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Background: Appendicitis is a common condition among children and

adolescents. Machine learning models can offer much-needed tools for

improved diagnosis, severity assessment and management guidance for

pediatric appendicitis. However, to be adopted in practice, such systems must

be reliable, safe and robust across various medical contexts, e.g., hospitals

with distinct clinical practices and patient populations.

Methods: We performed external validation of models predicting the diagnosis,

management and severity of pediatric appendicitis. Trained on a cohort of 430

patients admitted to the Children’s Hospital St. Hedwig (Regensburg,

Germany), the models were validated on an independent cohort of 301

patients from the Florence-Nightingale-Hospital (Düsseldorf, Germany). The

data included demographic, clinical, scoring, laboratory and ultrasound

parameters. In addition, we explored the benefits of model retraining and

inspected variable importance.

Results: The distributions of most parameters differed between the datasets.

Consequently, we saw a decrease in predictive performance for diagnosis,

management and severity across most metrics. After retraining with a portion

of external data, we observed gains in performance, which, nonetheless,

remained lower than in the original study. Notably, the most important

variables were consistent across the datasets.

Conclusions: While the performance of transferred models was satisfactory, it

remained lower than on the original data. This study demonstrates challenges

in transferring models between hospitals, especially when clinical practice and

demographics differ or in the presence of externalities such as pandemics. We

also highlight the limitations of retraining as a potential remedy since it could

not restore predictive performance to the initial level.
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1 Introduction

Acute appendicitis is a common condition among children and

adolescents treated in pediatric surgery departments due to

abdominal pain (1, 2). Diagnosis relies on clinical signs and

symptoms (in particular, their dynamics and progression under

close observation), laboratory tests and imaging, whereas

postoperative classification is based on intraoperative findings

and histology (3). Scoring systems, such as Alvarado Score (AS)

and Pediatric Appendicitis Score (PAS), can facilitate clinical

assessment (4, 5). The classical treatment of pediatric

appendicitis is surgical, although conservative treatment with

antibiotics can be an option in certain cases (6–8). Additionally,

spontaneous resolution of uncomplicated appendicitis has

been observed and reported, which supports antibiotic-free

management based on supportive care for qualifying cases (9–11).

Despite new developments and technologies, early and accurate

detection, preoperative classification, and treatment strategy selection

are still challenging, especially in young children (1, 12, 13). Widely

used clinical and laboratory parameters alone are mostly non-

specific at identifying appendicitis (14, 15). Imaging modalities

are important tools to guide management and avoid negative

appendectomies, but they have limitations, such as operator

(investigator) dependency on ultrasonography, radiation exposure

for computed tomography, and availability and feasibility of

magnetic resonance imaging, not to mention the costs (3, 16).

Recent years have marked impressive progress in Machine

Learning (ML) research and the increasing proliferation of tools

built upon this technology in medicine. ML algorithms promise to

aid in the detection, management and treatment of various

diseases, thus improving the overall quality and effectiveness of

healthcare. In relation to pediatric appendicitis, ML has been used

to diagnose and manage patients suspected of developing

this condition (17–27); specifically, such tools were developed

to predict diagnosis, management and severity of pediatric

appendicitis. These models either rely exclusively on standard

clinical and laboratory data (17, 19–21, 27), or additionally utilize

imaging modalities (obtained through various methods, e.g.,

computed tomography or ultrasonography) either directly in their

raw format or by extracting hand-crafted annotations (18, 22–26).

Although promising and practical, ML-based tools for pediatric

appendicitis are rarely deployed in practice due to the translational

barrier inherent to medical machine learning research (28). To

overcome this challenge, predictive models need to be validated

on external datasets and later go through rigorous clinical trials

(which tend to be complex, time-consuming and costly) (29). In

this study we make a step in this direction and follow up on our

previous work where we developed ML models (23) for

predicting diagnosis (appendicitis vs. no appendicitis), treatment

assignment (surgical vs. conservative) and complications

(complicated appendicitis vs. uncomplicated or no appendicitis) of

pediatric appendicitis. Specifically, we conduct a principled

external validation of the aforementioned ML tools on tabular

electronic health records collected in a different hospital,

exploring potential challenges associated with the transfer of our

predictive models.

The original models (logistic regression, random forest and

gradient boosting, all achieving strong performance) were

developed on a dataset of 430 patients aged 0 to 18 years

admitted with abdominal pain and suspected appendicitis to the

Department of Pediatric Surgery at the tertiary Children’s

Hospital St. Hedwig in Regensburg, Germany, over the period of

2016–2018 (18, 23). The original dataset consists of

demographic, clinical, scoring, laboratory and ultrasound (US)

predictor variables (see Table 1 for their list).1 The external

validation dataset was acquired at the Department of Pediatric

Surgery and Pediatric Traumatology, Florence-Nightingale-

Hospital, Düsseldorf, Germany. This cohort consists of 301

pediatric patients hospitalized between 2015 and 2022, and the

dataset format and predictor variables adhere to the format of

the Regensburg dataset. The study design is summarized

schematically in Figure 1.

In this retrospective study, we present an external validation of

the aforementioned models on a new and independent cohort of

patients. To this end, we:

1. compare the datasets to better understand their differences

(Section 3.1);

2. evaluate the models without any adaptation to test their

external validity under real-world distribution shift (Section

3.2);

3. retrain the models, and then evaluate and compare them again

to explore possible gains in performance (Section 3.2); and

4. study feature importance across the models to elucidate their

functioning (Section 3.3).

Our study demonstrates the transferability of the models across

hospitals and outlines the steps necessary to facilitate such a

safe adaptation.

2 Material and methods

2.1 External data acquisition and description

To facilitate external validation, we collected and reviewed

retrospective data from children and adolescents aged 0–17 years

who were admitted to the Department of Pediatric Surgery and

Pediatric Traumatology at Florence-Nightingale-Hospital in

Düsseldorf with abdominal pain and suspected appendicitis from

January 1st, 2015 to February 1st, 2022. Patients who had

undergone an appendectomy before their admission were

excluded. Similarly, we did not include subjects with chronic

intestinal diseases or current antibiotic treatment if therapy was

conservative. In total, 301 patients met the inclusion criteria. The

study, including data acquisition and transfer, was approved by

the Ethics Committee of the University of Regensburg

1This dataset is available at https://github.com/i6092467/pediatric-

appendicitis-ml.
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(18-1063-101, 18-1063-3-101) and was performed in accordance

with the relevant guidelines and regulations.

In terms of management, the cohort was divided into

conservative and operative groups. Patients admitted and

receiving supporting therapy, e.g., intravenous fluids, enemas and

analgesics, with clinical improvement without surgery were

classified as conservative. Otherwise, having undergone an

appendectomy, subjects were labeled as operative. For the

surgical group, histological findings were recorded. In the case of

negative appendectomy (i.e., histology presenting a normal

appendix without inflammation), the corresponding data were

used to predict the diagnosis and severity but not the management.

As in the prior study (23), diagnosis (appendicitis vs. no

appendicitis) was assessed for all included patients. For patients

treated surgically, appendicitis diagnosis was based on histology. In

the nonoperative group, patients were classified retrospectively as

having appendicitis if their AS or PAS were at least 4, combined

with an appendix diameter of �6mm. Conservatively treated

patients classified as having appendicitis were followed up after

discharge for recurrences. Patients who had a recurrence and

underwent secondary operation were relabeled as surgical in the

analysis. The follow-up telephone interview was performed at least

one year after discharge, between January 2023 and February 2024.

Informed consent was obtained from the parents or legal

representatives of the patients who underwent the follow-up.

Furthermore, appendicitis severity was assessed. Patients

treated non-operatively, both with and without appendicitis,

with no recurrence during the follow-up period were classified as

TABLE 1 Description of the Regensburg and Düsseldorf datasets containing summary statistics for each variable. For numerical variables, we report
medians alongside interquartile ranges; categorical variables are binarized and summarized as frequencies. Additionally, we report adjusted p-values
from the unpaired two-sample t-test and chi-squared test for proportions.

Feature Regensburg n ¼ 430 Düsseldorf n ¼ 301 p-value

Demographic Age [years] 11.5 [9.3, 13.9] 10.1 [7.7, 11.7] � 0:001

Male sex [%] 53.7 58.1 0.260

Height [cm] 150.5 [138.0, 162.9] 140.0 [128.3, 150.0] � 0:001

Weight [kg] 42.0 [31.1, 55.0] 35.0 [26.0, 43.0] � 0:001

Body mass index [kg/m2] 18.1 [15.85, 21.2] 17.9 [15.8, 20.1] � 0:050

Scoring Alvarado score [points] 6.0 [4.0, 7.0] 6.0 [5.0, 7.0] 0.054

Pediatric appendicitis score [points] 5.0 [4.0, 6.0] 6.0 [5.0, 7.0] � 0:001

Clinical Peritonitis [%] 38.4 64.1 � 0:001

Migration of pain [%] 25.6 46.6 � 0:001

Tenderness in right lower quadrant [%] 97.0 94.6 0.129

Rebound tenderness [%] 34.4 43.0 � 0:050

Cough tenderness [%] 27.0 48.3 � 0:001

Psoas sign [%] 30.5 41.8 � 0:010

Nauseous/vomitting [%] 56.3 68.1 � 0:010

Anorexia [%] 29.1 68.1 � 0:001

Body temperature [�C] 37.4 [37.0, 38.2] 37.0 [36.5, 37.7] � 0:001

Dysuria [%] 5.4 4.0 0.415

Abnormal stool [%] 27.8 19.5 � 0:050

Laboratory White blood cell count [103/l] 11.9 [8.4, 15.8] 14.9 [10.3, 19.3] � 0:001

Neutrophils [%] 74.9 [59.1, 82.9] 72.7 [59.8, 82.1] 0.293

C-reactive protein [mg/l] 7.0 [1.0, 31.3] 19.0 [5.0, 58.0] � 0:010

Ketones in urine [%] 38.4 53.7 � 0:001

Erythrocytes in urine [%] 22.1 33.9 � 0:010

White blood cells in urine [%] 12.4 17.0 0.153

Ultrasound Visibility of appendix [%] 64.5 24.3 � 0:001

Appendix diameter [mm] 7.3 [6.0, 9.1] 9.0 [7.0, 12.0] � 0:001

Free intraperitoneal fluid [%] 43.6 25.2 � 0:001

Irregular appendix layers [%] 35.9 7.2 � 0:001

Target sign [%] 46.0 30.8 � 0:010

Appendix perfusion [%] 65.5 – –

Surrounding tissue reaction [%] 71.7 16.4 � 0:001

Pathological lymph nodes [%] 68.5 2.7 � 0:001

Mesenteric lymphadenitis [%] 80.4 6.6 � 0:001

Thickening of the bowel wall [%] 40.9 11.9 � 0:001

Ileus [%] 14.5 0.0 � 0:001

Coprostasis [%] 37.8 4.8 � 0:001

Meteorism [%] 72.9 26.4 � 0:001

Enteritis [%] 46.3 0.0 � 0:001

Response Appendicitis [%] 57.2 76.2 � 0:001

Surgical management [%] 38.4 80.5 � 0:001

Complicated appendicitis [%] 11.9 16.4 0.091

For significant differences, p-values are given in bold.
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uncomplicated. For patients treated operatively, classification was

based on the histology: simple/uncomplicated (subacute/catharral/

chronic, phlegmonous) or complicated (abscess, perforation).

During the exploratory analysis presented below, we

compute summary statistics across both datasets—the original

from Regensburg and the external from Düsseldorf—and perform

hypothesis tests for the differences between internal and external

data. Specifically, we report medians and interquartile ranges

(IQR) for numerical attributes and frequencies for categorical

features. For statistical analysis, we utilize the unpaired two-sample

t-test and Pearson’s chi-squared test for the equality of

proportions. We adjust the resulting p-values for multiple

comparisons to control the false discovery rate using the

Benjamini-Hochberg procedure (30) at the level q ¼ 0:05.

2.2 Original predictive models

We leverage the dataset from the Florence-Nightingale-

Hospital, Düsseldorf, for the external validation of the predictive

models developed on the Regensburg cohort (23). The original

analysis (23) was concerned with predicting three response

variables: (i) diagnosis (appendicitis vs. no appendicitis), (ii)

management (surgical vs. conservative), and (iii) severity

(complicated appendicitis vs. uncomplicated or no appendicitis).

In particular, logistic regression (LR), random forest (RF) (31)

and gradient boosting (GB) (32) models were trained on the

dataset of 430 patients with 38 predictor variables.

In the current study, we train these models on the full Regensburg

cohort, replicating the original R programming language code (23, 33)

in the Python programming language (v3.11.9) using the scikit-learn

library (v1.4.2). We use hyperparameter configurations and perform

preprocessing steps similar to those described in the original study

(23), imputing missing values with the k-nearest neighbors

algorithm (with k ¼ 5). Note that we limit our analysis to models

trained on the full set of features and we do not consider ablations

with feature selection or without the US-related variables.

2.3 Model retraining

In addition to the purely external validation, we retrain the

predictive models on a combination of the Regensburg and

Düsseldorf cohorts, building the models on the 100% of the

Regensburg and 80% of the Düsseldorf data. In this setting, we test

the models on the remaining, withheld 20% of the external dataset

(the data were split at random). We conduct this experiment to

gauge the possible benefits of a multicenter cohort approach and to

better understand if the predictive performance improves with the

inclusion of external data points in the training set.

2.4 Evaluation

For both original and retrained model evaluation, we report the

area under the receiver operating characteristic (AUROC) and

precision-recall (AUPR) curves. Additionally, we investigate the

tradeoffs among sensitivity, specificity as well as positive (PPV)

and negative (NPV) predictive values by varying the threshold

applied to the classifiers’ output. Lastly, to better understand the

models’ predictions, we compute the permutation feature

importance (31) of predictor variables using the test set.

3 Results

3.1 External dataset

Both of the datasets investigated in this study are overviewed in

Table 1. Therein we report summary statistics for all the variables

FIGURE 1

An overview of the study design. The original predictive models were trained and validated on the cohort of patients (n ¼ 430) from Regensburg,

Germany (23). This article presents the results of the external validation on another cohort (n ¼ 301) from Düsseldorf, Germany. In particular, in

this study, we validate the original models on the external data and retrain them to assess the potential for improvement.
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observed across the Regensburg (n ¼ 430) and Düsseldorf

(n ¼ 301) cohorts. Additionally, we provide the adjusted results

of statistical hypothesis tests for the differences in means and

proportions of values respectively for numerical and

categorical variables.

We observe significant differences across the distribution of

most variables. Generally, subjects from the Düsseldorf cohort

are younger and exhibit a higher frequency of clinical

examination findings. Similarly, the external data exhibit overall

higher laboratory parameter values for the variables correlated

with appendicitis. Despite this, we observe no statistically

significant difference in the neutrophil percentage, likely due to

the high rate of missing values for this predictor in the external

dataset (see Figure 4).

Furthermore, the Düsseldorf cohort has a lower frequency of

positive US findings. We attribute this trend to the higher rate of

missing values for relevant variables in the Regensburg dataset

(refer to Figure 4) and the fact that the summary statistics shown

in Table 1 have been calculated only across the non-missing

entries without imputation. By contrast, the reported appendix

diameter is significantly larger for the external dataset subjects.

Lastly, it is worth noting that the information about the

appendix perfusion is entirely missing in the Düsseldorf dataset.

The datasets also differ considerably in two of the response

variables: diagnosis and management. The Düsseldorf cohort has

a significantly higher prevalence of appendicitis cases (76.2% vs.

57.2%) with, consequently, more patients managed surgically

(80.5% vs. 38.4%). While the external dataset has a higher

prevalence of complicated appendicitis cases (16.4% vs. 11.9%),

this difference is not statistically significant.

In summary, the external dataset from Düsseldorf and the

original dataset from Regensburg exhibit statistically significant

differences with regard to the distribution of the majority of the

observed variables (consult Table 1), including the response

variables. Moreover, the frequency of missing values also varies

across the cohorts (refer to Figure 4). These dissimilarities

potentially pose challenges for the generalization of predictive

models across institutions.

3.2 Predictive performance

We now turn to the external validation of the ML models.

Table 2 contains AUROC and AUPR measurements for

predicting the diagnosis, management and severity of

appendicitis on the Regensburg and Düsseldorf datasets. The

results for the Regensburg cohort are taken from the original

work (23) and were obtained by 10-fold cross-validation. When

validating on the Düsseldorf data, we assess the variability in

performance using bootstrapping. For reference, we additionally

include the expected metric values for a fair coin flip (random),

which serve as our baselines.

For the models trained exclusively on the Regensburg data

(original), we observe a sizable decrease in the average AUROC

for the diagnosis and management when evaluating on the

external dataset. For example, the AUROC of the random forest

model decreases from 96% to 85% for the diagnosis and from

94% to 85% for the management. In contrast the external AUPR

is comparable to the one from the internal validation for these

response variables. For the severity, we observe a larger overall

decrease in both metrics. For instance, for the random forest, the

AUROC decreases from 90% to 75%, and the AUPR drops from

70% to 45%.

Additionally, we explore the tradeoff between the sensitivity,

specificity, PPV and NPV while varying the value of the

threshold applied to the classifiers’ output. We focus our analysis

exclusively on the random forest model as it exhibits the most

balanced performance across all the response variables for both

datasets. These findings are summarized in Figure 2. For the

diagnosis and management targets, using the threshold value of

0:50 explored in the original analysis (23), we observe a

deterioration in the classifiers’ sensitivity, specificity and NPV.

For the severity target, by contrast, there is a decline in

sensitivity and PPV. Arguably, these changes may be related to

the prevalence shift (34) described in Section 3.1 and suggest the

necessity for the threshold and model recalibration.

To verify if the models’ performance improves after including a

portion of the Düsseldorf data in the training set, we retrain all the

TABLE 2 Validation results for the logistic regression (LR), random forest (RF) and gradient boosting (GB) models predicting the diagnosis, management
and severity of appendicitis. The results on the Regensburg dataset are copied from the original study (23), which conducted 10-fold cross-validation. For
the Düsseldorf data, we report averages and standard deviations obtained by bootstrapping for the models trained exclusively on the Regensburg cohort
(original) and retrained on both cohorts (retrained). The predictive performance is assessed with the areas under the receiver operating characteristic
(AUROC) and precision-recall (AUPR) curves.

Dataset Model Diagnosis Management Severity

AUROC AUPR AUROC AUPR AUROC AUPR

Regensburg Random (23) 0.50 0.43 0.50 0.38 0.50 0.12

Original LR (23) 0.91 + 0.04 0.88 + 0.07 0.90 + 0.04 0.88 + 0.06 0.82 + 0.13 0.53 + 0.26

Original RF (23) 0.96 + 0.01 0.94 + 0.03 0.94 + 0.02 0.92 + 0.05 0.90 + 0.08 0.70 + 0.17

Original GBM (23) 0.96 + 0.01 0.94 + 0.03 0.94 + 0.02 0.93 + 0.04 0.90 + 0.07 0.64 + 0.21

Düsseldorf Random 0.50 0.76 0.50 0.81 0.50 0.16

Original LR 0.80 + 0.04 0.92 + 0.02 0.80 + 0.04 0.94 + 0.02 0.70 + 0.06 0.34 + 0.08

Original RF 0.85 + 0.03 0.95 + 0.01 0.85 + 0.03 0.96 + 0.01 0.75 + 0.04 0.45 + 0.07

Original GBM 0.83 + 0.03 0.94 + 0.02 0.82 + 0.03 0.95 + 0.01 0.72 + 0.04 0.40 + 0.07

Retrained LR 0.84 + 0.08 0.94 + 0.04 0.83 + 0.08 0.95 + 0.03 0.74 + 0.12 0.45 + 0.17

Retrained RF 0.87 + 0.06 0.96 + 0.02 0.83 + 0.08 0.95 + 0.03 0.75 + 0.11 0.49 + 0.17

Retrained GBM 0.86 + 0.07 0.95 + 0.03 0.82 + 0.09 0.95 + 0.03 0.75 + 0.11 0.47 + 0.18
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models on the aforementioned mixture of the Regensburg and

Düsseldorf subjects (see the retrained models in Table 2),

assessing them on the withheld portion of the external dataset.

For all three classifiers, the average AUROC and AUPR metric

values attained on the Düsseldorf data increase moderately after

retraining. However, the resulting level of performance is still

substantially lower than that of the original models on the

Regensburg dataset. The lack of bigger improvement in predictive

performance may be due to distribution shift, in particular the

discrepancies in the missingness patterns and reporting across

the two datasets (see Figure 4).

3.3 Feature importance

To elucidate the predictions made by our models on the

external dataset, we calculate permutation feature importance on

the test set. Specifically, we assess the importance of individual

predictors by permuting (i.e., shuffling) their values and then

quantifying the resulting change in the AUROC metric. The

outcomes of this analysis are summarized in Figure 3. We limit

our investigation to the diagnosis response variable and the

random forest model given that it attained the best well-balanced

performance across all the settings (refer back to Table 2).

Similar to the original findings on the Regensburg data (23),

the three most important features are the diameter and visibility

of the appendix as well as peritonitis. Likewise, the surrounding

tissue reaction, target sign, WBC count and neutrophil

percentage have an importance score, on average, above 0.

Generally, the variable importance on the Düsseldorf data follows

a pattern comparable to the results obtained previously on the

Regensburg cohort. However, the variability across bootstrap

resamples is considerably higher. Nonetheless, these results are

not indicative of any concerning trends or spurious associations

and fall well within our expectations. Notably, these observations

hold for the other two response variables; for treatment the three

most important features are peritonitis, appendix diameter and

WBC count, and for complications these are CRP, peritonitis and

appendix diameter, which is consistent with the results reported

in the Regensburg study (23). In the original analysis, the most

important predictors were appendix diameter, peritonitis and

CRP respectively for diagnosis, treatment and complications.

4 Discussion

In this article, we performed a comprehensive external

validation of ML models for predicting the diagnosis,

management and severity in pediatric patients with suspected

appendicitis (see Figure 1). Specifically, we have focused on the

models initially trained on the dataset from the tertiary care

hospital in Regensburg, Germany (23). To conduct the analysis,

we have acquired an external dataset at the Florence-Nightingale-

Hospital in Düsseldorf, Germany.

We observed that the external Düsseldorf dataset presents a

statistically significant shift in the distribution of the covariates

(captured in Table 1), including the response variables.

Furthermore, the rates of missing values differ considerably across

the two hospitals (as shown in Figure 4), especially for US-related

variables and the percentage of neutrophils. Such discrepancies pose

substantial challenges to the transferability of ML models to settings

different from those considered at the training time (35).

In assessing the models’ predictive performance (reported in

Table 2), we observed the patients’ diagnoses and treatment

assignments could be predicted on the external Düsseldorf data

by the models trained solely on the Regensburg cohort. In

particular, compared to the original analysis (23), there was no

decrease in AUPR and a moderate 10 percentage point decrease in

FIGURE 2

Sensitivity, specificity as well as positive (PPV) and negative (NPV) predictive values plotted against the value of the threshold applied to the output of

the random forest model trained exclusively on the original Regensburg dataset for the (a) diagnosis, (b) management and (c) severity of appendicitis.

All the metrics were assessed on the external (Düsseldorf) dataset. Bold lines correspond to the medians with the confidence bounds given by the

interquartile ranges.

Marcinkevičs et al. 10.3389/fped.2025.1587488

Frontiers in Pediatrics 06 frontiersin.org

https://doi.org/10.3389/fped.2025.1587488
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


AUROC. These performance levels are close to the AUROC of 90%

reported as the baseline in a recent systematic review assessing the

accuracy of artificial intelligence-based tools used in pediatric

appendicitis diagnosis (36). In contrast, the predictive performance

for the severity decreased more substantially. In addition to

AUROC and AUPR measurements, we examined the tradeoff

among the sensitivity, specificity, PPV and NPV (visualized in

Figure 2). Furthermore, the feature importance analysis on the

external dataset (shown in Figure 3) exhibited no concerning patterns.

Several risk prediction models for appendicitis have been built,

evaluated and validated, including for varied patient cohorts (adults

vs. children), in- and out-patient treatments, and outcomes.

A recent prospective multicenter study also evaluated the

performance of risk scores to identify appendicitis among children

brought to the hospital emergency department (37). It identified

that low appendicitis scores (�2 for Alvarado or PAS, or �3 for

Shera-Score) can be used to preselect children who can be

discharged without further evaluation, but was unable to offer

guidelines to select children who should proceed directly to surgery,

indicating that patients with medium and high risk scores should

undergo routine imaging examination (37). Our original and

current study relied on a wide selection of variables, including the

aforementioned risk scores (Alvarado score and PAS) and imaging

parameters (ultrasound) from pediatric patients who were suspected

of appendicitis, not only to exclude children with a low probability

of appendicitis, but also to predict the diagnosis, management and

severity of appendicitis (11).

To explore the potential of model updating (35), we retrained

the classifiers on a mixture of the two datasets. This led to a

moderate increase in AUROC and AUPR across all the target

variables (refer to Table 2), suggesting that model updating,

indeed, helps to tackle cross-hospital distribution shifts. More

generally, our empirical findings indicate some degree of

transferability of the considered predictive models across the two

hospitals. Nonetheless, the decrease in predictive performance

across several evaluation metrics is noticeable and could not be

fully mitigated by retraining alone (as demonstrated by Table 2

and Figure 2). We hypothesize that this decrease in performance

may be attributed to the shift in the prevalence of appendicitis

cases, different missing value and data recording patterns, and

variability in patient management routines. Below, we discuss

these challenges in more detail.

As stated in Section 3.1, the distribution of most parameters

differed across the two datasets. Unique regional and internal

hospital practices can, at least partially, explain the observed

differences. Notably, the dataset from Regensburg was acquired

FIGURE 3

Permutation feature importance for the random forest model predicting the diagnosis of appendicitis. The importance is quantified by the decrease in

the AUROC predictive performance metric after permuting the values of the predictor variable of interest. The variability in importance is assessed

using bootstrapping and it is visualized using box plots.
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from in-hospital patients admitted to a pediatric surgery department

of a specialized pediatric hospital. The Düsseldorf dataset, on the

other hand, was acquired from a pediatric surgery department of a

general hospital with other surgical disciplines, such as general and

orthopedic surgery. As a consequence, children aged 14 years or

older were treated by general surgeons in Düsseldorf, and only

those younger than 14 were seen and managed by pediatric

surgeons. Consequently, only the latter group of patients was

included in the study, which explains why the children from the

Florence-Nightingale-Hospital were younger (median and IQR in

years: 10:1 [7:7, 11:7]) than in Regensburg (11:5 [9:3, 13:9]).

The differences in the frequency of variable documentation

reflect the internal organizational habits of the hospitals and

departments, including variations in standardized admission

reports and internal emergency department standards.

Additionally, in Regensburg, children and adolescents were

admitted by pediatric surgeons or residents in pediatric surgery

or pediatrics, whereas in Düsseldorf, the admission was

performed by both pediatric surgeons or residents and residents

in general or orthopedic surgery working at the emergency

department. Consequently, the ultrasound performance and

report documentation differs across the two datasets.

Additionally, the clinical pathways and referral practices

differed between the two institutions. In Düsseldorf, pediatricians

and general practitioners were more likely to refer children to

pediatric surgery when the diagnosis of appendicitis was already

relatively clear. This preselection process likely contributed to the

higher prevalence of confirmed appendicitis and surgical

treatment cases in the Düsseldorf cohort. In contrast, the

specialized pediatric setting in Regensburg enabled children with

less specific abdominal symptoms to be evaluated by multiple

specialties, such as pediatric gastroenterology, leading to a

broader spectrum of differential diagnoses and, in some cases,

more conservative management. Furthermore, the clinical

pathway in Regensburg often involved admitting children with

tenderness in the right iliac fossa to pediatric surgery for further

observation, even in cases with unclear diagnosis. These patients

were included in the cohort and may partly explain the higher

rate of non-appendicitis cases, lower CRP values and lower

frequency of surgical intervention.

Another noteworthy aspect is the time period of data

acquisition. While the cohort from Regensburg included patients

from January 2016 to December 2018, the Düsseldorf data were

acquired from January 2015 to February 2022. Therefore, the

latter cohort also included patients admitted during the COVID-

19 pandemic and post-pandemic individuals, and negative

appendectomy rates were lower during the pandemic (38) as

patients might have sought medical care or have been referred to

the hospital only if the positive diagnosis had been deemed more

probable. This factor, alongside the higher frequency of delayed

FIGURE 4

Percentages of missing values across all features for the original Regensburg and external Düsseldorf data. We observe considerable differences in the

rates of missing values, especially for the ultrasonographic findings and neutrophil percentage.
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hospital presentations, might have contributed to the higher

appendicitis prevalence and the higher rate of complicated cases

observed in Düsseldorf (38, 39).

From the medical perspective, the limitations of the current

study are similar to those reported in the original work that

developed ML models on the Regensburg cohort (23). These

include absence of confirmed appendicitis diagnosis for patients

treated conservatively, limited number of study participants and

missing values. Additionally, unique regional and internal

hospital practices reduce the comparability of the collected

datasets and transferability of the models, which, as we

demonstrated, cannot be easily compensated for with model

updating. Nonetheless, the observed distributions of parameters

from both cohorts are clinically acceptable and display variability

that is within expectations. Notably, our study allows to contrast

the situatedness of a pediatric hospital against a general hospital

where adult surgery and interdisciplinary surgical primary care

are dominant. Lastly, the documented clinical, laboratory and

ultrasound features are standardized, practical and cost-effective,

enabling future analysis and comparison of our models on data

from other institutions.

5 Conclusion

In this study, we performed an external validation of machine

learning models for predicting the diagnosis, management and

severity of pediatric appendicitis. When tested externally,

the models exhibited lower predictive performance than on the

original data. This was in part due to the shift in

the prevalence of appendicitis cases we observed between the

original and external datasets. Other possible reasons included

intrinsic differences in patient demographics, clinical pathways,

variations in referral practices and documentation standards

for the two hospitals as well as the downstream effects of

the COVID-19 pandemic. Such factors demonstrate the

challenges of transferring predictive models between hospitals,

which should always be done with care to avoid harmful

fallout. As a potential remedy, we investigated model

retraining; while it showed promise in restoring predictive

performance, further research is necessary to determine the

limitations of this approach, which we will explore in our

future work. Additionally, we plan to investigate the possible

design of the prospective evaluation and deployment of our

predictive models. Specifically, we will look into defining

the number of necessary blood tests and introducing

standardized reporting guidelines for clinical examination and

ultrasound findings.
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