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Pelger-Huët anomaly (PHA), an autosomal dominant disorder characterized by 

abnormal granulocyte morphology, was first described in 1928. Mutations in the 

lamin B receptor (LBR) gene cause a phenotypic spectrum ranging from 

isolated PHA, PHA with mild skeletal abnormalities, to the embryonic-lethal 

Greenberg skeletal dysplasia. We report a Chinese boy presenting peripheral 

blood granulocyte abnormalities associated with a novel LBR gene mutation. 

Whole-exome sequencing uncovered the LBR gene heterozygous mutation, 

NM_194442.2: c.561C > G (p.Tyr187*). Notably, the patient exhibited scoliosis 

secondary to hemivertebrae, potentially representing a previously unreported 

skeletal manifestation of mutations in the LBR gene. Analyzing the differential 

diagnosis between PHA, immature granulocytes, and pseudo-PHA, along with 

elucidating genotype-phenotype correlations for LBR mutations, is crucial for 

advancing our understanding of PHA and related disorders.

KEYWORDS
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1 Introduction

Pelger-Huët anomaly (PHA) is an inherited morphologic disorder characterized by 

granulocyte nuclear hyposegmentation, typically manifesting as dumbbell-shaped or 

spectacle-like bilobed nuclei with coarse chromatin clumping (1). This autosomal 

dominant condition has been molecularly linked to chromosome 1q41-43 (2), 

specifically attributed to pathogenic variants in the lamin B receptor (LBR, MIM 

600024) gene at 1q42.1 (3). While PHA is classically considered a benign hematologic 

finding, emerging evidence suggests potential associations with mild skeletal dysplasias 

(4). Herein, we report a pediatric case of genetically confirmed PHA exhibiting severe 

congenital scoliosis secondary to hemivertebrae formation, coupled with a novel 

heterozygous missense mutation in the LBR gene (c.561C > G).

2 Case report

A 2-year-old boy was admitted to our hospital for physical examination. Routine 

peripheral blood examination showed the white blood cell count of 6.13 × 109/L with 
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normal differential counts (neutrophils 29.2%, eosinophils 8.4%, 

basophils 0.8%, monocytes 8.4%, and lymphocytes 53.2%). 

However, the percentage of immature granulocytes (IG%) is 

2.4% that violated the routine blood retest rules and the Sysmex 

DI-60 analyzer was rechecked with an automatic pusher. A total 

of 110 cells were randomly analyzed including 17 neutrophils 

(5 mono-lobed and 12 bi-lobed nuclei) and 11 eosinophils 

(6 mono-lobed and 5 bi-lobed nuclei) (Figure 1A). To rule out 

hereditary PHA, we contacted the boy’s biological parents for a 

peripheral blood smear and confirmed the existence of similar 

neutrophil-related morphological abnormalities in his biological 

mother while the boy’s biological father had normal 

granulocytes (Figure 1A). Based on the physical examination 

and medical history, the boy was found to have scoliosis. Spinal 

radiographs showed that he had lumbar scoliosis and lumbar 

2-vertebral hemivertebral deformity (Figure 1B). His mother was 

found fetal scoliosis at 23 weeks of pregnancy by systematic 

color Doppler ultrasound screening (Figure 1C).

From birth to present, the child had a regular health check-up 

almost every three months. Clinical features assessed showed 

slightly lower head circumference, length, and weight when plotted 

on a standard WHO chart (Supplementary Figures S1A–C). The 

serum thyroid-stimulating hormone and genetic metabolites levels 

are within the normal ranges (Supplementary Table S1). The levels 

of 25-hydroxyvitamin D, serum ferritin and trace elements 

(including calcium, iron, zinc, lead, copper, cadmium, potassium, 

sodium, magnesium) were almost within the normal ranges 

(Supplementary Table S2). At postnatal 9 and 18 months, the 

FIGURE 1 

(A) Peripheral blood smear micrographs from the patient, mother, and father, showing Giemsa-stained granulocytes. (B) Lateral spinal radiograph (X- 

ray) with an arrow indicating a specific vertebral anomaly. (C) Prenatal ultrasound image focusing on the L2 vertebra, demonstrating abnormal 

ossification.
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Gesell Developmental Schedules (GDS) score (5) were under 86 and 

more than 85, respectively (Supplementary Figure S1D). Overall, the 

boy had slightly stunted growth but normal mental development.

To identify the potential gene mutation, the Whole-exome 

high-throughput sequencing is used, including exons of 

approximately 20,000 genes in the human genome and the 

mitochondrial genome. A new mutation site in the LBR gene 

was discovered: c.561C > G (p. Tyr187*). Sanger sequencing of 

the boy and his parents validated the candidate LBR gene 

variant that both the child and his mother were found to have 

heterozygous mutations at the locus (Figure 2). According to the 

ACMG (American College of Medical Genetics and Genomics) 

guidelines, this variant has been preliminarily classified as 

pathogenic: PVS1 + PP4 + PM2.

3 Discussion

PHA was first discovered by Pelger in the peripheral blood of 

two tuberculosis patients, mistakenly believing that the nuclear 

was shifted to the left due to infection (6). The IG fraction 

includes promyelocytes, myelocytes and metamyelocytes (blasts 

and band cells are not included). Elevated IG% is common in 

the peripheral blood of patients with bacterial infections, 

neonates, pregnant women, and patients taking recombinant 

human granulocyte colony-stimulating factor(rhG-CSF) (7–9). 

When IG% is elevated, mild- to late myelocytes are seen on 

peripheral blood smear but not in PHA. Secondly, the large 

amount of chromatin condensation observed in the nucleus of 

PHA granulocytes can help distinguish PHA from the “left 

shift” of neutrophils. The Figure 1A shows the neutrophils of 

the child and his mother have a large amount of chromatin 

condensation compared to the father.

PHA needs to be differentiated from pseudo-PHA which is an 

acquired neutrophil dysplasia similar to PHA. This abnormality is 

frequently associated with myelodysplastic syndromes and also 

described in some clinical situations, especially under the effect 

of certain drugs (10). Congenital PHA is associated with 55% to 

95% of circulating neutrophils exhibiting classic dysmorphology 

(11) and the frequency of pseudo-PHA neutrophils has ranged 

FIGURE 2 

Sanger sequencing chromatograms comparing the LBR gene sequences of the patient and parents. A heterozygous mutation is evident in the 

patient's sequence (arrow), where a nucleotide substitution from cytosine (C) to guanine (G) occurs at position c.561, resulting in a missense variant.
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between 77% and 99% (12). We cannot distinguish PHA from 

pseudo-PHA by abnormal granulocyte ratios, however, pseudo- 

PHA has morphologically normal eosinophils and basophils 

(12), which are abnormal in PHA (Figure 1A). Additionally, 

differentiation can be achieved by taking a detailed patient 

medical history and performing morphological analysis of 

neutrophils in first-degree relatives.

The LBR gene contains 35 kb bases, encodes 615 amino acids, 

and has 13 coding regions, of which 1–4 are N-terminus, 

nucleoplasmic domain, and 5–13 are C-terminus, hydrophobic 

domain. Two seemingly unrelated functions have been 

attributed to LBR. The nucleoplasmic domain is associated with 

lamin B, chromatin, and other proteins causing crucial changes 

in nuclear architecture (3), while its transmembrane domains 

TABLE 1 Congenital disorders associated with mutations in the lamin B receptor gene.

Mutation 
type

Mutation (gene) Mutation 
(protein)

Class of 
mutation

Variants 
(exons)

Pelger- 
Huet 

anomaly

Clinical features Ref.

Homozygous c.1366C > G p. Leu456Val Point mutation 11 N/A Non-lethal skeletal dysplasia; 

scoliosis without 

hemivertebrae

(21)

c.1534C > T p. Arg512Trp Point mutation 12 N/A Non-lethal skeletal dysplasia; 

scoliosis without 

hemivertebrae

(17)

c.1748G > A p. Arg583Gln Point mutation 13 Unknown Greenberg Dysplasia (22)

c.1757G > A p. Arg586His Point mutation 13 Unknown Greenberg Dysplasia (23)

c.1492delT p. 

Tyr468Thrfs475*

Frameshift 12 Unknown Greenberg Dysplasia (16)

c.1639A > G p. Asn547Asp Point mutation 13 Unknown Greenberg Dysplasia (24)

c.1599_1605TCTTCTAdelinsCTAGAAG p.534* Frameshift 12 Unknown Greenberg Dysplasia (25, 

26)

Compound 

heterozygous

c.32delTGGT/c.1748G > A p.Val11Glufs24*/ 

p. Arg583Gln

Frameshift/ 

point mutation

1/13 Unknown Greenberg Dysplasia (16)

c.1757G > A/c.1687 + 1G > A p. Arg586His/ Point 

mutation/ 

splice donor

13/13 Unknown Greenberg Dysplasia (27)

c.1757G > A/c.194delG p. Arg586His/p. 

Gly65Valfs53*

Point 

mutation/ 

nonsense

2/13 Unknown Greenberg Dysplasia (28)

c.1504C > G/c.1748G/T p. Arg502Gly/p. 

Arg583Lu

Point mutation 12/13 Yes Non-lethal skeletal dysplasia 

Platyspondyly

(17)

c.1757G > C/c.43C > T p. Arg586Ser/p. 

Arg15*

Point 

mutation/ 

nonsense

1/14 Yes Non-lethal skeletal dysplasia (17)

c.651_653delinsTGATGAGAAA/ 

c.1757G > A

p. Ile218Aspfs19*/ 

p. Arg586His

Frameshift/ 

point mutation

6/14 Yes Non-lethal skeletal dysplasia (4)

c.226C > T/c.1640A > G p. Arg76*/p. 

Asn547Ser

Nonsense/ 

point mutation

3/13 Yes Non-lethal skeletal dysplasia 

Platyspondyly

(29)

c.1174G > A/c.1535G/A p. Gly392Arg/p. 

Arg512Gln

Point mutation 9/12 N/A Non-lethal skeletal dysplasia (30)

Heterozygous c.43C > T p. (Arg15*) Nonsense 1 Yes Skeletal abnormalities (such as 

osteochondroma), cognitive 

impairment, and hearing loss 

(DFNB4/EVA mutation).

(31)

c.1129C > T p. Arg377* Nonsense 9 Yes unknown (3)

c.1308G > A p. Trp436* Nonsense 10 Yes unknown (3)

c.561C > G p. Tyr187* Nonsense 4 Yes scoliosis with hemivertebrae New

c.32delTGGT p. Val11Glufs24* Nonsense 1 Yes No severe skeletal or 

metabolic abnormalities.

(16)

c.500G > C;501-504delCCTT p. 

Ser167Thrfs176*

Frameshift 4 Yes Unknown (3)

c.1173del p. 

Gly392Aspfs393*

Frameshift 9 Yes Unknown (3)

c.1599_1605TCTTCTAdelinsCTAGAAG p.534* Frameshift 12 Yes Health (25, 

26)

c.1748G > A p. Arg583Gln Point mutation 13 N/A Health (16)

c.355C > T p. Pro119Leu Point mutation 3 Yes Health (32)

c.1706C > G p. Pro569Arg Point mutation 13 Yes Health (32)

Bold type represents the novel LBR gene variant sites identified in this study.
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exhibit sterol reductase activity (13). Deletion of LBR N-terminal 

domains using CRISPR/Cas-9 gene editing technology in the 

mouse affected the morphology and chromatin organization of 

white blood cells but not skin or skeletal defects (14). However, 

in human there is no evidence that different phenotypes are 

associated with different LBR domains (Table 1). Genetic 

variation in LBR affects the expression of LBR protein, which in 

turn correlates with a continuum of clinical manifestations 

ranging from no phenotype to isolated PHA through PHA with 

mild skeletal dysplasia to Greenberg skeletal dysplasia (Table 1). 

Mutations in the LBR gene is a form of nuclear envelopathies 

and exhibit the characteristic phenotype of causing PHA (15). 

So far, we have found point mutation, splice site, frameshift and 

nonsense mutations in LBR (16). Heterozygous LBR mutations 

lead to nuclear hyposegmentation of neutrophils without 

causing disease, except for missense mutations such as 

p. Arg583Gln which did not alter nuclear shape in neutrophils 

(17). However, patients with homozygous/compound 

heterozygous mutations in LBR can lead to severe perinatal fatal 

autosomal recessive skeletal dysplasia, Greenberg skeletal 

dysplasia, and even those who survive are accompanied by 

severe skeletal dysplasia (Table 1). In this respect, heterozygote 

for mutation p. Tyr187* was associated with PHA with scoliosis. 

Notably, we also found that nonsense mutations, base pair 

insertions or deletions causing frame shifts that create 

premature stop codons can all lead to PHA (Table 1).

In previous reports, skeletal abnormalities associated with LBR 

gene mutations included short stature, short upper extremities, 

short metacarpal bones, postaxial polydactyly, and kyphosis, 

with some cases showing reduced severity and spontaneous 

resolution of skeletal manifestations and imaging features with 

age (18). Although scoliosis has been reported in previous cases, 

scoliosis due to the hemivertebrae has been reported for the first 

time. In this case, the skeletal abnormality manifests as 

congenital scoliosis, a form of vertebral malformation with a 

genetic susceptibility (19). The genetic basis of congenital 

scoliosis is complex, involving mutations in multiple genes, 

particularly those related to the Notch signaling pathway, such 

as TBX6 and LFNG (20). This report provides additional 

evidence of variability for LBR-related disorders associated with 

Pelger-Huët anomaly, i.e., congenital scoliosis caused by 

hemivertebrae, which is not spontaneous regression.

4 Conclusion

This case report describes a novel LBR mutation identified 

in a child presenting with PHA and hemivertebrae, further 

expanding the known phenotypic spectrum associated with 

LBR mutations. Our report details a heterozygous mutation. 

Analysis of current literature on congenital disorders linked 

to LBR gene mutations reveals that individuals with 

heterozygous LBR mutations are generally healthy apart from 

the characteristic features of PHA. This finding highlights 

the necessity of early PHA diagnosis, which facilitates 

preimplantation genetic testing (PGT) implementation to block 

intergenerational transmission of the pathogenic variant. 

Whether the occurrence of congenital scoliosis in this child is 

associated with the LBR gene mutation requires additional cases 

and functional studies to elucidate the underlying mechanisms 

and refine therapeutic strategies.
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