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Objective: To explore the correlation between orthostatic intolerance in children

and levels of the ACE2-Ang(1-7)-Mas axis and vitamin D.

Methods: Blood samples were collected from 84 children with orthostatic

intolerance and 307 healthy controls. After matching for age and sex, 84

children from each group were studied. The orthostatic intolerance group was

divided into vasovagal syncope (n= 51) and postural orthostatic tachycardia

syndrome (n= 33). Fasting blood samples were analyzed for 25(OH)D, ACE2,

Ang(1-7), and hydroxylases using ELISA.

Results: (1) The orthostatic intolerance group had significantly lower levels of

ACE2, Ang(1-7), 25(OH)D, and hydroxylases compared to controls (P < 0.05).

(2) No sex differences in biomarker levels were found in the orthostatic

intolerance group (P > 0.05), but boys in the control group had higher

25(OH)D levels (P < 0.001). (3) No significant differences between the two

intolerance subgroups (p > 0.05). (4) Logistic regression showed lower levels of

25(OH)D, 25-hydroxylase, and Ang(1-7) correlated with higher orthostatic

intolerance incidence. (5) Ang(1-7) levels of 19.39 ng/ml provided 86.9%

sensitivity and 61.9% specificity for diagnosis.

Conclusion: Reduced levels of Ang(1-7)/ACE2, 25(OH)D, and 25-hydroxylase are

linked to orthostatic intolerance in children, highlighting vitamin D deficiency’s

role and suggesting Ang(1-7) and ACE2 as potential biomarkers. Sex does not

significantly affect these biomarker levels.
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1 Background

Neurally mediated syncope (NMS) is the leading cause of syncope in children in

China, about 20%–30% of children and adolescents aged 5–18 years have experienced

at least one episode of syncope (1). Orthostatic intolerance (OI) is a common type of

NMS in children. It is often manifested by fainting, dizziness, fatigue, blurred vision,

abdominal discomfort, and other clinical symptoms, especially during moments of

mental stress, prolonged standing, or changes in body position (2).

OI can be classified hemodynamically into four main types: vasovagal syncope (VVS),

postural tachycardia syndrome (POTS), orthostatic hypotension (OH), and orthostatic
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hypertension (OHT), with VVS and POTS being the most

common (2). In recent years, the pathological mechanism of OI

has not been fully elucidated, which brings challenges to clinical

diagnosis and treatment.

Recent studies have found that vitamin D, a fat-soluble vitamin,

plays a significant regulatory role in the cardiovascular system in

addition to its traditional function in regulating calcium and

phosphate metabolism (3, 4). Vitamin D metabolism is regulated

by three enzymes: 25-hydroxylase, which converts cholecalciferol

(VD3) to 25(OH)D; 1α-hydroxylase, which activates it to 1,25

(OH)₂D; and 24-hydroxylase, which generates inactive

metabolites (5). The balance of these enzymes determines active

vitamin D levels. Reduced 1α-hydroxylase activity or excessive

24-hydroxylase expression can lower active vitamin D levels. In

deficiency, the body compensates by upregulating 1α-

hydroxylase, though this mechanism may be insufficient in

certain pathological conditions (5, 6). Vitamin D exerts its

cardiovascular protective effects by binding to the vitamin

D receptor (VDR), influencing the activity of the autonomic

nervous system (7), and regulating the balance of the renin-

angiotensin-aldosterone system (RAAS) (8, 9). However, the

specific mechanisms underlying the role of vitamin D in the

occurrence and development of OI remain unclear.

Meanwhile, the imbalance of the angiotensin-converting enzyme

2 (ACE2)-angiotensin (1-7) [Ang(1-7)]-Mas receptor axis has been

implicated in various cardiovascular diseases (10). This pathway

protects endothelial function by promoting vasodilation and

counteracting the vasoconstrictive effects of Ang II (11, 12).

Existing studies suggest that vitamin D deficiency may exacerbate

the imbalance of the Renin-angiotensin-aldosterone system

(RAAS) by downregulating ACE2 expression, thereby affecting

cardiovascular function (13–15). However, whether children with

OI exhibit abnormalities in the ACE2-Ang(1-7)-Mas axis, and the

specific mechanisms through which this axis contributes to the

pathogenesis of OI, remain inadequately studied.

Therefore, the present study hypothesizes that children with OI

have abnormal activity of vitamin D metabolic enzymes, including

24-hydroxylase, 25-hydroxylase, and 1α-hydroxylase, leading to

vitamin D deficiency. This deficiency may inhibit the ACE2-Ang

(1-7)-Mas axis, resulting in elevated Ang II levels, which could

contribute to autonomic dysregulation and vascular dysfunction.

2 Data and methods

2.1 Study subjects

This study collected whole blood specimens from 84 pediatric

patients diagnosed with OI through Head-up test (HUT) or Head-

up tilt test (HUTT) at the Lanzhou university second hospital from

December 2019 to December 2020. Simultaneously, blood

specimens were collected from 307 healthy children who

underwent routine pediatric outpatient examinations during the

same period. The case-control matching function of SPSS 25.0

statistical software was used to match the children in a 1:1 ratio

based on the same birth year and sex. Finally, a total of 84

children with OI (OI group) and 84 healthy children (control

group) were included as research subjects. This study was

approved by the Medical Ethics Committee of the Lanzhou

University Second Hospital [2018A-002]. The original consent

form for routine blood tests stated that leftover samples could be

used for medical research, and this study does not involve

commercial purposes or sensitive information.

2.2 Inclusion criteria

(1) Meet the diagnostic criteria for VVS or POTS according to

2018 Chinese Pediatric Cardiology Society (CPCS) guideline

for diagnosis and treatment of syncope in children and

adolescents. In brief, a positive diagnosis of VVS is indicated

by the occurrence of syncope or presyncopal symptoms

(dizziness, vertigo, headache, chest tightness, palpitations,

nausea, vomiting, pallor, hyperhidrosis, blurred vision,

hearing loss, or abdominal pain) during the HUTT, along

with any of the following criteria: (1) SBP ≤80 mmHg, DBP

≤50 mmHg, or a mean arterial pressure decrease of ≥25%;

(2) HR falling below age-specific thresholds: <75 bpm (ages

4–6), <65 bpm (ages 7–8), and <60 bpm (ages >8); (3) ECG

showing sinus arrest or junctional premature beats; (4)

atrioventricular block or cardiac arrest ≥3 s. POTS is

diagnosed during HUTT or standing test when: (1) HR is

normal in the supine position; (2) within 10 min, HR

increases by ≥40 bpm, or reaches ≥130 bpm (ages 6–12) or

≥125 bpm (ages 13–18); (3) no orthostatic hypotension (BP

drop >20/10 mmHg) (16);

(2) Complete clinical data: for the OI group, complete HUT/HUTT

test reports and a clear diagnosis should be provided. These

patients must be newly diagnosed and have not received any

prior treatment. For the healthy control group, only children

who have undergone physical examinations at a health check-

up center and show no apparent abnormalities will be

included. All participants are permanent residents of Lanzhou

City and are aged between 5 and 15 years.

(3) Written informed consent from the guardians of the children.

2.3 Exclusion criteria

(1) Children with a previous diagnosis of any autonomic

dysfunction (including dysautonomia, vagal nerve dysfunction),

congenital heart disease, arrhythmias (such as ventricular

premature beats, tachycardia, etc.), type 1 diabetes, thyroid

disorders (hyperthyroidism or hypothyroidism), or diseases

such as myasthenia, poliomyelitis, or chronic fatigue syndrome.

(2) Children who are currently using or have a history of long-

term use of RAAS inhibitors, such as angiotensin-converting

enzyme inhibitors (ACEIs), angiotensin receptor blockers

(ARBs), aldosterone antagonists, direct renin inhibitors

(DRIs), and central renin inhibitors, as well as β-blockers,

diuretics, antidepressants, corticosteroids, or vitamin

D supplements.
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2.4 Study methods

Grouping:

1. Orthostatic intolerance group and control group.

2. Based on the results of HUT/HUTT, the orthostatic intolerance

group was further divided into vasovagal syncope group and

postural tachycardia syndrome group.

3. According to the vitamin D diagnostic criteria of the Chinese

Pediatric Society, serum 25(OH)D levels were categorized as

sufficient (>50 nmol/L or >20 ng/ml), insufficient (37.5–

50 nmol/L or 15–20 ng/ml), deficient (<37.5 nmol/L or <15 ng/

ml), and severely deficient (<12.5 nmol/L or 5 ng/ml) (17).

2.5 Detection indicators and methods

Enzyme-linked immunosorbent assay was used to measure the

levels of ACE2, Ang(1-7) enzyme, 25-hydroxylase, 1α-hydroxylase,

and 24-hydroxylase in human serum, provided by Shanghai

Jianglai Biotechnology Co., Ltd. Serum 25(OH)D concentrations

were measured using the Roche cobas 6,000 fully automatic

electrochemiluminescence immunoassay analyzer.

2.6 Statistical methods

Data were analyzed using SPSS 25.0. Descriptive statistics were

presented as counts (percentages) for categorical variables, and

normally distributed continuous variables were expressed as

means ± standard deviation (x ± s). Group comparisons were

conducted using the chi-square test for categorical data,

independent sample t-tests or corrected t-tests for normally

distributed continuous data, and the Mann–Whitney U-test for

non-normally distributed continuous data. One-way analysis of

variance was used for group comparisons of normally distributed

continuous data, with post hoc pairwise comparisons corrected

using the LSD method. For non-normally distributed continuous

data, the Kruskal–Wallis H-test was employed, with post hoc

pairwise comparisons corrected using the Bonferroni method.

Binary logistic regression analysis was conducted to identify factors

related to the onset of orthostatic intolerance. Receiver operating

characteristic curve analysis was performed to evaluate the

diagnostic predictive value of 25(OH)D for orthostatic intolerance.

A p-value less than 0.05 was considered statistically significant.

3 Result

3.1 Baseline data of orthostatic intolerance
patients and controls

The OI group had an average age of 10.89 ± 1.92 years, with 47

boys and 37 girls. The median age for boys was 11.0 (2.0) years,

and for girls, it was 11.0 (2) years. The control group had an

average age of 10.43 ± 2.08 years, with 47 boys and 37 girls. The

median age for boys was 10.0 (3.0) years, and for girls, it was

11.0 (4.0) years. There were no statistically significant differences

in sex and age between the two groups (P > 0.05).

In the OI subgroup, POTS accounted for 39.2% (33/84) and

VVS accounted for 60.7% (51/84). The POTS group comprises

19 boys (57.6%) with an average age of 10.58 ± 1.90 years and 14

girls (42.4%) with an average age of 11.79 ± 1.12 years, resulting

in an overall average age of 11.09 ± 1.70 years. The VVS group

includes 28 boys (54.9%) with an average age of 10.93 ± 1.76

years and 23 girls (45.1%) with an average age of 10.57 ± 2.39

years, with a combined average age of 10.76 ± 2.06 years. The

healthy control group consists of 47 boys (56.0%) with an

average age of 10.17 ± 1.90 years and 37 girls (44.0%) with an

average age of 10.76 ± 2.27 years, resulting in an overall average

age of 10.43 ± 2.08 years (Supplementary Table S1).

3.2 Comparison of ACE2 and Ang(1-7) levels
in orthostatic intolerance group and its
subgroups with the control group

In the OI group, the serum ACE2 levels [1.46 (1.80) vs.

2.41 ± 1.33 pg/ml] (z =−3.66, P < 0.001) and Ang(1-7) levels

[16.98 (21.89) vs. 38.07 (38.20) ng/ml, z =−6.43, p < 0.001] were

significantly lower compared to the control group, with

statistically significant differences (Figures 1A,B).

In the VVS group, the serum ACE2 levels [2.38 ± 1.30 ± 1.47 vs.

1.27 (1.45) pg/ml] and POTS group serum ACE2 levels [2.38 ± 1.30

vs. 1.93 (2.78) pg/ml] were both significantly decreased compared

to the control group, with statistically significant differences

(P < 0.05). The VVS group, Ang(1-7) levels [38.07 (38.20) vs.

17.52 (18.54) ng/ml] and POTS group Ang(1-7) levels [38.07

(38.20) vs. 15.30 (34.99) ng/ml] were significantly lower than

those in the control group, with statistically significant

differences (P < 0.05) (Figures 2A,B).

3.3 Comparison of serum ACE2 and Ang
(1-7) levels between orthostatic intolerance
group and control group by sex

In control group girls, ACE2 levels were higher than in OI

group girls {[2.37 ± 1.39 vs. 1.16 (1.46) pg/ml]} (z =−3.10,

P = 0.002); Ang(1-7) levels in control group girls {[40.40 ± 22.45

vs. 14.12 (21.94) ng/ml]} were also higher than in OI group girls

(z =−4.20, P < 0.001). In control group boys, ACE2 levels

{[2.45 ± 1.30 vs. 1.56 (1.85) pg/ml]} were higher than in OI

group boys (z =−2.14, P = 0.045); Ang(1-7) levels in control

group boys {[45.06 ± 23.53 vs. 18.48 (25.72) ng/ml]} were also

higher than in OI group boys (z =−4.79, P < 0.001) (Figures 3A,B).

There was no statistically significant difference in ACE2 levels

[2.37 ± 1.39 vs. 2.45 ± 1.30 pg/ml] between control group girls and

boys (t = 0.13, P = 0.96); there was also no statistically significant

difference in Ang(1-7) levels [40.40 ± 22.45 vs. 45.06 ± 23.53 ng/ml]

between control group girls and boys (z =−0.92, P = 0.36). In OI

group boys and girls, there were no statistically significant

differences in ACE2 levels [1.56 (1.85) vs. 1.16 (1.46) pg/ml]
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(z =−1.15, P = 0.25) and Ang(1-7) levels [18.48 (25.72) vs. 14.12

(21.94) ng/ml] (z =−1.21, P = 0.23) (Figures 3A,B).

3.4 Comparison of serum 25(OH)D and
related hydroxylase levels between
orthostatic intolerance and control groups

The serum levels of 25(OH)D, 24-hydroxylase, and

25-hydroxylase in the OI group were significantly lower than

those in the control group (P < 0.05). However, there was no

significant difference in the level of 1α-hydroxylase (P = 0.95)

(Figures 1C–F). The proportion of individuals with 25(OH)D

deficiency in the orthostatic intolerance group is higher, in the

orthostatic intolerance group, the rates of inadequacy, deficiency,

or severe deficiency of vitamin D are as high as 84.5% (Figure 4).

3.5 Comparison of serum 25(OH)D and
related hydroxylase levels between different
orthostatic intolerance subtypes and the
control group

Compared to the control group, patients with VVS and POTS

showed a significant decrease in serum 25(OH)D levels [17.56 ± 5.45

vs. 12.91 (8.52), 17.56 ± 5.45 vs. 13.10 ± 4.45 ng/ml] (P < 0.05). The

levels of 24-hydroxylase {[16.21 ± 8.48 vs. 12.38 ± 7.90, 16.21 ± 8.48

vs. 7.36 (11.15)]} were also significantly decreased (P < 0.001), and

the levels of 25-hydroxylase [1.73 (1.73) vs. 0.87 (0.69), 1.73 (1.73)

vs. 0.94 (1.56) pg/ml] showed a significant reduction (P < 0.001).

However, there was no statistical difference in 1α-hydroxylase levels

[15.00 ± 6.37 vs. 15.52 ± 7.18 vs. 14.20 ± 4.82 pg/ml] (z = 0.604,

P = 0.57). Additionally, there were no significant differences between

POTS and VVS patients in 25(OH)D, 24-hydroxylase, and

25-hydroxylase levels (Figures 1C–F; Figures 2C–F).

3.6 Comparison of serum 25(OH)D and
related hydroxylase levels in different sex
between the orthostatic intolerance group
and control group

In the control group, girls exhibited higher levels in 25(OH)D

(15.01 ± 4.79 vs. 12.56 ± 5.03 ng/ml) (t = 2.15, P = 0.035),

24-hydroxylase [15.82 ± 8.88 vs. 7.41 (12.37) pg/ml] (z =−2.92,

P = 0.007), and 25-hydroxylase [2.00 ± 1.22 vs. 0.78 (1.00)]

(z =−3.40, P = 0.001) compared to girls in the OI group. However,

there was no significant difference in 1α-hydroxylase levels

[16.25 ± 7.30 vs. 14.57 (7.13) pg/ml] (t =−0.524, P = 0.60)

(Figures 3C–F).

FIGURE 1

Differences in various indicators between the OI group and the control group. (A) to (F) respectively represent the differences in Ang(1–7), ACE2,

25(OH)D, 1α-hydroxylase, 24-hydroxylase, and 25-hydroxylase levels between the Control and OI groups. *** indicates P < 0.0005, **** indicates

P < 0.0001, and ns indicates P > 0.05.
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In boys from the control group, higher levels were observed in

25(OH)D (19.56 ± 5.13 vs. 14.74 ± 5.34 ng/ml) (t = 4.49, P < 0.001),

24-hydroxylase [16.52 ± 8.24 vs. 8.93 (11.01) pg/ml] (z =−2.88,

P = 0.004), and 25-hydroxylase [1.73 (1.90) vs. 0.93 (0.90)]

(z =−4.00, P < 0.001) compared to boys in the OI group.

However, no significant differences were found in 1α-hydroxylase

levels (14.01 ± 5.40 vs. 14.60 ± 6.27 pg/ml) (t =−0.482, P = 0.631).

Furthermore, boys in the control group had higher levels of

25(OH)D (19.58 ± 5.12 vs. 15.01 ± 4.79 ng/ml) compared to girls in

the control group, with statistical significance (t =−4.180, P < 0.001).

On the other hand, for OI group, there are no significant differences

were observed in 25(OH)D, 1α-hydroxylase level, 24-hydroxylase

levels, and 25-hydroxylase levels between boys and girls (Figures 3C–F).

3.7 Binary logistics regression analysis of
factors related to orthostatic intolerance

Using sex, age, Ang(1-7), ACE2, 25(OH)D, 1α-hydroxylase,

24-hydroxylase, and 25-hydroxylase as independent variables,

FIGURE 2

Differences in various indicators between the POTS group, VVS group, and control group. (A) to (F) respectively represent the differences in Ang(1–7),

ACE2, 25(OH)D, 1α-hydroxylase, 24-hydroxylase, and 25-hydroxylase levels among the Control, VVS, and POTS groups. * indicates P < 0.01,

** indicates P < 0.005, *** indicates P < 0.0005, **** indicates P < 0.0001, and ns indicates P > 0.05.
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and the presence of OI as the dependent variable, binary logistic

regression (forward LR method) analysis was performed to

obtain the final model coefficients.

Logistic regression analysis suggested that 25(OH)D,

25-hydroxylase and Ang(1-7) were negatively correlated with the

incidence of OI. each unit decrease in these indicators increased

the corresponding morbidity rates by 10.4% (OR = 0.896, 95%CI:

0.826–0.972, P = 0.009), 81.9% (OR = 0.181, 95%CI: 0.054–0.604,

P = 0.005), and 13.7% (OR = 0.863, 95%CI: 0.737–0.899,

P < 0.001), respectively. The level of ACE was positively

FIGURE 3

Sex-specific differences in various indicators between the OI group and the control group. (A) to (F) respectively represent the differences in Ang(1–7),

ACE2, 25(OH)D, 1α-hydroxylase, 24-hydroxylase, and 25-hydroxylase levels between boys and girls in the Control and OI groups. * indicates P < 0.01,

** indicates P < 0.005, *** indicates P < 0.0005, **** indicates P < 0.0001, and ns indicates P > 0.05.

FIGURE 4

Stratified analysis of serum vitamin D levels in the OI group and the control group.
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correlated with the occurrence of OI, and the incidence of OI

increased 16.8 times for every unit increase in ACE2

(OR = 16.801, 95%CI: 5.385–52.42, P < 0.001) (Table 1).

3.8 Diagnostic value of 25(OH)D,
24-hydroxylase, 25-hydroxylase, and 1α-
hydroxylase for orthostatic intolerance

The diagnostic value of 25(OH)D, 24-hydroxylase,

25-hydroxylase, and 1α-hydroxylase for OI was assessed using

receiver operating characteristic curves. Using 13.205 ng/ml as the

threshold for 25(OH)D, the sensitivity and specificity for

diagnosing orthostatic intolerance were 78.6% and 57.1%,

respectively. For 24-hydroxylase, with a threshold of 9.17 pg/ml,

the sensitivity was 81.0%, and the specificity was 53.6%. using

1.24 pg/ml as the threshold for 25-hydroxylase, the sensitivity and

specificity for diagnosing orthostatic intolerance were 71.4% and

70.2%, as shown in Table 2 and Figure 5A.

3.9 Diagnostic value of ACE2, Ang(1-7), and
the ratio of Ang(1-7) to ACE2 for orthostatic
intolerance

Due to the close correlation between Ang(1-7) and ACE2,

considering them together better reflects their regulatory effect on

the ACE2-Ang(1-7)-Mas Axis. The diagnostic value of ACE2, Ang

(1-7), and the ratio of Ang(1-7) to ACE2 for orthostatic intolerance

was assessed using receiver operating characteristic curves curves.

Using a threshold of 1.29 pg/ml for ACE2, the sensitivity and

specificity for diagnosing orthostatic intolerance were 79.8% and

47.6%, respectively. For Ang(1-7), with a threshold of 19.39 ng/ml,

the sensitivity was 86.9%, and the specificity was 61.9%. Using a

threshold of 14.89 pg/ml for the ratio of Ang(1-7) to ACE2, the

sensitivity and specificity for diagnosing orthostatic intolerance were

84.5% and 79.8%, respectively. Among these indicators, Ang(1-7)

exhibited the largest area under the curve, indicating the highest

diagnostic sensitivity. In contrast, the ratio of Ang(1-7) to ACE2

had the highest Youden’s Index, reflecting the strongest diagnostic

specificity, as shown in Table 3 and Figure 5B.

4 Discussion

4.1 The widespread vitamin D deficiency
may contribute to orthostatic intolerance
in children

25(OH)D is the primary circulating form of vitamin D in the

body, characterized by lower biological activity, a longer half-life,

and higher sensitivity. It serves as the main storage form of

vitamin D in the body and is currently an important biomarker

for measuring serum vitamin D levels in clinical practice

(18, 19). Our study found that vitamin D deficiency is present

in both healthy children and children with OI, with

approximately 84.5% of OI patients having vitamin D levels

below the normal threshold (<20 ng/ml). This finding is

consistent with epidemiological surveys conducted in our

country, which indicate that vitamin D deficiency and

insufficiency are common among children, and the prevalence

of deficiency tends to increase with age (20). Our study data

derived from the Lanzhou region, suggest that vitamin

D deficiency in children may be related to the region’s high

latitude and insufficient sunlight exposure. Moreover, the

vitamin D levels in OI children were generally lower than those

of sex-matched healthy children, and this deficiency or

insufficiency was observed in various types of OI, including

VVS and POTS. This indicates that vitamin D deficiency might

be a widespread issue among OI children. Vitamin D deficiency

could contribute to a range of physiological dysfunctions by

impairing its regulatory effect on the autonomic nervous

system, such as inhibiting sympathetic nerve activity and

enhancing parasympathetic tone (3, 4, 7, 21). Furthermore,

TABLE 1 Binary logistics regression analysis of factors related to orthostatic intolerance.

Variables β S.E. Wald P OR 95% C.I.

Lower Upper

Constant 2.952 0.74 15.939 <0.001 19.152

25(OH)D −0.109 0.042 6.923 0.009 0.896 0.826 0.972

Ang(1-7) -0.148 0.032 21.17 <0.001 0.863 0.81 0.919

ACE2 2.821 0.581 23.618 <0.001 16.801 5.385 52.42

25 hydroxylase -1.709 0.614 7.735 0.005 0.181 0.054 0.604

Hosmer and Lemeshow test: χ2 = 4.95 P = 0.73.

Omnibus tests of model coefficients: χ2 = 95.36 P < 0.001.

TABLE 2 Diagnostic value of 25(OH)D, 24-hydroxylase and 25-hydroxylase for OI.

Variables Area under the curve 95% C.I. Std. Errora Diagnostic
threshold

Sensitivity Specificity Youden’s index P

25(OH)D 0.698 0.619–0.777 0.040 13.205 0.786 0.571 0.357 <0.001

25 hydroxylase 0.679 0.598–0.760 0.041 1.23606 0.714 0.702 0.416 <0.001

24 hydroxylase 0.735 0.659–0.810 0.039 9.1709 0.81 0.536 0.346 <0.001
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vitamin D influences the synthesis of nitric oxide (NO) by

regulating the activity of endothelial nitric oxide synthase

(NOS), which in turn modulates smooth muscle contraction

(22, 23). Vitamin D deficiency may be a cause of orthostatic

intolerance, as the incidence of orthostatic intolerance

significantly increases when vitamin D is lacking, estimated to

be twice as high as that of normal adolescents lacking vitamin

D (30% vs. 14%) (24, 25). In Anthony’s study, it was also found

that 50% of POTS patients met the criteria for vitamin

D insufficiency, and an additional 7% met the criteria for

vitamin D deficiency, totaling 58% of POTS patients with

abnormal serum vitamin D levels (26). A single-center

retrospective study on the correlation between vasodilation and

vasovagal syncope revealed a significant decrease in vitamin

D levels in fainting patients. No significant differences were

observed among vasovagal syncope subgroups, but low vitamin

D levels were significantly correlated with syncope (27).

Therefore, vitamin D deficiency may lead to autonomic

dysfunction and vascular impairment, providing a potential

pathological basis for the development of OI.

4.2 Role of vitamin D metabolizing enzymes
in orthostatic intolerance

25-hydroxylase and 1α-hydroxylase are the key enzymes

involved in the synthesis of the active form of vitamin D,

1,25(OH)2D. A deficiency in the activity of these enzymes can

result in insufficient production of active vitamin D due to

impaired synthesis. Conversely, excessive activity of

24-hydroxylase, which is responsible for the degradation of both

1,25(OH)2D and 25(OH)D, can lead to an accelerated

breakdown of active vitamin D, resulting in deficiency (5, 6). The

endothelial function mediated by vitamin D is closely linked to

the VDR and 1α-hydroxylase (28). 1α-hydroxylase is

predominantly located in the kidneys but is also present in

extrarenal tissues, including immune cells and keratinocytes. This

enzyme serves as the critical rate-limiting factor in the synthesis

of 1,25(OH)2D, playing a central role in regulating the body’s

levels of active vitamin D (29). Mice deficient in 1α-hydroxylase

show increased RAAS activity, leading to hypertension and other

symptoms due to elevated plasma renin. This activity can be

downregulated by the administration of 1,25(OH)2D (13). In

cases of 1α-hydroxylase deficiency in postural orthostatic

tachycardia syndrome (POTS), serum 1,25(OH)2D levels are

lower than normal. Supplementation with calcitriol significantly

improves orthostatic intolerance and symptoms such as

palpitations, suggesting that 1α-hydroxylase plays a regulatory

role in conditions like OI (30).

Our study found that the levels of 25-hydroxylase and

24-hydroxylase were significantly lower in OI children

compared to healthy controls, with statistically significant

differences. However, no significant differences were observed

in the levels of 1α-hydroxylase. These findings indicate that

the decreased vitamin D levels in OI children cannot be solely

attributed to enhanced degradation. Instead, it may be

primarily due to insufficient concentrations or activity of the

synthetic enzyme 25-hydroxylase.

FIGURE 5

ROC curves for the diagnostic value of different indicators in OI. (A) ROC curve of 25(OH)D, 1α-hydroxylase, 24-hydroxylase and 25-hydroxylase in the

diagnosis of OI; (B) ROC curves of Ang(1–7), ACE2 and Ang(1–7)/ACE2 ratio in the diagnosis of OI.

TABLE 3 Diagnostic value of ACE2, Ang(1-7), and the ratio of Ang(1-7) to ACE2 for OI.

Variables Area Under the Curve 95% C.I. Std. Errora Diagnostic
threshold

Sensitivity Specificity Youden’s indx P

Ang1-7 0.787 0.719–0.856 0.035 19.385 0.869 0.619 0.488 <0.001

ACE2 0.635 0.550–0.720 0.043 1.289 0.798 0.476 0.274 0.002

Ang(1-7)/ACE2 0.865 0.808–0.921 0.029 14.892 0.845 0.798 0.643 <0.001
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4.3 Renin-angiotensin-aldosterone system
dysregulation in orthostatic intolerance

Early studies have found that children with postural

orthostatic tachycardia syndrome (POTS) exhibit reduced blood

volume, yet plasma renin and aldosterone levels do not

increase accordingly, leading to the concept of the “renin-

aldosterone paradox” in these patients (31). This paradox

suggests that there may be a dysfunction in the regulation of

angiotensin II (Ang II), potentially due to excessive production

of Ang II, reduced degradation, or abnormalities in the Ang II

receptor AT1R. The presence of AT1R antibodies may also

negatively modulate the action of Ang II (32). Furthermore,

the “renin-aldosterone paradox” in POTS may be linked to a

decrease in the activity of ACE2, an enzyme responsible for

converting Ang II into Ang(1-7). When ACE2 activity is

reduced, the ACE2-Ang(1-7)-Mas axis becomes dysregulated,

leading to the loss of cardiovascular protective effects and

potentially triggering syncope or pre-syncope symptoms (33).

Similar RAAS dysfunction has also been reported in children

with vasovagal syncope (VVS), characterized by slightly

increased renin and Ang II levels, but decreased aldosterone

levels (27). Current research suggests that the reduction in

ACE2 activity may be linked to negative feedback mechanisms

involving elevated Ang II and low blood volume. Additionally,

ACE2 expression tends to decrease with age, and its activity is

lower in males than in females (likely due to estrogen

upregulating ACE2 expression and the fact that ACE2 is

located on the X chromosome), which may help explain why

children with osteogenesis imperfecta (OI) tend to be older,

and why the prevalence of the condition is higher in females

compared to males (34, 35). We observed that serum levels of

ACE2 and Ang(1-7) were significantly lower in OI patients

compared to the control group. This suppression was

consistently seen in both VVS and POTS subtypes. We

hypothesize that vitamin D may enhance ACE2 expression,

promoting the conversion of Ang II to Ang(1-7), thereby

mitigating the negative effects of Ang II accumulation.

Furthermore, when the RAAS system in OI patients is severely

dysregulated, it may exacerbate autonomic dysfunction,

worsening pre-syncope or syncope symptoms.

Finally, the ratio of Ang(1-7) to ACE2 in OI patients, with a

critical value of 14.892, demonstrated a sensitivity of 84.5% and

a specificity of 79.8% for diagnosing OI. Therefore, further

exploration of the Ang(1-7)/ACE2 ratio as a potential valuable

biomarker for identifying OI in clinical practice is warranted.

4.4 Limitations of this study

This study has several limitations: First of all, it only measured

plasma levels of 25(OH)D, 24-hydroxylase, 25-hydroxylase,

ACE2, and Ang(1-7), without delving into the specific

mechanisms of action of these indicators. Secondly, the study is

a single-center, small sample research, and a larger sample size

is needed for further validation. Finally, the causal relationships

between the indicators were not explored, and it remains

unclear whether vitamin D deficiency leads to reduced levels

of 25-hydroxylase and ACE2 Ang(1-7), or whether low levels

of 25-hydroxylase contribute to vitamin D deficiency, which

requires further investigation.

4 Conclusion

In conclusion, children with OI exhibit a significant deficiency

in 25(OH)D, which may be associated with a decrease in

25-hydroxylase activity. This, in turn, could lead to the

suppression of the ACE2-Ang(1-7)-Mas axis, resulting in RAAS

imbalance, autonomic dysfunction, and vascular abnormalities,

ultimately triggering OI symptoms. Vitamin D supplementation

and strategies aimed at enhancing ACE2-Ang(1-7)-Mas axis

activity may serve as potential therapeutic approaches.

Furthermore, the ratio of Ang(1-7)/ACE2, as a potential

diagnostic biomarker, warrants further investigation.
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