used in clinical predictive

models, but there are three methods with relatively limited

applications. PLS-R-GLM can handle both complete and

incomplete datasets and is an extension of partial least squares

regression for general linear models (31). LDA, a classic

supervised learning algorithm, is mainly used for dimensionality

reduction and classification tasks. It generalizes Fisher’s linear

discriminant method, aiming to identify a linear combination of

features that separates two classes (32). Naive Bayes, a very

simple classification method for features assumed to be

independent, calculates the probability of each class given the

instance to be classified and assigns it to the class with the

highest probability (33).

The final modeling dataset was split into training and test sets

in a 7:3 ratio, utilizing 17 R packages for data import, predictive

model construction, evaluation, and result visualization, namely

“openxlsx”, “seqinr”, “plyr”, “randomForestSRC”, “glmnet”,

“plsRglm”, “gbm”, “caret”, “mboost”, “e1071”, “BART”, “MASS”,

“snowfall”, “xgboost”, “ComplexHeatmap”, “RColorBrewer”, and

“pROC”. During the actual computation process, several details

need careful attention. For instance, pre-training aggregates the

variable selection process for each method to reduce computation

load. Setting a seed in modeling ensures reproducibility of

results. After calculating the Area Under the Curve (AUC) for

the training and test sets, we will compute the mean AUC for

each algorithm across all cohorts and rank the algorithms by

their mean AUC in descending order to determine the best-

performing model.

3 Results

3.1 Baseline statistics results

The study process is illustrated in Figure 1, with a total sample

size of 543, comprising 38 cases in the experimental group

(deceased) and 505 cases in the control group (surviving).

According to baseline statistics (Table 1), exhibited a wide age

range and extended mean survival days, with no significant

difference between the groups (P = 0.259), revealing the diversity in

pneumonia progression. In both the experimental and control

groups, the gender distribution of patients was similar, showing no

significant difference (P = 0.836), thereby excluding gender as a

factor in disease progression. Though ICU length of stay,

temperature (body), heart rate, and respiratory rate fluctuated

between the groups, there were no significant differences. However,

the white blood cell (WBC) count showed a significant difference

between the experimental and control groups (P = 0.021),

potentially indicating an influential marker for disease progression

and mortality in patients. Significant differences were also found in

biochemical markers such as Standard Base Excess, Bicarbonate,

and Alanine Aminotransferase (ALT) (P-values are 0.156, 0.087,

and 0.002, respectively), possibly reflecting special changes in liver

or acid-base balance function in some patients and associating with

disease severity. Cholesterol and partial pressure of carbon dioxide

(pCO2) levels, which reflect specific metabolic and physiological

processes, also showed significant differences (P = 0.014 and 0.044).

Compared to the control group, experimental group patients had

higher levels of urea and Uric Acid (Urine) (P-values are 0.008

and 0.007), suggesting potential kidney damage or uric acid

excretion issues due to pneumonia. A higher proportion of low

glucose levels was observed in the experimental group (P = 0.001),

necessitating clinical attention to hypoglycemia. Elevated lactate
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levels in the experimental group (P = 0.045) may indicate tissue

hypoxia or abnormal glucose metabolism. Lactate Dehydrogenase

was significantly higher in both groups, especially in the

experimental group (P = 0.03), suggesting potential myocardial

injury. Actual Base Excess reflects the body’s acid-base balance.

Hemoglobin (Hb) was significantly higher in the control group

(P = 0.033), indicating better oxygen transport capacity in surviving

patients. Notably, higher proportions of elevated Aspartate

Aminotransferase, Bilirubin (Direct and Total) in the experimental

group suggest potential liver dysfunction linked to poor prognosis.

Significant differences in Lipase levels between the experimental

and control groups (P < 0.001) may relate to pancreatic function.

3.2 Linear regression model

The linear regression analysis investigated the impact of various

biomarkers and clinical parameters on the survival of pediatric

pneumonia patients in the pediatric intensive care unit (PPICU).

The results, as shown in Table 2, reveal that the regression

FIGURE 1

Flow diagram of this study.
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TABLE 1 Demographic and clinical characteristic of paediatric pneumonia patients.

Variable type Total (N = 543) Experimental group
(N = 38, Patients died)

Control group (N= 505,
Patients live)

P

value

Number
(%)

Mean ± SD Number
(%)

Mean ± SD Number
(%)

Mean ± SD

Age (days) – 574.16 ± 956.31 – 743.23 ± 1,437.06 – 561.44 ± 910.80 0.259

Gender F: 223 (41%) – F: 15 (39%) – F: 208 (41%) – 0.836

M: 320 (59%) – M: 23 (61%) – M: 297 (59%) –

ICU stays days – 11.55 ± 18.92 – 14.41 ± 15.58 – 11.33 ± 19.15 0.334

Temperature (°C) – 37.1 ± 0.814 – 37.29 ± 0.839 – 37.09 ± 0.811 0.145

Heart rate (bpm) – 135.06 ± 24.68 – 129.16 ± 28.80 – 135.51 ± 24.32 0.193

Respiratory rate (bpm) – 49.96 ± 44.14 – 58.08 ± 62.15 – 49.32 ± 42.50 0.24

Diastolic pressure (mmHg) – 57.05 ± 21.32 – 55.66 ± 9.16 – 57.15 ± 21.96 0.677

Systolic pressure (mmHg) – 96.14 ± 15.21 – 95.61 ± 11.80 – 96.18 ± 15.44 0.778

WBC count (×109/L) – 11 ± 7.71 – 13.78 ± 11.61 – 10.79 ± 7.31 0.021

Low 60 (11.1%) – 4 (10.5%) – 56 (11.1%) – 0.479

Z-score 329 (60.6%) – 20 (52.6%) – 309 (61.2%) –

High 154 (28.3%) – 14 (36.7%) – 140 (27.7%) –

Standard base excess (mmol/L) – 0.37 ± 5.02 – −0.89 ± 5.66 – 0.47 ± 4.96 0.156

Low 114 (21%) – 15 (39.5%) – 99 (19.6%) – 0.012

Z-score 292 (53.8%) – 14 (36.8%) – 278 (55%) –

High 137 (25.2%) – 9 (23.7%) – 128 (25.4%) –

Bicarbonate – 24.57 ± 4.15 – 23.46 ± 4.88 – 24.65 ± 4.09 0.087

Low 88 (16.2%) – 13 (34.2%) – 75 (14.9%) – 0.005

Z-score 329 (60.6%) – 16 (42.1%) – 313 (62%) –

High 126 (23.2%) – 9 (23.7%) – 117 (23.1%) –

Alanine aminotransferase (U/L) – 61.55 ± 197.35 – 156.42 ± 519.33 – 54.41 ± 146.13 0.002

Z-score 434 (79.9%) – 29 (76.3%) – 405 (80.2%) – 0.564

High 109 (20.1%) – 9 (23.7%) – 100 (19.8%) –

Monocytes (%) – 7.57 ± 4.63 – 5.98 ± 2.50 – 7.69 ± 4.73 <0.001

Low 100 (18.4%) – 7 (18.4%) – 93 (18.4%) – 0.494

Z-score 425 (78.3%) – 31 (81.6%) – 394 (78%) –

High 18 (3.3%) – 0 (0%) – 18 (3.6%) –

Cholesterol, total (mmol/L) – 3.21 ± 1.02 – 3.35 ± 1.43 – 3.2 ± 0.978 0.523

Low 221 (21%) – 16 (39.5%) – 205 (19.6%) – 0.014

Z-score 312 (53.8%) – 19 (36.8%) – 293 (55%) –

High 10 (25.2%) – 3 (23.7%) – 7 (25.4%) –

pCO2 (mmHg) – 46.11 ± 15.82 – 51.09 ± 19.57 – 45.74 ± 15.46 0.044

Low 92 (16.9%) – 7 (18.4%) – 85 (16.8%) – 0.185

Z-score 260 (47.9%) – 13 (34.2%) – 247 (48.9%) –

High 191 (35.2%) – 18 (47.4%) – 173 (34.3%) –

Methemoglobin (%) – 0.79 ± 1.15 – 0.61 ± 0.31 – 0.8 ± 1.19 0.013

Z-score 542 (99.8%) – 38 (100%) – 504 (99.8%) – 0.784

High 1 (0.2%) – 0 (0%) – 1 (0.2%) –

RDW (%) – 14.78 ± 2.067 – 15.22 ± 1.88 – 14.74 ± 2.08 0.033

Z-score 506 (93.2%) – 31 (81.6%) – 469 (92.9%) – 0.289

High 37 (6.8%) – 7 (18.4%) – 36 (7.1%) –

Creatinine (μmol/L) – 44.6 ± 23.79 – 52.87 ± 53.41 –– 43.98 ± 19.84 0.026

Low 8 (1.4%) – 1 (2.6%) – 7 (1.4%) – 0.827

Z-score 520 (95.8%) – 36 (94.8%) – 484 (95.8%) –

High 15 (2.8%) – 1 (2.6%) – 14 (2.8%) –

Bilirubin, indirect (μmol/L) – 14.61 ± 29.84 – 20.06 ± 42.02 – 14.2 ± 28.73 0.027

Low 10 (1.8%) – 0 (0%) – 10 (2%) – 0.227

Z-score 451 (83.1%) – 29 (76.3%) – 422 (83.6%) –

High 82 (15.1%) – 9 (23.7%) – 73 (14.4%) –

Urea (mmol/L) – 3.74 ± 2.61 – 4.83 ± 3.91 – 3.66 ± 2.47 0.008

Low 84 (15.5%) – 5 (13.2%) – 79 (15.7%) – 0.118

(Continued)
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TABLE 1 Continued

Variable type Total (N = 543) Experimental group
(N = 38, Patients died)

Control group (N= 505,
Patients live)

P

value

Number
(%)

Mean ± SD Number
(%)

Mean ± SD Number
(%)

Mean ± SD

Z-score 419 (77.2%) – 27 (71.1%) – 392 (77.6%) –

High 40 (7.3%) – 6 (15.7%) – 34 (6.7%) –

Uric acid, urine (μmol/L) – 263.35 ± 140.74 – 334.61 ± 198.28 – 257.99 ± 134.18 0.007

Low 95 (17.5%) – 3 (7.9%) – 92 (18.2%) – 0.039

Z-score 361 (66.5%) – 24 (63.2%) – 337 (66.7%) –

Glucose (mmol/L) – 6.99 ± 3.40 – 6.65 ± 2.41 – 7.03 ± 3.46 0.412

Low 12 (2.2%) – 4 (10.5%) – 8 (1.6%) – 0.001

Z-score 248 (45.7%) – 14 (36.9%) – 234 (46.3%) –

High 283 (52.1%) – 20 (52.6%) – 263 (52.1%) –

Lactate (mmol/L) – 2.37 ± 1.64 – 2.88 ± 2.24 – 2.33 ± 1.58 0.045

Low 2 (0.3%) – 0 (0%) – 2 (0.4%) – 0.918

Z-score 205 (37.8%) – 14 (36.8%) – 191 (37.8%) –

High 336 (61.9%) – 24 (63.2%) – 312 (61.8%) –

Lactate dehydrogenase (U/L) – 542.99 ± 822.99 – 747.21 ± 1,412.79 – 527.62 ± 760.57 0.349

Low 1 (0.2%) – 0 (0%) – 1 (0.2%) – 0.030

Z-score 254 (46.8%) – 10 (26.3%) – 244 (48.3%) –

High 288 (53%) – 28 (73.7%) – 260 (51.5%) –

Actual base excess (mmol/L) – 0.05 ± 4.75 – 0.11 ± 4.69 – ⍰0.83 ± 5.47 0.240

Low 117 (21.5%) – 14 (36.8%) – 103 (20.4%) – 0.042

Z-score 302 (55.6%) – 15 (39.5%) – 287 (56.8%) –

High 124 (22.8%) – 9 (23.7%) – 115 (22.8%) –

Eosinophil (%) – 1.31 ± 1.94 – 0.89 ± 1.25 – 1.34 ± 1.98 0.050

Low 338 (62.2%) – 26 (68.4%) – 312 (61.7%) – 0.414

Z-score 186 (34.3%) – 12 (31.6%) – 174 (34.5%) –

High 19 (3.5%) – 0 (0%) – 19 (3.8%) –

pH – 7.37 ± 0.09 – 7.33 ± 0.13 – 7.37 ± 0.08 0.031

Low 195 (35.9%) – 21 (55.3%) – 174 (34.4%) – 0.027

Z-score 276 (50.8%) – 12 (31.6%) – 264 (52.3%) –

High 72 (13.3%) – 5 (13.1%) – 67 (13.3%) –

Calculated bicarbonate, whole

blood (mmol/L)

– 25.15 ± 5.29 – 25.24 ± 5.68 – 25.14 ± 5.26 0.91

Low 102 (18.8%) – 10 (26.4%) – 92 (18.2%) – 0.039

Z-score 307 (56.5%) – 14 (36.8%) – 293 (58%) –

High 134 (24.7%) – 14 (36.8%) – 120 (23.8%) –

Asparate aminotransferase (U/L) – 117.16 ± 545.01 – 98.49 ± 356.10 – 365.24 ± 1,598.75 0.004

Low 6 (1.1%) – 0 (0%) – 6 (1.2%) – 0.794

Z-score 365 (67.2%) – 26 (68.4%) – 339 (97.1%) –

High 172 (31.7%) – 12 (31.6%) – 160 (31.7%) –

Hemoglobin Hb (g/dl) – 94.27 ± 40.14 – 80.91 ± 48.47 – 95.28 ± 39.32 0.033

Low 446 (82.1%) – 30 (78.9%) – 416 (82.4%) – 0.613

Z-score 91 (16.8%) – 7 (18.5%) – 84 (16.6%) –

High 6 (1.1%) – 1 (2.6%) – 5 (1%) –

Lipase – 0.52 ± 3.09 – – – 0.56 ± 3.21 <0.001

Z-score 543 (100%) – 38 (100%) – 505 (100%) –

Bilirubin, direct (μmol/L) – 5.27 ± 9.96 – 7.22 ± 6.74 – 5.12 ± 10.15 0.009

Z-score 419 (77.2%) – 21 (55.3%) – 398 (78.8%) – 0.001

High 124 (22.8%) – 17 (44.7%) – 107 (21.2%) –

Bilirubin, total (μmol/L) – 19.87 ± 36.41 – 27.22 ± 45.37 – 19.32 ± 35.64 0.01

Low 114 (20%) – 5 (13.2%) – 109 (21.6%) – 0.039

Z-score 336 (61.9%) – 21 (55.3%) – 315 (62.4%) –

High 93 (17.1%) – 12 (31.5%) – 81 (16.0%) –

Bold values indicate statistical significance (p < 0.05).
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coefficient for WBC count is 0.003, with a t-value of 2.317 and a

P-value of 0.021, indicating a significant association between high

white blood cell counts and the survival chances of patients,

underscoring its importance in clinical monitoring. Similarly, the

regression coefficient for ALT is 0.000, with a t-value of 3.097 and

a P-value of 0.002, suggesting that elevated ALT levels may reflect

liver damage or disease severity, highlighting the necessity for

physicians to monitor liver function. The monocyte percentage

regression coefficient is −0.005, with a t-value of −2.204 and a

P-value of 0.028, demonstrating its association with reduced

survival rates, further supporting the role of inflammatory response

in patient outcomes. The mean pCO2 regression coefficient is

0.001, with a t-value of 2.019 and a P-value of 0.044, indicating

that higher pCO2 levels might reflect respiratory insufficiency,

warranting close attention. The regression coefficients for creatinine

and urea are 0.001 (P = 0.026) and 0.011 (P = 0.008), respectively,

pointing to a correlation between renal function parameters and

survival status, emphasizing the necessity of monitoring renal

function in patients. Additionally, the lactate regression coefficient

is 0.13 (P = 0.045), indicating elevated levels often signify tissue

hypoxia or severe infection, necessitating attention to the metabolic

status of patients. Intriguingly, the pH value regression coefficient is

−0.402 (P = 0.001), showing a significant impact on the survival

prognosis of patients, suggesting that acid-base imbalance could

lead to severe consequences.

3.3 Logistic regression model

Regarding the binary logistic regression analysis of the first

categorical variable as the reference class, the results (Table 3)

indicate that actual base excess and standard base excess have

significant predictive effects on whether patients survive or

succumb. Specifically, the low and high levels of these variables

both exhibit statistical differences with P-values less than 0.05.

This further highlights the importance of these testing indicators

at certain excessive levels, increasing the mortality risk of patients,

making them crucial variables for focus and intervention in

patient clinical treatment. Furthermore, elevated levels of

cholesterol, total and uric acid, urine also significantly affect the

prediction of patient outcomes (P-values of 0.021 and 0.026,

respectively). High cholesterol and uric acid levels might indicate a

higher disease severity in patients, potentially correlating with the

patient’s prognosis. Additionally, lactate dehydrogenase shows

significant relevance in predicting patient outcomes. This could be

because changes in lactate dehydrogenase levels reflect the

progression of the disease or organ function status in patients.

Given its high statistical significance, this variable might warrant

further study. Finally, elevated levels of direct bilirubin and total

bilirubin are found to have a significant correlation with patient

outcomes. This suggests that bilirubin levels could be crucial

indicators in assessing pediatric pneumonia patients’ critical care

process. Higher bilirubin levels might indicate liver function

impairment or the presence of other complications.

Using the last categorical variable as a reference category, the

results of the logistic regression analysis (Table 4) indicated that

certain levels of specific biomarkers, such as elevated Cholesterol,

Total, elevated Glucose, and elevated Bilirubin, Direct, were

significantly associated with adverse clinical outcomes in patients

(P-value less than 0.05). Particularly, high levels of Total

Cholesterol and Glucose demonstrated substantial statistical

significance in the associated regression model. Specifically,

TABLE 2 General linear regression analysis results.

Patients died or live Regression coefficient t R2 P-value 95% CI

Constant 0.034 1.783 – – –

WBC count (×109/L) 0.003 2.317 0.010 0.021 (0.000, 0.006)

Constant 0.059 5.221 – – –

Alanine aminotransferase (U/L) 0.000 3.097 0.016 0.002 (0.000, 0.000)

Constant 0.109 5.223 – – –

Monocytes (%) −0.005 −2.204 0.009 0.028 (−0.010, −0.001)

Constant 0.006 0.167 – – –

pCO2 (mmHg) 0.001 2.019 0.007 0.044 (0.000,0.003)

Constant 0.024 1.046 – – –

Creatinine (μmol/L) 0.001 2.231 0.009 0.026 (0.000, 0.002)

Constant 0.028 1.463 – – –

Urea (mmol/L) 0.011 2.684 0.013 0.008 (0.003, 0.019)

Constant 0.004 0.155 – – –

Uric acid, urine (μmol/L) 0.000 3.265 0.019 0.001 (0.000, 0.000)

Constant 0.038 1.984 – – –

Lactate (mmol/L) 0.13 2.005 0.007 0.045 (0.000, 0.027)

Constant 3.029 3.295 – – –

pH −0.402 −3.219 0.019 0.001 (−0.647, −0.157)

Constant 0.063 5.671 – – –

Asparate aminotransferase (U/L) 5.855E-5 2.930 0.016 0.004 (0.000, 0.000)

Constant 0.125 4.473 – – –

Hemoglobin Hb (g/dl) −0.001 −2.135 0.008 0.033 (−0.001, 0.000)

Bold values indicate statistical significance (p < 0.05).

Jia et al. 10.3389/fped.2025.1583573

Frontiers in Pediatrics 07 frontiersin.org

https://doi.org/10.3389/fped.2025.1583573
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 3 Logistic regression results (reference category to first).

Patients died or live B S.E. Wald df P-value Exp(B) 95% CI (Upper limit) 95% CI (lower limit)

Standard base excess (mmol/L)

Low 8.276 2 0.016

Z-score −1.101 0.39 7.993 1 0.005 0.332 0.155 0.713

High −0.768 0.442 3.012 1 0.083 0.464 0.195 1.104

Constant −1.887 0.277 46.387 1 0 0.152

Bicarbonate

Low 9.632 2 0.008

Z-score −1.221 0.395 9.561 1 0.002 0.295 0.136 0.639

High −0.812 0.458 3.144 1 0.076 0.444 0.181 1.089

Constant −1.753 0.3 34.03 1 0 0.173

Cholesterol, total (mmol/L)

Low 6.702 2 0.035

Z-score −0.185 0.351 0.278 1 0.598 0.831 0.417 1.654

High 1.703 0.737 5.336 1 0.021 5.491 1.294 23.293

Constant −2.55 0.26 96.54 1 0 0.078

Uric acid, urine (μmol/L)

Low 6.014 2 0.049

Z-score 0.781 0.624 1.569 1 0.21 2.184 0.643 7.414

High 1.49 0.67 4.955 1 0.026 4.439 1.195 16.487

Constant −3.423 0.587 34.044 1 0 0.033

Glucose (mmol/L)

Low 10.118 2 0.006

Z-score −2.123 0.671 10.001 1 0.002 0.12 0.032 0.446

High −1.883 0.655 8.271 1 0.004 0.152 0.042 0.549

Constant −0.693 0.612 1.281 1 0.258 0.5

Lactate dehydrogenase (U/L)

Low 6.497 2 0.039

Z-score 18.008 40,192.53 0 1 1 66,208,218.8 0 .

High 18.974 40,192.53 0 1 1 173,974,827.2 0 .

Constant −21.203 40,192.53 0 1 1 0

Actual base excess (mmol/L)

Low 6.048 2 0.049

Z-score −0.956 0.389 6.038 1 0.014 0.385 0.179 0.824

High −0.552 0.448 1.517 1 0.218 0.576 0.239 1.386

Constant −1.996 0.285 49.086 1 0 0.136

pH

Low 6.836 2 0.033

Z-score −0.977 0.375 6.788 1 0.009 0.377 0.181 0.785

High −0.481 0.518 0.861 1 0.353 0.618 0.224 1.707

Constant −2.115 0.231 83.784 1 0 0.121

Calculated bicarbonate, whole blood (mmol/L)

Low 6.171 2 0.046

Z-score −0.822 0.431 3.638 1 0.056 0.44 0.189 1.023

High 0.071 0.437 0.026 1 0.871 1.073 0.456 2.526

Constant −2.219 0.333 44.42 1 0 0.109

Bilirubin, direct (μmol/L)

Z-score

High 1.102 0.344 10.271 1 0.001 3.011 1.534 5.909

Constant −2.942 0.224 172.645 1 0 0.053

Bilirubin, total (μmol/L)

Low 6.101 2 0.047

Z-score 0.374 0.51 0.538 1 0.463 1.453 0.535 3.948

High 1.172 0.552 4.509 1 0.034 3.23 1.094 9.531

Constant −3.082 0.457 45.408 1 0 0.046

Bold values indicate statistical significance (p < 0.05).

Jia et al. 10.3389/fped.2025.1583573

Frontiers in Pediatrics 08 frontiersin.org

https://doi.org/10.3389/fped.2025.1583573
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 4 Logistic regression results (reference category to last).

Patients died or live B S.E. Wald df P-value Exp(B) 95% CI (Upper limit) 95% CI (lower limit)

Standard base excess (mmol/L)

High 8.276 2 0.016

Z-score 0.768 0.442 3.012 1 0.083 2.155 0.905 5.128

Low −0.334 0.44 0.574 1 0.449 0.716 0.302 1.698

Constant −2.655 0.345 59.265 1 0 0.07

Bicarbonate

High 9.632 2 0.008

Z-score 0.812 0.458 3.144 1 0.076 2.253 0.918 5.531

Low −0.409 0.431 0.901 1 0.343 0.665 0.286 1.545

Constant −2.565 0.346 54.981 1 0 0.077

Cholesterol, total (mmol/L)

High 6.702 2 0.035

Z-score −1.703 0.737 5.336 1 0.021 0.182 0.043 0.773

Low −1.888 0.73 6.7 1 0.01 0.151 0.036 0.632

Constant −0.847 0.69 1.508 1 0.22 0.429

Uric acid, urine (μmol/L)

High 6.014 2 0.049

Z-score −1.49 0.67 4.955 1 0.026 0.225 0.061 0.837

Low −0.709 0.386 3.382 1 0.066 0.492 0.231 1.048

Constant −1.933 0.323 35.899 1 0 0.145

Glucose (mmol/L)

High 10.118 2 0.006

Z-score 1.883 0.655 8.271 1 0.004 6.575 1.822 23.729

Low −0.24 0.36 0.444 1 0.505 0.787 0.389 1.593

Constant −2.576 0.232 123.377 1 0 0.076

Lactate dehydrogenase (U/L)

High 6.497 2 0.039

Z-score −18.974 40,192.97 0 1 1 0 0 .

Low −0.966 0.379 6.497 1 0.011 0.381 0.181 0.8

Constant −2.228 0.199 125.532 1 0 0.108

Actual base excess (mmol/L)

High 6.048 2 0.049

Z-score 0.552 0.448 1.517 1 0.218 1.737 0.721 4.181

Low −0.404 0.436 0.858 1 0.354 0.668 0.284 1.569

Constant −2.548 0.346 54.177 1 0 0.078

pH

High 6.836 2 0.033

Z-score 0.481 0.518 0.861 1 0.353 1.617 0.586 4.463

Low −0.496 0.55 0.814 1 0.367 0.609 0.207 1.789

Constant −2.595 0.464 31.338 1 0 0.075

Calculated bicarbonate, whole blood (mmol/L)

High 6.171 2 0.046

Z-score −0.071 0.437 0.026 1 0.871 0.932 0.396 2.192

Low −0.893 0.393 5.154 1 0.023 0.41 0.19 0.885

Constant −2.148 0.282 57.869 1 0 0.117

Bilirubin, direct (μmol/L)

High

Z-score −1.102 0.344 10.271 1 0.001 0.332 0.169 0.652

Constant −1.84 0.261 49.644 1 0 0.159

Bilirubin, total (μmol/L)

High 6.101 2 0.047

Z-score −1.172 0.552 4.509 1 0.034 0.31 0.105 0.914

Low −0.799 0.383 4.353 1 0.037 0.45 0.213 0.953

Constant −1.91 0.309 38.11 1 0 0.148

Bold values indicate statistical significance (p < 0.05).
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TABLE 5 Screening variable results by stepwise regression.

Correlation Features Df Deviance AIC

Outcome∼Temperature + Albumin + ALB/GLB +WBC Count + Base Excess +Monocytes + Cholesterol,

Total + Amylase + Calcium, Total + Methemoglobin + Cystatin C + Creatine Kinase + Absolute Lymphocyte

Count + Chloride, Whole Blood + Sodium, Whole Blood + Urea +Mean Platelet Volume + Glucose + Lactate + Eosinophil

Count + pH + Calculated Bicarbonate, Whole Blood + Serum hemolytic index + Lipase + Neutrophils + Neutrophils

Count + Bilirubin, Total + Total Bile Acid

– 170.84 228.84

− pH 1 172.99 228.99

+ Mean haemoglobin concentration 1 169.1 229.1

− Total bile acid 1 173.21 229.21

+ ICU stays days 1 169.27 229.27

− ALB/GLB 1 173.28 229.28

− Serum hemolytic index 1 173.51 229.51

+ Bilirubin, indirect 1 169.52 229.52

+ Bilirubin, direct 1 169.61 229.61

+ Basophils count 1 169.62 229.62

+ Hematocrit 1 169.64 229.64

− Absolute lymphocyte count 1 173.71 229.71

+ Alkaline phosphatase 1 169.73 229.73

+ C-reactive protein 1 169.84 229.84

+ Calcium, total 1 169.9 229.9

+ Hemoglobin 1 170.04 230.04

+ Gamma glutamyltransferase 1 170.07 230.07

+ MCV 1 170.07 230.07

− Cystatin C 1 174.11 230.11

+ pO2 1 170.15 230.15

+ Alanine aminotransferase 1 170.28 230.28

+ Hemoglobin 1 170.29 230.29

+ Cholinesterase 1 170.32 230.32

+ Oxygen saturation 1 170.39 230.39

+ Prealbumin 1 170.39 230.39

+ Serum icteric index 1 170.40 230.40

− Eosinophil count 1 174.42 230.42

+ Platelet count 1 170.44 230.44

+ Heart rate 1 170.45 230.45

+ Creatine kinase, MB isoenzyme 1 170.47 230.47

+ Diastolic pressure 1 170.48 230.48

+ Protein, total 1 170.49 230.49

+ Uric acid, urine 1 170.57 230.57

+ Basophils 1 170.59 230.59

+ Adenosine deaminase 1 170.61 230.61

+ Asparate aminotransferase 1 170.63 230.63

+ Phosphate 1 170.63 230.63

+ Carboxyhemoglobin 1 170.64 230.64

+ RDW 1 170.65 230.65

+ PCT 1 170.72 230.72

+ Globulin 1 170.72 230.72

+ Respiratory rate 1 170.72 230.72

+ Eosinophil 1 170.72 230.72

+ pCO2 1 170.74 230.74

+ Age (days) 1 170.77 230.77

+ Bicarbonate 1 170.80 230.80

+ Platelet distribution width 1 170.8 230.8

+ Monocyte count 1 170.81 230.81

+ Lactate dehydrogenase 1 170.81 230.81

+ Hematocrit 1 170.82 230.82

+ Systolic pressure 1 170.82 230.82

+ Creatinine 1 170.83 230.83

+ MCH 1 170.84 230.84

+ Gender 1 170.84 230.84

+ Triglycerides 1 170.84 230.84
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elevated levels of these biomarkers play a significant role in

predicting adverse clinical outcomes in patients. These findings

suggest that in clinical practice, pediatric pneumonia patients

with these elevated biomarkers require closer monitoring and

potentially more aggressive therapeutic interventions.

3.4 Prognostic variable screening

Following linear and logistic regressions on the data set, we

envisioned employing ML algorithms to construct a clinical

prediction model. Initially, for the mortality or survival outcomes

of pediatric pneumonia patients in the PPICU, we performed

stepwise regression to select a series of clinical variables. From 78

initial variables, 28 were selected for subsequent studies, with the

AIC value at 228.84 and deviance at 170.84 (Table 5). In the

Spearman correlation analysis’s top 20 (Figure 2A), Bilirubin,

Total, Urea, and Neutrophils were the three most positively

correlated factors, while Albumin, Amylase, and Sodium, Whole

Blood. The pH showed the strongest negative correlations in the

Pearson correlation analysis (Figure 2B). Taking the intersection

of the top 20 variables from both analyses (Figure 3A), we

obtained 14 variables [Bilirubin, Urea, Neutrophils, Temperature

(body), Neutrophils Count, WBC Count, Cystatin C, Lactate,

Chloride, Cholesterol, Absolute Lymphocyte Count, Glucose,

Sodium, and Albumin] to construct the ML algorithm model.

Using the RF algorithm to analyze the contribution ratios of 14

variables to the survival outcomes of patients (Figure 3B),

Cholesterol, Total, Lactate, and Glucose were the three with the

highest contributions. Specifically, Cholesterol levels may be closely

related to the patient’s nutritional status and inflammatory

response. High cholesterol levels may indicate metabolic disorders,

affecting the overall health assessment of patients. Lactate is an

indicator of metabolic acidosis, commonly seen in hypoxia or

circulatory failure, and elevated lactate levels are typically

associated with poorer survival outcomes. Lastly, abnormal

Glucose levels (especially hyperglycemia) are often associated with

stress and infection and may reflect the patient’s energy

metabolism status. From the grey correlation degree analysis

results, these 14 variables all exhibited strong correlations, with

association coefficients ranging from 0.7 to 0.9 (Figure 3C).

3.5 113 machine learning algorithms to
construct prognostic models

Twelve machine learning algorithms formed 113 combinations,

with the data randomly split into a 7:3 ratio between the training

(27 in the experiment group, 353 in the control group) and testing

groups (11 in the experiment group, 151 in the control group).

Figure 4 showcases the AUC values for 48 machine learning

algorithms across the training, testing, and average groups. We

observed significant differences in predictive performance among

various models, not only demonstrating the tremendous potential

of machine learning in clinical applications but also highlighting its

limitations under certain circumstances. The “Stepglm

[both] + GBM” model achieved an average AUC of 0.890 in the

training set, indicating high accuracy in identifying mortality

outcomes. This result suggests that the model can effectively

integrate and analyze multiple clinical features, thus providing

TABLE 5 Continued

Correlation Features Df Deviance AIC

+ Potassium 1 170.84 230.84

+ Lymphocytes, percent 1 170.84 230.84

+ Base excess 1 170.84 230.84

− Creatine kinase 1 175.25 231.25

− Amylase 1 175.37 231.37

− Neutrophils 1 175.66 231.66

− Lactate 1 175.72 231.72

− Monocytes 1 176.13 232.13

− Calcium, total 1 176.54 232.54

− Bilirubin, total 1 176.57 232.57

− Lipase 1 177.16 233.16

− Glucose 1 177.82 233.82

− Mean platelet volume 1 178.24 234.24

− Base excess 1 179.24 235.24

− Urea 1 179.41 235.41

− Albumin 1 179.87 235.87

− Cholesterol, total 1 180.70 236.70

− Temperature 1 181.9 237.9

− WBC count 1 183.28 239.28

− Chloride, whole blood 1 184.7 240.7

− Neutrophils count 1 184.94 240.94

− Calculated bicarbonate, whole blood 1 185.16 241.16

− Sodium, whole blood 1 185.39 241.39

− Methemoglobin 1 186.84 242.84

Bold values indicate statistical significance (p < 0.05).
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FIGURE 2

Correlation analysis of clinical factors. (A) Spearman correlation coefficient of importance clinical factors (Top 20 features). (B) Pearson correlation

coefficient of importance clinical factors (Top 20 features).
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strong support for clinical practice. However, the model’s AUC

dropped to 0.794 during validation with the testing set. This

phenomenon suggests that despite the model’s excellent training

performance, it harbors a risk of over-fitting when confronted with

unknown data. This finding emphasizes the crucial importance of

optimizing a model’s generalization ability in machine learning

applications to ensure its stability in real clinical settings. In

comparison, the “Lasso + GBM” and “glmBoost + GBM” models

FIGURE 3

Screening of elements for modelling. (A) The Venn plot of spearman and Pearson correlation coefficient Top 20 lements of choice (14 features).

(B) Fourteen features importance in fandom forest. (C) Grey relational analysis of importance clinical factors (14 features).
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also performed admirably, with AUCs of 0.896 and 0.779, and 0.900

and 0.767 in the training and testing sets, respectively. These results

indicate that the models can achieve considerable efficiency in

information extraction, especially when integrating significant

biomarkers, to recognize and predict key clinical indicators. This

allows clinicians to quantitatively assess patient risk and adjust

corresponding treatment strategies based on these indicators.

Particularly in the management of patients, timely warning and

intervention can have a profound impact on survival rates.

Additionally, in evaluating model performance, we found that

some models, such as “RF + LDA” and “Ridge”, demonstrated

relatively mediocre overall performance, with training set AUCs

FIGURE 4

The performance of 101 predictive models in training and testing cohorts.
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TABLE 6 The performance of 113 predictive models in training and testing cohorts.

Model Train (Control: 353)
(Experimental:27)

Test (Control: 152)
(Experimental:11)

Average
AUC

Features

Stepglm[both] + GBM 0.890 0.698 0.794 WBC Count/Glucose/Neutrophils Count/Cystatin C/

Temperature/Sodium, Whole Blood/Cholesterol, Total/Absolute

Lymphocyte Count/Urea/Lactate/Bilirubin, Total

Lasso + GBM 0.896 0.663 0.779 Glucose/Cholesterol, Total/Cystatin C/Absolute Lymphocyte

Count/WBC Count/Bilirubin, Total/Chloride, Whole Blood/

Albumin/Urea/Lactate/Neutrophils Count/Neutrophils/

Temperature/Sodium, Whole Blood

glmBoost + GBM 0.900 0.634 0.767 Cholesterol, Total/Glucose/Absolute Lymphocyte Count/WBC

Count/Cystatin C/Chloride, Whole Blood/Urea/Albumin/Lactate/

Bilirubin, Total/Neutrophils Count/Neutrophils/Temperature/

Sodium, Whole Blood

GBM 0.839 0.593 0.716 Glucose/Cholesterol, Total/WBC Count/Chloride, Whole Blood/

Absolute Lymphocyte Count/Cystatin C/Albumin/Neutrophils

Count/Sodium, Whole Blood/Urea/Bilirubin, Total/Lactate

LDA 0.705 0.704 0.704 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

glmBoost + LDA 0.705 0.704 0.704 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

RF + LDA 0.705 0.704 0.704 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm[both] + LDA 0.705 0.704 0.704 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm

[backward] + LDA

0.705 0.704 0.704 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Lasso + LDA 0.705 0.704 0.704 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

RF + GBM 0.788 0.611 0.700 Cholesterol, Total/Glucose/WBC Count/Neutrophils/Absolute

Lymphocyte Count/Lactate/Albumin/Urea

Ridge 0.689 0.686 0.687 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

glmBoost + Ridge 0.681 0.676 0.679 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

RF + Ridge 0.681 0.676 0.679 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm[both] + Ridge 0.681 0.676 0.679 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm

[backward] + Ridge

0.681 0.676 0.679 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm

[backward] + GBM

0.909 0.677 0.677 Cholesterol, Total/Glucose/Absolute Lymphocyte Count/WBC

Count/Cystatin C/Chloride, Whole Blood/Urea/Albumin/Lactate/

Bilirubin, Total/Neutrophils Count/Neutrophils/Temperature/

Sodium, Whole Blood
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TABLE 6 Continued

Model Train (Control: 353)
(Experimental:27)

Test (Control: 152)
(Experimental:11)

Average
AUC

Features

glmBoost + Stepglm

[forward]

0.725 0.584 0.655 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Lasso + Stepglm

[forward]

0.725 0.584 0.655 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm[forward] 0.725 0.584 0.655 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

RF + Stepglm[forward] 0.725 0.584 0.655 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Lasso + plsRglm 0.696 0.555 0.626 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

glmBoost + plsRglm 0.696 0.555 0.626 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

plsRglm 0.696 0.555 0.626 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

RF + plsRglm 0.696 0.555 0.626 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm

[both] + plsRglm

0.696 0.555 0.626 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm

[backward] + plsRglm

0.696 0.555 0.626 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Enet[alpha = 0.8] 0.730 0.519 0.624 Neutrophils/Temperature/Neutrophils Count/WBC Count/

Lactate/Chloride, Whole Blood/Cholesterol, Total/Absolute

Lymphocyte Count/Glucose/Sodium, Whole Blood/Albumin

RF + glmBoost 0.685 0.551 0.618 Neutrophils/WBC Count/Chloride, Whole Blood/Cholesterol,

Total/Absolute Lymphocyte Count/Glucose/Sodium, Whole

Blood

Lasso + XGBoost 0.757 0.455 0.606 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

glmBoost + XGBoost 0.757 0.455 0.606 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

RF + XGBoost 0.757 0.455 0.606 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm

[both] + XGBoost

0.757 0.455 0.606 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm

[backward] + XGBoost

0.757 0.455 0.606 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

(Continued)
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between 0.689 and 0.705, and testing set performances failing to

exceed 0.704. This result suggests the need to pay attention to the

gap between the training and testing sets, as well as the stability

and applicability of the model during the selection process. The

instability of a model may stem from various factors, including

inadequacies in feature selection and sample size limitations.

We extracted the final selected variables for each machine learning

model (Table 6). From the feature variable analysis, the indicators we

adopted, such as white blood cell count, blood glucose, Temperature

(body), lactate, and cholesterol, are critical physiological parameters

directly related to the severity of the patient’s condition. An elevated

white blood cell count typically indicates severe infection, while high

lactate levels suggest potential tissue hypoxia or shock. Changes in

these physiological indicators can provide clinicians with important

clues about the patient’s physiological state. Furthermore, fluctuations

in glucose and cholesterol levels may also reflect the patient’s

metabolic status, thereby having a significant impact on clinical

management. Therefore, the construction of the model relies not

only on the merits of the algorithms but also on a deep

understanding and effective utilization of clinical data.

4 Discussion

The objective of developing clinical predictive models is to

facilitate risk stratification of outcomes for patients, thereby

assisting clinicians and healthcare professionals in obtaining a

comprehensive understanding of the patients’ conditions. This,

in turn, aids in making informed clinical decisions that can

enhance the prognosis and quality of care for patients (34). In

this study, we found that the combination of stepglm [both]

and GBM produced the highest mean AUC curve, reflecting

its superior performance in clinical prediction models. The

stepglm [both] approach, which integrates both forward and

backward selection processes, systematically identifies significant

predictors while mitigating the effects of multicollinearity. This

attribute is crucial in clinical contexts, where datasets often

contain highly correlated variables. By narrowing down the

predictor set to those with the most explanatory power, stepglm

[both] creates a more parsimonious model, reducing noise and

improving interpretability.

In contrast, algorithms such as Lasso and Ridge, while effective

in regularization, may not fully leverage interactions among

predictors due to their linear nature. This limitation can hinder

their performance in capturing the complex relationships

inherent in clinical data. GBM excels in modeling these

complexities through its ensemble learning framework, which

constructs multiple decision trees sequentially. Each tree learns

from the errors of its predecessor, allowing the model to capture

intricate patterns and interactions that linear models might

overlook. Other methods, such as Naive Bayes and LDA, often

rely on strong independence assumptions among predictors or

TABLE 6 Continued

Model Train (Control: 353)
(Experimental:27)

Test (Control: 152)
(Experimental:11)

Average
AUC

Features

glmBoost + Enet

[alpha = 0.6]

0.730 0.477 0.603 Neutrophils/Temperature/Neutrophils Count/WBC Count/

Lactate/Chloride, Whole Blood/Cholesterol, Total/Absolute

Lymphocyte Count/Glucose/Sodium, Whole Blood/Albumin

XGBoost 0.606 0.509 0.557 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

RF + SVM 0.611 0.500 0.556 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

SVM 0.593 0.500 0.546 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Lasso + SVM 0.593 0.500 0.546 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

glmBoost + SVM 0.556 0.500 0.528 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm[both] + SVM 0.500 0.500 0.500 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Stepglm

[backward] + SVM

0.500 0.500 0.500 Bilirubin, Total/Urea/Neutrophils/Temperature/Neutrophils

Count/WBC Count/Cystatin C/Lactate/Chloride, Whole Blood/

Cholesterol, Total/Absolute Lymphocyte Count/Glucose/Sodium,

Whole Blood/Albumin

Bold values indicate statistical significance (p < 0.05).
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require specific distributional assumptions that can be unrealistic in

clinical settings. Consequently, these algorithms may struggle to

generalize well, particularly with diverse patient populations or

multifaceted clinical scenarios. Furthermore, while tree-based

methods like Random Forest also provide flexibility and

robustness, they can sometimes suffer from over-fitting,

especially in high-dimensional spaces. GBM, with its advanced

techniques for controlling over-fitting, demonstrates superior

adaptability and accuracy in this regard. In conclusion, The

synergy of stepglm [both] with GBM results in a robust model

that not only selects pertinent features but also intelligently

combines them to optimize predictive power. This highlights the

necessity of employing advanced, integrated approaches in

developing predictive models, particularly in the context of

sophisticated clinical datasets. Future research should continue to

explore such hybrid models to further enhance prediction

accuracy and support clinical decision-making.

This study identified a set of 12 variables, including WBC Count,

Glucose, Neutrophils Count, Cystatin C, Temperature (body),

Sodium (Whole Blood), Cholesterol (Total), Absolute Lymphocyte

Count, Urea, Lactate, and Bilirubin (Total). However, we recently

noticed a study indicating that white blood cell (WBC) count,

neutrophil count (NEU), eosinophil count (EO), and hemoglobin

(HGB) levels are significantly associated with an increased risk of

pediatric pneumonia (35). By carefully comparing our results with

this study, we found that WBC and NEU are commonly shared

variables, which exhibit significant prognostic value in our study.

Additionally, Lu’s article focuses on the association between

prenatal and perinatal exposure to industrial air pollutants and

childhood pneumonia, exploring potential mechanisms through

blood biomarkers (35).Our prognostic model supports diagnosis,

treatment, and early intervention, covering a broader range of

indicators such as inflammatory markers (WBC, neutrophils),

metabolic indicators (blood glucose, total cholesterol, urea), and

organ function indicators (cystatin C, lactic acid). Lu’s work

through environmental epidemiology has revealed the long-term

health effects of SO₂ exposure, emphasizing the importance of

preventive medicine (35). Our research, on the other hand, has

identified multi-dimensional prognostic variables from clinical data

to support precision medicine. Certainly, in future studies, we aim

to incorporate environmental exposure data such as SO₂

concentration into our prognostic models, enabling comprehensive

assessments of both individual biological states and external

environmental risks, achieving a holistic evaluation of the

“individual-environment” interaction.

Furthermore, researchers have found that the WBC count,

being an easily obtainable biomarker, can aid in identifying CAP

patients who are more likely to benefit from adjunctive

dexamethasone therapy (36). When used in conjunction with

blood heparin-binding protein and the neutrophil-to-lymphocyte

ratio, it can improve diagnostic specificity for critically ill patients

(84.13%) (37). Our study is consistent with this evidence,

although cohort analyses indicate that the WBC count may not

be helpful in predicting non-severe and severe diseases in

pediatric patients (38). We believe this discrepancy might be due

to population differences across countries or the WBC count

being a non-independent prognostic factor. Findings indicate that

PFKFB3 is a molecular switch that regulates the use of glucose

vs. fructose in glycolysis, thereby enhancing our understanding of

lung endothelial cell metabolism during respiratory failure (39).

Reducing neutrophil count has been shown to mitigate lung

injury in murine models of pneumococcal pneumonia (40) and

is significantly negatively correlated with respiratory failure in

COVID-19 patients (41). Reviewing cohort analyses confirms

that plasma Cystatin C levels decrease in CAP patients following

antibiotic treatment (42). Additionally, serum Cystatin C within

24 h of admission appears to be a marker for predicting acute

kidney injury in CAP patients (43). An observational study

found that patients with elevated temperatures within the first

48 h of ICU admission had higher survival rates (44).

Retrospective analysis revealed that hyponatremia not only

increases morbidity in CAP patients but is also an independent

predictor of prolonged hospitalization (45).

Cholesterol has been identified as a risk factor for CAP in

young South Korean soldiers, with the case group’s levels lower

than those of the control group (46). Inhibiting cholesterol ester

transfer protein has even been shown to reduce mortality in

murine models of pneumococcal-induced sepsis (47). Studies

indicate that the absolute lymphocyte count at the time of

pneumonia diagnosis can serve as a prognostic factor for

postoperative pneumonia patients (48). The absolute lymphocyte

count at admission can even distinguish between SARS and CAP

cases (49). A single-center retrospective cohort study found that

a higher Urea-to-Albumin Ratio at the onset of ICU admission is

independently associated with increased in-hospital mortality in

patients with severe pneumonia (50). The criteria encompassing

Confusion, Urea, Respiratory Rate, and Shock Index or Adjusted

Shock Index predict mortality in community-acquired

pneumonia (51). It has been reported that patients who die, are

hospitalized, or admitted to the ICU due to pneumonia exhibit

higher lactate levels (52). Initial blood lactate was an independent

outcome predictor in COVID-19 ICU patients (53). A significant

decrease in Bilirubin, Total levels was observed among survivors

of severe pneumonia (54), while an increase was significantly

more prominent in the mortality group of COVID patients

compared to the survivors (55). Children with severe pneumonia

displayed elevated levels of Bilirubin, Total, and uric acid (56).

Reviewing these findings reveals that the 12 variables

mentioned are associated with the severity and prognosis of

pneumonia, although there have been no reports of these

variables collectively serving as prognostic factors. The relevance

of these predictors in clinical practice reflects the physiological

state and disease severity of patients. The construction of

predictive models demonstrates the potential of machine learning

technology in clinical applications. This outcome not only

underscores the importance of comprehensive biochemical

markers in prognosis assessment but also provides a robust

foundation for clinical decision-making. In practice, early

identification and intervention based on these markers enable

clinicians to formulate more effective personalized treatment

plans, thereby improving patient outcomes. Moreover, the study’s

results offer valuable insights for similar applications in the
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management of other diseases, further propelling the advancement

of precision medicine. Consequently, this finding holds significant

clinical implications and opens new avenues for research in the

field of pediatric critical care.

5 Conclusions

In this study, we employed a variety of statistical methods to

identify laboratory test parameters associated with the prognosis of

pediatric pneumonia patients, identifying 25 test indicators closely

related to ICU mortality. Linear regression analysis revealed a linear

correlation between 11 variables and outcomes, while logistic

regression elucidated the influence of 11 indicators. A stepwise

regression algorithm preliminarily selected 28 variables from the

original 78 for subsequent analysis, and the intersection of the Top

20 correlated features from Spearman and Pearson algorithms

yielded 14 model construction factors. We obtained various variable

interaction coefficients through Random Forest (RF) and Grey

Relational Analysis. Among 113 machine learning algorithm

combinations, “Stepglm [both] +GBM” exhibited the highest

prognostic accuracy, with 89% accuracy in the training set, an AUC

of 0.698 in the test set, and an average AUC of 0.794.

In this study, we aimed to identify laboratory test parameters that

are associated with the prognosis of pediatric pneumonia patients.

While our findings are promising, their translation into clinical

practice requires further exploration and collaboration with

clinicians. To facilitate the application of our research findings in

clinical decision-making, we plan to develop clinical decision

support tools in collaboration with clinicians. Naturally, our

research has several limitations. Due to data scarcity, we could only

distinguish between the training and test sets within the cohort,

lacking external cohort validation. The impact of data scarcity and

the relatively small sample size (only 543 cases after data

preprocessing) on the research conclusions cannot be overstated.

Given the current trend in medical big data, our sample size is

insufficient for a comprehensive assessment of the disease status. To

quantify the possible deviation range and its potential impact on

variable screening and model accuracy, further studies with larger

sample sizes are warranted. To address these limitations and

construct a mature clinical prediction model, continuous expansion

of the sample size and optimization of algorithm parameters are

necessary. In the future, based on this study, we plan to design

prospective cohort studies to establish our own database.

Additionally, we aim to conduct in-depth research on the specific

impact mechanisms of these test indicators on pediatric pneumonia

survival rates. By understanding the underlying mechanisms, we

can enhance the prognosis and survival rates of patients.

Moreover, we recognize the need for interdisciplinary

collaboration. Integrating our research findings into web

applications or programs can facilitate clinicians and scholars in

predicting disease trends, enabling early preventive measures and

interventions. Collaborations with clinicians in further developing

our research into clinical decision support tools or processes

would be beneficial for the practical application of our findings.

In summary, while our study provides valuable insights, its

translation into clinical practice requires further collaborations

and validations, particularly with regard to sample size expansion

and interdisciplinary collaborations.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material, further inquiries can be

directed to the corresponding author.

Ethics statement

The studies involving humans were approved by the Institutional

Review Board/Ethics Committee at the Children’s Hospital, Zhejiang

University School of Medicine (protocol number 2019_IRB_052). The

studies were conducted in accordance with the local legislation and

institutional requirements. Written informed consent for

participation was not required from the participants or the

participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements.

Author contributions

MJ: Formal analysis, Writing – original draft. XH: Data

curation, Writing – original draft. LJ: Methodology, Writing –

original draft. JL: Visualization, Writing – original draft. JL:

Supervision, Validation, Writing – original draft. YW: Funding

acquisition, Writing – review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This work was

supported by Analysis and Time-Geographical Study of

Traditional Chinese Medicine Prescriptions for Respiratory

Epidemics during the Han, Song-Jin, Yuan, Ming, and Qing

Dynasties (Project No. 202140324). And Research on the

Experience of Diagnosis and Treatment in Shanghai-Style

Traditional Chinese Medicine Schools Driven by Ontology and

Visualization (Project No. 202340255). These funding bodies

played role in the design of the study, the collection, analysis,

and interpretation of the data.

Jia et al. 10.3389/fped.2025.1583573

Frontiers in Pediatrics 19 frontiersin.org

https://doi.org/10.3389/fped.2025.1583573
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Acknowledgments

We are absolutely grateful for the publicly available a pediatric-

specific intensive care (PIC) database.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet.
(2011) 377(9773):1264–75. doi: 10.1016/S0140-6736(10)61459-6

2. Hespanhol V, Bárbara C. Pneumonia mortality, comorbidities matter?
Pulmonology. (2020) 26(3):123–9. doi: 10.1016/j.pulmoe.2019.10.003

3. GBD 2021 Lower Respiratory Infections and Antimicrobial Resistance
Collaborators. Global, regional, and national incidence and mortality burden of
non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: a
systematic analysis from the global burden of disease study 2021. Lancet Infect Dis.
(2024) 24(9):974–1002. doi: 10.1016/S1473-3099(24)00176-2

4. Theodosiou AA, Read RC. Artificial intelligence, machine learning and deep
learning: potential resources for the infection clinician. J Infect. (2023)
87(4):287–94. doi: 10.1016/j.jinf.2023.07.006

5. Liu R, Liu T, Dan T, Yang S, Li Y, Luo B, et al. AIDMAN: an AI-based object
detection system for malaria diagnosis from smartphone thin-blood-smear images.
Patterns (N Y). (2023) 4(9):100806. doi: 10.1016/j.patter.2023.100806

6. MaturanaCR, deOliveira AD,Nadal S, Serrat FZ, Sulleiro E, Ruiz E, et al. iMAGING: a
novel automated system for malaria diagnosis by using artificial intelligence tools and a
universal low-cost robotized microscope. Front Microbiol. (2023) 14:1240936. doi: 10.
3389/fmicb.2023.1240936

7. Zhang F, Zhang F, Li L, Pang Y. Clinical utilization of artificial intelligence in
predicting therapeutic efficacy in pulmonary tuberculosis. J Infect Public Health.
(2024) 17(4):632–41. doi: 10.1016/j.jiph.2024.02.012

8. Nijiati M, Ma J, Hu C, Tuersun A, Abulizi A, Kelimu A, et al. Artificial
intelligence assisting the early detection of active pulmonary Tuberculosis from
chest x-rays: a population-based study. Front Mol Biosci. (2022) 9:874475. doi: 10.
3389/fmolb.2022.874475

9. Sun B, Lei M, Wang L, Wang X, Li X, Mao Z, et al. Prediction of sepsis among
patients with major trauma using artificial intelligence: a multicenter validated cohort
study. Int J Surg. (2024) 111(1):467–80. doi: 10.1097/JS9.0000000000001866

10. Rawson TM, Hernandez B, Moore LSP, Herrero P, Charani E, Ming D, et al. A
real-world evaluation of a case-based reasoning algorithm to support antimicrobial
prescribing decisions in acute care. Clin Infect Dis. (2021) 72(12):2103–11. doi: 10.
1093/cid/ciaa383

11. Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-
19 drug repurposing. Lancet Digit Health. (2020) 2(12):e667–76. doi: 10.1016/S2589-
7500(20)30192-8

12. Binson VA, Thomas S, Subramoniam M, Arun J, Naveen S, Madhu S. A review
of machine learning algorithms for biomedical applications. Ann Biomed Eng. (2024)
52(5):1159–83. doi: 10.1007/s10439-024-03459-3

13. Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised
machine learning algorithms for disease prediction. BMC Med Inform Decis Mak.
(2019) 19(1):281. doi: 10.1186/s12911-019-1004-8

14. Nwanosike EM, Conway BR, Merchant HA, Hasan SS. Potential applications
and performance of machine learning techniques and algorithms in clinical
practice: a systematic review. Int J Med Inform. (2022) 159:104679. doi: 10.1016/j.
ijmedinf.2021.104679

15. Fernstrom JD. Tryptophan, serotonin and carbohydrate appetite: will the real
carbohydrate craver please stand up!. J Nutr. (1988) 118(11):1417–9. doi: 10.1093/
jn/118.11.1417

16. Zeng X, Yu G, Lu Y, Tan L, Wu X, Shi S, et al. PIC, a paediatric-specific intensive
care database. Sci Data. (2020) 7(1):14. doi: 10.1038/s41597-020-0355-4

17. Xing Y-F, Li X. Normality test is needed in data description: a neglectful but vital
problem. Kidney Int. (2013) 83(5):970–1. doi: 10.1038/ki.2013.30

18. Ialongo C. Confidence interval of percentiles in skewed distribution: the
importance of the actual coverage probability in practical quality applications for
laboratory medicine. Biochem Med (Zagreb). (2019) 29(3):030101. doi: 10.11613/
BM.2019.030101

19. Januszyk M, Gurtner GC. Statistics in medicine. Plast Reconstr Surg. (2011)
127(1):437–44. doi: 10.1097/PRS.0b013e3181f95dd2

20. Kim H-Y. Statistical notes for clinical researchers: the independent samples
t-test. Restor Dent Endod. (2019) 44(3):e26. doi: 10.5395/rde.2019.44.e26

21. Guo J, Wu G. Rank sum test or paired t-test? Plast Reconstr Surg. (2011)
128(4):369e. doi: 10.1097/PRS.0b013e3182268833

22. Schober P, Vetter TR. Chi-square tests in medical research. Anesth Analg. (2019)
129(5):1193. doi: 10.1213/ane.0000000000004410

23. Schober P, Vetter TR. Linear regression in medical research. Anesth Analg.
(2021) 132(1):108–9. doi: 10.1213/ANE.0000000000005206

24. Marill KA. Advanced statistics: linear regression, part II: multiple linear
regression. Acad Emerg Med. (2004) 11(1):94–102. doi: 10.1197/j.aem.2003.09.006

25. Krzywinski M, Altman N. Multiple linear regression. Nat Methods. (2015)
12(12):1103–4. doi: 10.1038/nmeth.3665

26. Zabor EC, Reddy CA, Tendulkar RD, Patil S. Logistic regression in clinical studies.
Int J Radiat Oncol Biol Phys. (2022) 112(2):271–7. doi: 10.1016/j.ijrobp.2021.08.007

27. Bishara AJ, Hittner JB. Testing the significance of a correlation with nonnormal
data: comparison of Pearson, spearman, transformation, and resampling approaches.
Psychol Methods. (2012) 17(3):399–417. doi: 10.1037/a0028087

28. Sedgwick P. Spearman’s rank correlation coefficient. Br Med J. (2014) 349:g7327.
doi: 10.1136/bmj.g7327

29. Johnson A, Cooper GF, Visweswaran S. A novel personalized random forest
algorithm for clinical outcome prediction. Stud Health Technol Inform. (2022)
290:248–52. doi: 10.3233/shti220072

30. Roberti de Siqueira F, Robson Schwartz W, Pedrini H. Multi-scale gray level co-
occurrence matrices for texture description. Neurocomputing. (2013) 120:336–45.
doi: 10.1016/j.neucom.2012.09.042

31. Schultheiss C, Bühlmann P, Yuan M. Higher-order least squares: assessing
partial goodness of fit of linear causal models. J Am Stat Assoc. (2024) 119
(546):1019–31. doi: 10.1080/01621459.2022.2157728

32. Li C-N, Shao Y-H, Chen W-J, Wang Z, Deng N-Y. Generalized two-dimensional
linear discriminant analysis with regularization. Neural Netw. (2021) 142:73–91.
doi: 10.1016/j.neunet.2021.04.030

33. Lakoumentas J, Drakos J, Karakantza M, Sakellaropoulos G, Megalooikonomou
V, Nikiforidis G. Optimizations of the naïve-Bayes classifier for the prognosis of
B-chronic lymphocytic leukemia incorporating flow cytometry data. Comput
Methods Programs Biomed. (2012) 108(1):158–67. doi: 10.1016/j.cmpb.2012.02.009

34. Shipe ME, Deppen SA, Farjah F, Grogan EL. Developing prediction models for
clinical use using logistic regression: an overview. J Thorac Dis. (2019) 11(Suppl 4):
S574–84. doi: 10.21037/jtd.2019.01.25

35. Lu C, Peng W, Kuang J, Wu M, Wu H, Murithi RG, et al. Preconceptional and
prenatal exposure to air pollution increases incidence of childhood pneumonia: a
hypothesis of the (pre-)fetal origin of childhood pneumonia. Ecotoxicol Environ Saf.
(2021) 210:111860. doi: 10.1016/j.ecoenv.2020.111860

Jia et al. 10.3389/fped.2025.1583573

Frontiers in Pediatrics 20 frontiersin.org

https://doi.org/10.1016/S0140-6736(10)61459-6
https://doi.org/10.1016/j.pulmoe.2019.10.003
https://doi.org/10.1016/S1473-3099(24)00176-2
https://doi.org/10.1016/j.jinf.2023.07.006
https://doi.org/10.1016/j.patter.2023.100806
https://doi.org/10.3389/fmicb.2023.1240936
https://doi.org/10.3389/fmicb.2023.1240936
https://doi.org/10.1016/j.jiph.2024.02.012
https://doi.org/10.3389/fmolb.2022.874475
https://doi.org/10.3389/fmolb.2022.874475
https://doi.org/10.1097/JS9.0000000000001866
https://doi.org/10.1093/cid/ciaa383
https://doi.org/10.1093/cid/ciaa383
https://doi.org/10.1016/S2589-7500(20)30192-8
https://doi.org/10.1016/S2589-7500(20)30192-8
https://doi.org/10.1007/s10439-024-03459-3
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1016/j.ijmedinf.2021.104679
https://doi.org/10.1016/j.ijmedinf.2021.104679
https://doi.org/10.1093/jn/118.11.1417
https://doi.org/10.1093/jn/118.11.1417
https://doi.org/10.1038/s41597-020-0355-4
https://doi.org/10.1038/ki.2013.30
https://doi.org/10.11613/BM.2019.030101
https://doi.org/10.11613/BM.2019.030101
https://doi.org/10.1097/PRS.0b013e3181f95dd2
https://doi.org/10.5395/rde.2019.44.e26
https://doi.org/10.1097/PRS.0b013e3182268833
https://doi.org/10.1213/ane.0000000000004410
https://doi.org/10.1213/ANE.0000000000005206
https://doi.org/10.1197/j.aem.2003.09.006
https://doi.org/10.1038/nmeth.3665
https://doi.org/10.1016/j.ijrobp.2021.08.007
https://doi.org/10.1037/a0028087
https://doi.org/10.1136/bmj.g7327
https://doi.org/10.3233/shti220072
https://doi.org/10.1016/j.neucom.2012.09.042
https://doi.org/10.1080/01621459.2022.2157728
https://doi.org/10.1016/j.neunet.2021.04.030
https://doi.org/10.1016/j.cmpb.2012.02.009
https://doi.org/10.21037/jtd.2019.01.25
https://doi.org/10.1016/j.ecoenv.2020.111860
https://doi.org/10.3389/fped.2025.1583573
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


36. Wittermans E, van de Garde EM, Voorn GP, Aldenkamp AF, Janssen R,
Grutters JC, et al. Neutrophil count, lymphocyte count and neutrophil-to-
lymphocyte ratio in relation to response to adjunctive dexamethasone treatment in
community-acquired pneumonia. Eur J Intern Med. (2022) 96:102–8. doi: 10.1016/j.
ejim.2021.10.030

37. Meng Y, Zhang L, Huang M, Sun G. Blood heparin-binding protein and
neutrophil-to-lymphocyte ratio as indicators of the severity and prognosis of
community-acquired pneumonia. Respir Med. (2023) 208:107144. doi: 10.1016/j.
rmed.2023.107144

38. Florin TA, Ambroggio L, Brokamp C, Zhang Y, Rattan M, Crotty E, et al.
Biomarkers and disease severity in children with community-acquired pneumonia.
Pediatrics. (2020) 146(3):e2020011452. doi: 10.1542/peds.2020-011452

39. Lee JY, Stevens RP, Pastukh VV, Pastukh VM, Kozhukhar N, Alexeyev MF, et al.
PFKFB3 Inhibits fructose metabolism in pulmonary microvascular endothelial cells.
Am J Respir Cell Mol Biol. (2023) 69(3):340–54. doi: 10.1165/rcmb.2022-0443OC

40. Feng J, Dai W, Zhang C, Chen H, Chen Z, Chen Y, et al. Shen-ling-bai-zhu-san
ameliorates inflammation and lung injury by increasing the gut microbiota in the
murine model of Streptococcus pneumonia-induced pneumonia. BMC Complement
Med Ther. (2020) 20(1):159. doi: 10.1186/s12906-020-02958-9

41. Poggiali E, Zaino D, Immovilli P, Rovero L, Losi G, Dacrema A, et al. Lactate
dehydrogenase and C-reactive protein as predictors of respiratory failure in
COVID-19 patients. Clin Chim Acta. (2020) 509:135–8. doi: 10.1016/j.cca.2020.06.012

42. Lee Y-T, Chen S-C, Shyu L-Y, Lee M-C, Wu T-C, Tsao S-M, et al. Significant
elevation of plasma cathepsin B and cystatin C in patients with community-
acquired pneumonia. Clin Chim Acta. (2012) 413(5–6):630–5. doi: 10.1016/j.cca.
2011.12.010

43. Hsu F-C, Palmer ND, Chen S-H, Ng MCY, Goodarzi MO, Rotter JI, et al.
Methods for estimating insulin resistance from untargeted metabolomics data.
Metabolomics. (2023) 19(8):72. doi: 10.1007/s11306-023-02035-5

44. Guzelj D, Grubelnik A, Greif N, Povalej Bržan P, Fluher J, Kalamar Ž, et al. The
effect of body temperature changes on the course of treatment in patients with
pneumonia and sepsis: results of an observational study. Interact J Med Res. (2024)
13:e52590. doi: 10.2196/52590

45. Ravioli S, Gygli R, Funk G-C, Exadaktylos A, Lindner G. Prevalence and impact
on outcome of sodium and potassium disorders in patients with community-acquired
pneumonia: a retrospective analysis. Eur J Intern Med. (2021) 85:63–7. doi: 10.1016/j.
ejim.2020.12.003

46. Kang DR, Kim YK, Park MS, Kim YS, Ko DH, Kim C. Low levels of serum
cholesterol and albumin and the risk of community-acquired pneumonia in young
soldiers. Int J Tuberc Lung Dis. (2008) 12(1):26–32.

47. Deng H, Liang WY, Chen LQ, Yuen TH, Sahin B, Vasilescu DM, et al. CETP
inhibition enhances monocyte activation and bacterial clearance and reduces
streptococcus pneumonia-associated mortality in mice. JCI Insight. (2024) 9(8):
e173205. doi: 10.1172/jci.insight.173205

48. Murakami Y, Shindo Y, Sano M, Okumura J, Kobayashi H, Sakakibara T, et al.
Effects of lymphocyte and neutrophil counts and their time courses on mortality in
patients with postoperative pneumonia. Sci Rep. (2022) 12(1):14564. doi: 10.1038/
s41598-022-18794-5

49. Muller MP, Tomlinson G, Marrie TJ, Tang P, McGeer A, Low DE, et al. Can
routine laboratory tests discriminate between severe acute respiratory syndrome and
other causes of community-acquired pneumonia? Clin Infect Dis. (2005)
40(8):1079–86. doi: 10.1086/428577

50. Tian Y, Li Y, Jiang Z, Chen J. Urea-to-albumin ratio and in-hospital mortality in
severe pneumonia patients. Can J Infect Dis Med Microbiol. (2021) 2021:5105870.
doi: 10.1155/2021/5105870

51. Myint PK, Musonda P, Sankaran P, Subramanian DN, Ruffell H, Smith AC, et al.
Confusion, urea, respiratory rate and shock Index or adjusted shock index (CURSI or
CURASI) criteria predict mortality in community-acquired pneumonia. Eur J Intern
Med. (2010) 21(5):429–33. doi: 10.1016/j.ejim.2010.07.005

52. Chen Y-X, Li C-S. Lactate on emergency department arrival as a predictor of
mortality and site-of-care in pneumonia patients: a cohort study. Thorax. (2015)
70(5):404–10. doi: 10.1136/thoraxjnl-2014-206461

53. Puvaneswary M, Afzal M. Angiographic appearances of islet cell tumours of the
pancreas. Australas Radiol. (1985) 29(2):142–6. doi: 10.1111/j.1440-1673.1985.
tb01679.x

54. Lei J, Wang L, Li Q, Gao L, Zhang J, Tan Y. Identification of RAGE and
OSM as new prognosis biomarkers of severe pneumonia. Can Respir J. (2022)
2022:3854191. doi: 10.1155/2022/3854191

55. Zhang L, Hou J, Ma F-Z, Li J, Xue S, Xu Z-G. The common risk factors for
progression and mortality in COVID-19 patients: a meta-analysis. Arch Virol.
(2021) 166(8):2071–87. doi: 10.1007/s00705-021-05012-2

56. Wang Y, Zhu F, Wang C, Wu J, Liu J, Chen X, et al. Children hospitalized with
severe COVID-19 in Wuhan. Pediatr Infect Dis J. (2020) 39(7):e91–4. doi: 10.1097/
INF.0000000000002739

Jia et al. 10.3389/fped.2025.1583573

Frontiers in Pediatrics 21 frontiersin.org

https://doi.org/10.1016/j.ejim.2021.10.030
https://doi.org/10.1016/j.ejim.2021.10.030
https://doi.org/10.1016/j.rmed.2023.107144
https://doi.org/10.1016/j.rmed.2023.107144
https://doi.org/10.1542/peds.2020-011452
https://doi.org/10.1165/rcmb.2022-0443OC
https://doi.org/10.1186/s12906-020-02958-9
https://doi.org/10.1016/j.cca.2020.06.012
https://doi.org/10.1016/j.cca.2011.12.010
https://doi.org/10.1016/j.cca.2011.12.010
https://doi.org/10.1007/s11306-023-02035-5
https://doi.org/10.2196/52590
https://doi.org/10.1016/j.ejim.2020.12.003
https://doi.org/10.1016/j.ejim.2020.12.003
https://doi.org/10.1172/jci.insight.173205
https://doi.org/10.1038/s41598-022-18794-5
https://doi.org/10.1038/s41598-022-18794-5
https://doi.org/10.1086/428577
https://doi.org/10.1155/2021/5105870
https://doi.org/10.1016/j.ejim.2010.07.005
https://doi.org/10.1136/thoraxjnl-2014-206461
https://doi.org/10.1111/j.1440-1673.1985.tb01679.x
https://doi.org/10.1111/j.1440-1673.1985.tb01679.x
https://doi.org/10.1155/2022/3854191
https://doi.org/10.1007/s00705-021-05012-2
https://doi.org/10.1097/INF.0000000000002739
https://doi.org/10.1097/INF.0000000000002739
https://doi.org/10.3389/fped.2025.1583573
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/

	Predictive for patients with pneumonia in pediatric intensive care unit
	Introduction
	Data and methods
	Data sources and preprocessing
	Inclusion and exclusion criteria
	Baseline statistics
	Regression analyses
	Variable screening
	Machine learning model construction

	Results
	Baseline statistics results
	Linear regression model
	Logistic regression model
	Prognostic variable screening
	113 machine learning algorithms to construct prognostic models

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


