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Background: Computer vision (CV), a subset of artificial intelligence (AI), enables

deep learning models to detect specific events within digital images or videos.

Especially in medical imaging, AI/CV holds significant promise analyzing data

from x-rays, CT scans, and MRIs. However, the application of AI/CV to support

surgery has progressed more slowly. This study presents the development of

the first image-based AI/CV model classifying quality indicators of

laparoscopic Nissen fundoplication (LNF).

Materials and methods: Six visible quality indicators (VQIs) for Nissen

fundoplication were predefined as parameters to build datasets including correct

(360° fundoplication) and incorrect configurations (incomplete, twisted wraps, too

long (>four knots), too loose, too long, malpositioning (at/below the

gastroesophageal junction). In a porcine model, multiple iterations of each VQI

were performed. A total of 57 video sequences were processed, extracting 3,138

images at 0.5-second intervals. These images were annotated corresponding to

their respective VQIs. The EfficientNet architecture, a typical deep learning

model, was employed to train an ensemble of image classifiers, as well as a

multi-class classifier, to distinguish between correct and incorrect Nissen wraps.

Results: The AI/CV models demonstrated strong performance in predicting image-

based VQIs for Nissen fundoplication. The individual image classifiers achieved an

average F1-Score of 0.9738±0.1699 when adjusted for the optimal Equal Error

Rate (EER) as the decision boundary. A similar performance was observed using

the multi-class classifier. The results remained robust despite extensive image

augmentation. For 3/5 classifiers the results remained identical; detection of

incomplete and too loose LNFs showed a slight decline in predictive power.

Conclusion: This experimental study demonstrates that an AI/CV algorithm can

effectively detect VQIs in digital images of Nissen fundoplications. This proof of

concept does not aim to test clinical Nissen fundoplication, but provides

experimental evidence that AI/CV models can be trained to classify various

laparoscopic images of surgical configurations. In the future, this concept

could be developed into AI based real-time surgical support to enhance

surgical outcome and patient safety.
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1 Introduction

Computer vision (CV), a branch of artificial intelligence

(AI), enables deep learning models to detect and interpret

specific events in digital images or videos through prior

training. Especially in medical imaging, AI/CV holds

significant promise analyzing data from x-rays, CT scans,

and MRIs. In surgery, AI/CV could support intraoperative

decision-making, reduce errors, and potentially improve

patient outcomes by providing real-time feedback on

procedural quality indicators (1).

Despite growing interest in AI and CV applications in

medicine, the development of effective models specifically

tailored to videoscopic surgery remains limited. To date, only a

few AI and CV models have been designed to support surgical

quality assurance, with the primary aim on recognizing

procedural steps and performance indicators in real-time mainly

focusing on laparoscopic cholecystectomies (2, 3).

One reason for this slow development could be that while highly

skilled surgeons are best equipped to define which visible quality

indicators (VQIs) are most relevant to patient outcomes, many

lack the AI/CV expertise necessary to engineer the development of

such algorithms (4). Conversely, AI engineers may not fully

understand the nuances of surgical procedures, making an

intimate collaboration between these two fields essential.

The Nissen fundoplication represents a well-established

surgical procedure to treat gastroesophageal reflux disease

(GERD), particularly when medical management with acid

suppressants and lifestyle changes fail to provide sufficient relief

(5, 6). A “correct” Nissen procedure involves a 360° wrap of the

gastric fundus around the lower esophagus, creating a one-way

valve that enhances the function of the lower esophageal

sphincter (7). Vice versa, a Nissen wrap would be considered

“incorrect” when the wrap is incomplete, twisted, too long, too

loose, or positioned below the gastroesophageal junction. Such

visible features of the wrap could serve as quality indicators.

However, the question arises whether AI/CV algorithms could be

trained with images of VQIs to detect such events in a different

testset. To date, no AI algorithm has been developed specifically

for surgical support of laparoscopic Nissen fundoplication and it

is not known whether AI models can differentiate between

correct and incorrect Nissen wraps. In this study, we therefore

aimed to examine whether an AI model can effectively detect

VQIs in digital images of Nissen fundoplications in an

experimental model and present the first AI/CV algorithm

specifically designed for laparoscopic Nissen fundoplication

(LNF), built upon a comprehensive set of VQIs.

2 Material and methods

2.1 Concept

Six visible quality indicators (VQIs) for Nissen fundoplication

were predefined as parameters to build datasets and train the

AI/CV algorithm including correct (360° fundoplication) and

incorrect configurations (incomplete, twisted wraps, too long

(more than four knots), too loose or malpositioning (at/below

the gastroesophageal junction).

2.2 Data collection

Following approval by the responsible veterinary board

(2020-0-814-140) for a porcine experiment (one animal) three

pediatric surgical residents and three attending surgeons each

performed 10 iterations of the procedure. After each iteration,

the sutures were reopened and the fundus was repositioned to its

original position. Each procedure was recorded in short video

segments from various angles and distances, with footage

captured at 30 frames per second to ensure comprehensive

visual data.

2.3 Model development

Three video sequences had to be excluded for technical

reasons. Therefore, a total of 57 video sequences were

processed. Initially, frame-based volume filtering was

conducted by medical experts, selecting none, one or multiple

images from an array of individual frames in every 0.5 s

interval within the videos. The selection process aimed at

discarding irrelevant (no Nissen visible), inconclusive (Nissen

not complete), non-representative (Nissen visible, but does not

show key characteristics of VQIs or complete Nissen), or

redundant (very similar or identical images in a selection) data

points. Afterwards, images were annotated on their respective

VQIs using class labels. Due to the filtering procedure, all

images not labelled with one of the VQIs were deemed to be

correct. Completing this procedure yielded a total of 3,138 fully

annotated images (Figure 1). All images were then divided

randomly into training (70%), validation (20%), and testing

(10%) sets (Tables 1, 2). For certain experiments, data was

augmented to avoid overfitting and increase representation

learning, adding random vertical flips, rotations, color jitter

and resizing to images during training and validation.

The EfficientNet architecture (8) was utilized for image

classification, optimizing the model to accurately distinguish

between correct and incorrect Nissen fundoplication based on

the annotated VQIs (9, 10). EfficientNet was selected as it

represents a well-established and well-documented baseline

across various benchmarks and tasks, providing a solid

foundation upon which to build and evaluate this proof-of-

concept (8). Models were trained for 50 epochs (10) with an

initial learning rate of 0.01 and an Adam optimizer (11). No

scheduler, weight-decay or momentum was configured beyond

the default values. All classifiers used variations of cross-entropy

loss for loss calculation. The multi-class classifier omitted the

softmax operation within the activation layer in favor of a

sigmoid activation function. For reasons of numerical stability,

the pytorch BCELossWithLogits was used to simulate

this behavior.
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3 Results

The AI/CV models exhibited strong performance in predicting

image based VQIs for Nissen fundoplication. Individual image

classifiers reported an average F1-Score of 0.9738 ± 0.1699 when

adjusted for optimal Equal Error Rate (EER) as decision

boundary, i.e., the model confidence, at which a true or false

prediction is made (Figure 2). Similar results were achieved using

a single multi-class classifier.

These results barely changed when applying considerable

image augmentation techniques, as described in the methods

section (Figure 3). For 3/5 classifiers the results remained

identical, merely detection of incomplete and too loose Nissen

wraps showed a slight decline in predictive power. Table 3

FIGURE 1

Representative examples of annotated VQIs. (a) correct configuration, (b) incomplete, (c) twisted, (d) too long, (e) too loose, (f) malpositioning below

the GE junction.

TABLE 1 Total number and relative percentage of data samples within the training, validation and test sets.

Training Validation Testing Total

Total 2,431 69.46% 705 20.14% 364 10.40% 3,500

Label Incomplete 311 66.17% 101 21.49% 58 12.34% 470

Twisted 274 71.54% 76 19.84% 33 8.62% 383

Too long 345 66.99% 102 19.81% 68 13.20% 515

Too loose 40 60.61% 17 25.76% 9 13.63% 66

Below GE junction 261 65.74% 83 20.91% 53 13.35% 397

Correct 1,200 71.90% 326 19.53% 143 8.57% 1,669

Images with more than 1 VQI are counted separately; hence, the total exceeds the 3,138 samples.
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summarizes the performance metrics evaluated for the

conducted experiments.

The results for multi-class classification, as displayed in

Table 4; Figure 4, were only partly comparable to the ensemble

of classifiers, as the former greatly limited the possibility of false

negatives by turning every decision into a binary prediction.

Nonetheless, the multi-class classifier showed satisfactory

performance on the respective test set regardless. Only the results

for augmented data were evaluated. Merely the true positive rate

for incomplete Nissen decreased notably.

4 Discussion

The integration of artificial intelligence (AI) and computer

vision (CV) into surgery presents a complex and evolving

endeavor, largely due to the variability in surgical environments,

anatomical differences, and visual representation during

individual procedures. For AI and CV to make a significant

impact on surgery, it is essential to define procedure-specific

visible quality indicators that the algorithm can be trained with

in order to predict such features in other images.

CV and deep learning, a subset of AI, hold tremendous potential

in laparoscopic surgery, which heavily relies on digital imaging.

Various authors have already published AI applications to support

recognition of instruments (12), phase (13), anatomy (12) and

action (14). Nevertheless, the number of underlying procedures is

still limited focusing on cholecystectomy (2, 3, 15–19) and

gynecological procedures (hysterectomy and myomectomy) (12, 14).

A recently published report analyzing a total of 47 frames from

25 laparoscopic cholecystectomy (LC) videos has demonstrated

that AI can be used to identify safe and dangerous zones of

TABLE 2 Total number and relative percentage of samples per class during training for the ensemble of classifiers, as well as the multi-class classifier.

Training Validation Testing

Labels Incomplete 311 20.58% 101 23.65% 58 28.86%

Correct 1,200 79.42% 326 76.35% 143 71.14%

Twisted 274 18.59% 76 18.91% 33 18.75%

Correct 1,200 81.41% 326 81.09% 143 81.25%

Too long 345 22.33% 102 23.83% 68 32.23%

Correct 1,200 77.67% 326 76.17% 143 67.77%

Too loose 40 3.23% 17 4.96% 9 5.92%

Correct 1,200 96.77% 326 95.04% 143 94.08%

Below GE junction 261 17.86% 83 20.29% 53 27.04%

Correct 1,200 82.14% 326 79.71% 143 72.96%

Incomplete 311 12.79% 101 14.33% 58 15.93%

Twisted 274 11.27% 76 10.78% 33 9.07%

Too long 345 14.19% 102 14.47% 68 18.68%

Too loose 261 10.74% 83 11.77% 53 14.56%

Below GE junction 40 1.65% 17 2.41% 9 2.47%

Correct 1,200 49.36% 326 46.24% 143 39.29%

Class distribution may vary between training, validation and test sets due to random sampling.

FIGURE 2

The confidence of the model for predicting a twisted wrap during testing; its performance is given in the red box at the bottom of the image (97.8%).
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dissection within the surgical field. The authors could describe a

high specificity/positive predictive values for Go zones and high

sensitivity/negative predictive values for No-Go zones (15). The

underlying algorithm, termed GoNoGoNet by the authors, is

based on 2,627 random frames from 290 LC videos; the results

of this study suggest that deep learning can be used to identify

safe and dangerous zones of dissection and other anatomical

structures such as the liver, gallbladder and hepatocystic triangle

TABLE 3 Summary of crucial performance metrices of the ensemble of classifiers.

Precision Recall Accuracy F1-score

Average Default .9932 ± .009 .9571 ± .032 .9906 ± .005 .9738 ± .017

Augmented .9711 ± .047 .9739 ± .015 .9896 ± .004 .9719 ± .018

Model

(vs. correct)

Incomplete Default 1.000 .9810 .9950 .9915

Augmented 1.000 .9650 .9900 .9831

Twisted Default 1.000 .9706 .9943 .9851

Augmented 1.000 .9706 .9943 .9851

Too long Default .9853 .9710 .9858 .9781

Augmented .9853 .9710 .9858 .9781

Too loose Default 1.000 .9000 .9934 .9474

Augmented .8890 1.000 .9934 .9412

Below GE junction Default .9811 .9630 .9847 .9720

Augmented .9811 .9630 .9847 .9720

Every model was tested on either a sample containing a failed VQI or a correct image. Details can be found in Table 2.

TABLE 4 Results for the measures precision, recall, accuracy and F1-score for multi-class classification.

Precision Recall Accuracya F1-score

Average Aug .9365 ± .061 .9243 ± .075 .9284 ± .000 .9267 ± .035

Multi-class model

Incomplete Aug .9783 .7759 – .8677

Too long Aug .8904 .9559 – .9220

Too loose Aug 1.000 .8889 – .9412

Twisted Aug .8250 1.000 – .9041

Below GE junction Aug .9811 .9808 – .9809

Correct Aug .9441 .9441 – .9441

aAs True Negatives (TN) cannot be established on a per-class basis, accuracy is only given for the entire model.

FIGURE 3

Visualization of the rate of true and false predictions for the ensemble of classifiers across all test samples (non-augmented and augmented data)

displaying the average performance when tested on their respective VQI or correct samples. The number of samples was normalized between

zero and one to enable inter-classifier comparability.

Till et al. 10.3389/fped.2025.1584628

Frontiers in Pediatrics 05 frontiersin.org

https://doi.org/10.3389/fped.2025.1584628
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


in the surgical field during LC with a high degree of performance

(3). Similarly, Tokuyasu and coworkers have created an AI

algorithm for object detection during LC to mitigate the risk of

bile duct injury (16). They annotated approximately 2,000

endoscopic images of Calot’s triangle and trained the YOLOv3

(You Only Look Once, version 3) algorithm, which successfully

identified four critical landmarks during LC, thereby providing

intraoperative indications that improved procedural safety (16).

Kawamura et al. also have developed an AI system aimed at

enhancing surgical safety during LC (2). Utilizing 72 LC videos,

they annotated 23,793 images and trained their AI model based

on performance metrics such as precision, recall, F-measure and

specificity. Their model achieved an impressive overall precision

of 0.971, demonstrating that AI/CV systems could effectively

enhance surgical safety by delivering real-time visual feedback

during operations.

In the context of laparoscopic distal gastrectomy, several

articles report the implementation of AI models to recognize

different surgical phases and workflows, further improving

decision-making support during procedures (13, 20).

The above-mentioned examples indicate that AI models

tailored to specific videoscopic procedures could significantly

enhance intraoperative guidance, surgical outcome and safety.

However, models focused on more complex procedures, such as

Nissen fundoplication, still remain underdeveloped. Creating

these models requires extensive international data collection and

close collaboration between AI experts and videoscopic surgeons

in order to collect a sufficient number of videos as well as to

define appropriate VQIs. One of the associated problems may

also be that the collection of datasets comprising incorrect

images and videos of LNFs will most likely be difficult.

In our experimental study, we introduce the first AI/CV model

designed to detect specific visible quality indicators in images of

LNF. The selection of such parameters to build the algorithm

was focused less on clinical importance or procedural

complications, but on the visibility of such quality features in

surgical images. We aimed to test whether the AI/CV algorithm

can be trained with different shapes and features of Nissen wraps

and whether the AI/CV can predict the presence of such VQIs

in a different set of images (testset). While the scientific evidence

of the chosen parameters is relatively scarce, the importance of

these parameters for a successful laparoscopic Nissen

fundoplication has been described in several reports (21–24). For

instance, the importance of an appropriate orientation and

positioning of the wrap above the GE junction has been

described by Rothenberg in his report describing a 20-year

experience with nearly 2,000 consecutive laparoscopic Nissen

fundoplications (21). Moreover, a wrap that is too loose is

incompetent to prevent reflux (25). If the wrap is too long then

the passage of food can be obstructed (22). Nevertheless, our

study does not claim clinical relevance yet, as it merely proves

the experimental concept that image based events such as VQIs

for LNF can be detected by an AI algorithm.

While our proof of concept is promising, it is important to

clearly acknowledge the limitations of our experimental study.

One key concern is the transferability of AI/CV models trained

on animal data to human applications, which does not seem

valid primarily. Indeed, some recent studies have highlighted the

challenges of generalizing models across species due to

anatomical and physiological differences. On the other hand,

Wang et al. employed a U-Net model for neuroimaging trained

on humans and later adapted for non-human primates (26).

Their approach demonstrated that transfer-learning processes can

enable models trained on one species to be effectively updated

for use with scans from different species, such as macaques,

chimpanzees, marmosets, and pigs (26). Further research,

FIGURE 4

Confusion matrix for prediction results of the multi-class classifier. Values are normalized between zero and one with respect to the ground truth label

of a test sample.
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however, seems necessary in surgery to determine how animal-

based training datasets can be adapted or augmented to ensure

reliable application in humans.

The reason for choosing an animal model seems worthwhile

emphazing. In order to build an AI/CV algorithm supporting

surgical decision making it seems important to train the AI/CV

with images depicting “right and wrong”. However, adequately

sized datasets of “incorrect” Nissen wraps in humans are unlikely

to be attained. Thus, the development of AI/CV models in

humans seems unlikely in the near future. Instead, our

experimental design provided access to numerous videos of

incomplete, twisted, excessively long (more than four knots), too

loose wraps, and positioning at or below the GE junction.

Another limitation remains the specific selection of the

predefined VQIs. The rational for defining such visible quality

parameters have been mentioned before. The purpose of this

study was to see whether an AI algorithm can differentiate

between different configurations of the Nissen wrap. The purpose

of the study is not to cover all steps of a perfect antireflux

surgery (e.g., dissection, extent of esophagophrenical mobilization

and cruroplasty). Finally, we refrained from using tightness as it

is rather a tactile and not a visual quality.

Thus, our AI/CV model exhibited strong performance in

predicting image based VQIs for Nissen fundoplication and

further research must address key issues such as robustness,

potential biases, model explainability to fully eliminate any

concerns regarding overfitting or memorization during training.

We have chosen EfficientNet as the primary model for this

study due to its exceptional performance in image classification

tasks while maintaining computational efficiency. EfficientNet

has consistently demonstrated state-of-the-art performance across

a range of image classification benchmarks (27, 28). Its ability to

achieve high accuracy with relatively fewer parameters makes it

an ideal choice for our task of detecting correct vs. incorrect

configurations of Nissen wraps, where precision is critical. Given

the nature of our dataset (focused on animal-based

configurations) and the computational constraints, EfficientNet

offers an excellent balance between model size, training time, and

inference speed. This efficiency is crucial for practical

applications, especially in environments with limited

computational resources. Since the current work represents an

experimental proof-of-concept testing whether an AI algorithm

can classify various surgical reconstructions (configurations of

Nissen wraps based on laparoscopic images), we did not

optimize the algorithm yet by comparing EfficientNet

performance with other models. Future work may now be

fostered to evaluate the complexity of using alternative models

like Vision Transformers (ViT) or Swin Transformers—which

may require more data and computational power (29, 30).

Moreover, explainability methods are key to induce trust and

should be considered once transitioning from a proof-of-concept

to a model used in surgical practice. Afterwards, the model

architectures can be optimized to not only maximize predictive

power but do so in a manageable scope for real-time classification.

For AI models in general, also rigorous external validation, careful

consideration of ethical issues, data security and privacy as well as

education and training programs for surgeons and healthcare

professionals are of upmost importance (31).

In conclusion, our proof of concept study represents a

significant experimental advancement toward leveraging AI and

CV technologies to enhance procedural quality assurance and

optimize surgical outcomes. For the first time, an AI/CV model

has been trained to recognize image based VQIs for Nissen

fundoplication. Certainly, this study does not claim any clinical

relevance yet, but may inspire further research of image based AI

algorithms supporting surgical decision making.
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