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Background & aims: Neonatal necrotizing enterocolitis (NEC) remains a leading

cause of morbidity and mortality in preterm infants. Current diagnostic methods,

relying on clinical signs and radiography, often lack sensitivity for early detection.

This study aimed to develop and validate a machine learning (ML) model

integrating ultrasound and serological markers to improve NEC prediction

in neonates.

Methods: This retrospective, case-control study included 191 neonates (cases

with Bell’s stage≥ II NEC and matched controls) admitted to a tertiary NICU.

Data were extracted from electronic medical records, including demographics,

clinical variables, ultrasound findings (bowel wall thickness, edema, gas

location, peristalsis, seroperitoneum), and serological markers (WBC,

neutrophil count, CRP, ALP, albumin, procalcitonin, platelet count, INR,

hemoglobin). Twelve ML algorithms were evaluated using 10-fold cross-

validation on a training set (70%). The optimal model was selected based on

AUC-ROC and further optimized via hyperparameter tuning. Model

performance was assessed on an independent validation set (30%). Explainable

AI (XAI) using SHAP values was employed to identify key predictive features.

Results: XGBoost demonstrated the highest performance (AUC=0.97, 95% CI:

0.92–0.99) during cross-validation. The optimized XGBoost fusion model—

Ultrasound combined Serological Predict NEC (USPN) achieved an AUC of

0.88 (95% CI: 0.76–0.99) in the validation set, with a sensitivity of 0.73 and

specificity of 1.00. The USPN model outperformed models based solely on

ultrasound (AUC= 0.73) or serological markers (AUC = 0.79). SHAP analysis

identified bowel peristalsis, C-reactive protein, albumin, bowel thickness, and

procalcitonin as the most influential predictors. Decision curve analysis

demonstrated a positive relative net benefit of the USPN model compared to

the US and serological models in the validation set.

Conclusion: A machine learning model integrating ultrasound and serological

markers significantly improves the prediction of NEC in neonates compared to

single-modality approaches. This multimodal approach has the potential to

facilitate earlier diagnosis and intervention, potentially improving outcomes in

this high-risk population.
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1 Introduction

Neonatal necrotizing enterocolitis (NEC) remains a devastating

gastrointestinal emergency in neonates, particularly affecting

preterm infants with birth weights below 1,500 g (1, 2). Current

diagnostic reliance on Bell staging criteria and abdominal

radiography faces critical limitations, including delayed detection

of early pathophysiological changes (e.g., mucosal ischemia and

bacterial translocation) (3, 4). x-ray is an important diagnostic

modality for NEC, but its widespread use is limited by radiation

concerns and the inconvenience of requiring transport to a

radiology suite, rather than being readily available at the bedside.

This diagnostic latency contributes to the persistent 20%–30%

mortality rate despite advances in neonatal intensive care (5, 6).

Recent advancements in ultrasonography have demonstrated

superior sensitivity in detecting preclinical NEC manifestations.

High-resolution ultrasound can quantify bowel wall thickness

(BWT) variations (>2.0 mm predictive of necrosis) and monitor

mesenteric blood flow dynamics through Doppler indices (7, 8).

Abdominal radiography remains a common initial imaging

modality for evaluating neonatal abdominal pathology. However,

as demonstrated by Silva et al. (2013), a normal radiographic gas

pattern does not exclude the presence of significant intestinal

abnormalities detectable by ultrasound, highlighting the potential

for missed diagnoses when relying solely on radiography (9).

Parallel developments in serum biomarkers, including PT, INR,

APTT (10), C-reactive protein (11) and other serological have

shown potential for risk stratification, Sharif demonstrated that

low serum albumin (SA) concentration (≤20 g/L) on day 2 of

NEC diagnosis is a significant predictor of surgical intervention

in neonates with Bell’s stage 2 NEC. This finding suggests that

SA, in conjunction with other clinical and serological markers,

may be a useful tool for identifying patients at higher risk of

requiring surgery (12). Their findings suggest that monitoring

coagulation parameters can aid in early identification of high-risk

NEC neonates, potentially optimizing treatment strategies and

improving outcomes (13, 14). While ultrasonography provides

real-time visualization of intestinal dynamics, its diagnostic

accuracy may be compromised by acoustic shadowing from bony

structures and operator-dependent expertise, potentially leading

to misinterpretation of early NEC signs. Conversely, serological

biomarkers, though objective in quantification, exhibit significant

interindividual variability due to fluctuations in host immune

status and inflammatory cascades. These inherent limitations of

standalone modalities underscore the suboptimal predictive

performance when employing either approach in isolation.

Emerging evidence suggests that integrating both modalities

through machine learning algorithms may harness their

synergistic diagnostic potential, thereby improving sensitivity for

preclinical NEC detection and risk stratification.

Machine learning (ML) presents transformative opportunities

for NEC prediction through multimodal data fusion. Leiva et al.

(2023) provide a comprehensive overview of the use of machine

learning in NEC biomarker discovery, while also acknowledging

the challenges inherent in the field. They highlight the potential

of machine learning to integrate multi-omics data with clinical

features, phenotypes of progression, and predicted therapeutic

targets, resulting in clinically meaningful information. This

approach could lead to earlier diagnosis, more targeted therapies,

and improved outcomes for infants with NEC (15). Contemporary

studies further highlight ML’s capacity to decode nonlinear

interactions between temporal ultrasound features and biochemical

trajectories (16). Our study innovatively expands this paradigm by

systematically evaluating 12 ML algorithms on hybrid ultrasound-

serological datasets, addressing critical gaps in neonatal

predictive modeling.

2 Materials and methods

2.1 Study design and patient population

This retrospective, case-control study was conducted at Women

and Children’s Hospital, School of Medicine, Xiamen University, a

tertiary neonatal intensive care unit (NICU), between November

2019 and November 2024. The study protocol was approved by the

Institutional Review Board (IRB) of Women and Children’s

Hospital [IRB approval number: (KY-2025-046-K01)], written

informed consent was obtained from the parents or legal guardians

of all participating infants. All procedures were performed in

accordance with the ethical standards of the responsible committee

on human experimentation (institutional and national) and with

the Helsinki Declaration of 1975, as revised in 2008.

NEC diagnosis was based on modified Bell’s staging criteria (3).

Cases were defined as neonates with Bell’s stage≥ II. Controls were

selected from neonates admitted to the NICU during the same

period who did not develop NEC and were matched to cases

based on gestational age (± 2 weeks) and birth weight (± 200

grams). Exclusion criteria included: (1) congenital gastrointestinal

anomalies, (2) chromosomal abnormalities known to affect

intestinal development, and (3) incomplete ultrasound or

serological data, show as Figure 1.

2.2 Data collection

Data were extracted from electronic medical records (EMRs).

The following variables were collected for each patient:

Demographic Data: Age (days), Gestational age (gestational):

Gestational age at birth (weeks), Sex, Polyembryony: Presence

of multiple gestation (yes/no), Birth weight (weight): Birth

weight (grams).

Clinical Data: Onset day: Age at onset of symptoms (days), OB:

Occult blood in stool (positive/negative), Transfusion: History

of blood transfusion (yes/no), Ventilation: Use of mechanical

ventilation (yes/no), Antibiotic: Use of antibiotics (yes/no),

NRDS: Neonatal respiratory distress syndrome (yes/no), PDA:

Patent ductus arteriosus (yes/no), Distress: Intrauterine

distress (yes/no), Dirty: Turbid amniotic fluid (yes/no),

Embryolemma: Premature rupture of membranes (yes/no),

Delivary: Mode of delivery (eutocia, cesarean section), Fetal
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heart: Abnormal fetal heart rate (yes/no), Mother diabetes:

Maternal diabetes (yes/no), Mother HBP: Maternal

hypertension (yes/no), Placental inflammation: Placental

inflammation (yes/no).

Ultrasound Data: All abdominal ultrasound examinations

performed within 24 h prior to NEC diagnosis (for cases) or a

randomly selected ultrasound examination during the same

period of hospitalization (for controls) were reviewed. These

measurements were recorded prior to the clinical diagnosis

and before any NEC-specific intervention, ensuring that the

variables reflect pre-onset clinical status suitable for predictive

modeling. In clinical practice, these assessments were typically

performed in response to early, non-specific symptoms (e.g.,

feeding intolerance, abdominal distension), before a formal

NEC diagnosis was made. Thus, the measurements reflect

real-world subclinical evaluation rather than post-diagnostic

management. The following parameters were extracted: Bowel

thickness: Bowel wall thickness at the most affected segment

(mm), Bowel edema: Bowel wall edema (yes/no), Gas:

Presence and gas (yes/no), Bowel peristalsis: Bowel wall

peristalsis (decreased, normal), Seroperitoneum: Presence of

free intraperitoneal fluid (yes/no).

Serological Data: Serum levels of the following biomarkers,

measured within 24 h prior to NEC diagnosis (for cases) or at

the time of the matched ultrasound examination (for

controls): Wbc: White blood cell count (×109/L), nec_A:

Neutrophil count (%), Crp: C-reactive protein (mg/L), Alp:

Alkaline phosphatase (U/L), Alb: Albumin (g/L), Procalcitonin:

Procalcitonin (ng/ml), Plt: Platelet count (×109/L), INR:

International normalized ratio, WBC_A: Absolute white blood

cell count (×109/L), Hgb: Hemoglobin (g/dl). Hgb: Hemoglobin

at admission (g/dl), Age: mother’s age (years).

2.3 Ultrasound image analysis

All ultrasound images were examined by two experienced

pediatric radiologists blinded to the clinical outcomes. In cases of

disagreement, a third senior physician was consulted for

discussion to reach a final decision. Bowel thickness was

measured at the thickest point of the bowel wall, perpendicular

to the lumen. Bowel peristalsis was graded as decreased, normal,

or increased based on visual assessment.

FIGURE 1

Patients inclusion flow.

Yang et al. 10.3389/fped.2025.1606571

Frontiers in Pediatrics 03 frontiersin.org

https://doi.org/10.3389/fped.2025.1606571
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


2.4 Machine learning model development

The dataset was randomly split into training (70%) and

validation (30%) sets. The training set was used to train and

optimize the machine learning models, while the validation set

was used to evaluate their performance.

We evaluated the performance of various machine learning

algorithm, including Logistic Regression (LR), Random Forest

(RF), Gradient Boosting (GB), Support Vector Classifier (SVC),

Decision Tree, K-Nearest Neighbors (KNN), Naive Bayes,

Extreme Gradient Boosting (XGBoost), Light Gradient Boosting

Machine (LightGBM), Ridge Classifier, Extra Trees, Adaptive

Boosting (AdaBoost), and Voting Classifier.

Model selection was based on performance metrics on the total

set using 10-fold cross-validation. The following metrics were used:

area under the receiver operating characteristic curve (AUC-ROC),

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV). The algorithm with the highest AUC-ROC

was selected as the optimal model.

2.5 Model training and optimization

The optimal machine learning algorithm was further optimized

using hyperparameter tuning via grid search with cross-validation.

2.6 Model evaluation

The performance of the optimized model was evaluated on the

training set and independent validation set. The following

performance metrics were calculated: AUC-ROC, sensitivity,

specificity, PPV, NPV, accuracy, Brier score. Calibration curves

were generated to assess the model’s ability to accurately

predict probabilities.

2.7 Model comparison

To assess the incremental value of combining ultrasound and

serological data, we compared the performance of the following

models:

• Fusion Model: The optimized model trained on the combined

dataset of ultrasound and serological variables, named

Ultrasound combined Serological Predict NEC (USPN).

• Ultrasound Model: The optimized model trained only on

ultrasound variables, named US model.

• Serological Model: The optimized model trained only on

serological variables, named Serological model.

Model performance was compared using DeLong’s test for AUC-

ROC differences.

2.8 Statistical analysis

Continuous variables were expressed as mean ± standard

deviation. Categorical variables were expressed as percentages.

Differences between groups were assessed using t-tests or Mann–

Whitney U tests for continuous variables and chi-square tests or

Fisher’s exact tests for categorical variables. To assess the calibration

of the predictive models, we employed calibration curves. We

evaluated calibration using the following metrics: Brier Score: The

Brier score measures the mean squared difference between the

predicted probabilities and the actual outcomes (0 or 1). It ranges

from 0–1, with lower values indicating better calibration. Hosmer-

Lemeshow (HL) Test: The HL test is a goodness-of-fit test that

assesses the agreement between predicted and observed event rates

across groups (typically deciles) of predicted probabilities. A non-

significant p-value (typically > 0.05) suggests good calibration,

indicating no significant difference between predicted and observed

event rates. Calibration Slope and Intercept: We performed a

logistic regression of the observed outcomes on the predicted

probabilities. The calibration slope reflects the spread of predicted

probabilities; a slope of 1 indicates ideal calibration. The calibration

intercept reflects the average predicted probability when the

observed outcome is 0; an intercept of 0 is ideal. Decision curve

analysis (DCA) was performed to evaluate the clinical utility of the

USPN model compared to models based solely on ultrasound or

serological markers. The net benefit was calculated across a range

of threshold probabilities, and the relative net benefit (RNB) was

derived to quantify the incremental benefit of the USPN model.

Additionally, the net reclassification improvement (NRI) and

integrated discrimination improvement (IDI) were computed to

assess the improvement in risk stratification provided by the USPN

model. Precision-Recall (PR) Curve, Given the imbalanced nature

of the dataset (NEC cases vs. controls), the PR curve was employed

to evaluate model performance. The area under the PR curve

(AUC-PR) was calculated to provide a more robust assessment of

predictive accuracy in the context of class imbalance. Statistical

significance was defined as p < 0.05. All statistical analyses were

performed using Python 3.2 and R 4.1.2.

2.9 Explainable AI (XAI) analysis

To gain insights into the factors driving model predictions, we

employed SHAP (SHapley Additive exPlanations) values to

quantify the contribution of each feature to the model’s output.

Feature importance was assessed based on the mean absolute

SHAP values.

3 Result

3.1 Base line of all patients

Baseline characteristics of the study population are presented in

Table 1. The cohort consisted of 191 neonates, 50 patients were
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diagnosed with NEC, divided into a training set (n = 134) and a

validation set (n = 57). Necrotizing enterocolitis (NEC) was

present in 26.2% of the overall cohort, with similar proportions

in the training (26.1%) and validation (26.3%) sets. The majority

of neonates presented with bowel edema (76.4% overall), with a

slightly higher prevalence in the validation set (78.9%)

compared to the training set (75.4%), although this difference

was not statistically significant (p = 0.73). Most neonates

exhibited normal bowel peristalsis (79.6% overall), with a

slightly lower proportion in the validation set (77.2%)

TABLE 1 Basic information of all patients.

Variable Total Training Validation Statistic P_Value

OB (no) 60 (31.4%) 46 (34.3%) 14 (24.6%) 1.35 0.25

OB (yes) 131 (68.6%) 88 (65.7%) 43 (75.4%)

Gas (no) 84 (44%) 58 (43.3%) 26 (45.6%) 0.02 0.89

Gas (yes) 107 (56%) 76 (56.7%) 31 (54.4%)

Bowel edema(no) 45 (23.6%) 33 (24.6%) 12 (21.1%) 0.12 0.73

Bowel edema(yes) 146 (76.4%) 101 (75.4%) 45 (78.9%)

Bowel peristalsis(weaken) 39 (20.4%) 26 (19.4%) 13 (22.8%) 0.11 0.74

Bowel peristalsis(normal) 152 (79.6%) 108 (80.6%) 44 (77.2%)

Seroperitoneum(no) 168 (88%) 117 (87.3%) 51 (89.5%) 0.03 0.86

Seroperitoneum(yes) 23 (12%) 17 (12.7%) 6 (10.5%)

Transfusion(no) 171 (89.5%) 119 (88.8%) 52 (91.2%) 0.06 0.81

Transfusion(yes) 20 (10.5%) 15 (11.2%) 5 (8.8%)

Ventilation(no) 134 (70.2%) 96 (71.6%) 38 (66.7%) 0.26 0.61

Ventilation(yes) 57 (29.8%) 38 (28.4%) 19 (33.3%)

Antibiotic(no) 29 (15.2%) 19 (14.2%) 10 (17.5%) 0.14 0.71

Antibiotic(yes) 162 (84.8%) 115 (85.8%) 47 (82.5%)

NRDS(no) 179 (93.7%) 127 (94.8%) 52 (91.2%) 0.36 0.55

NRDS(yes) 12 (6.3%) 7 (5.2%) 5 (8.8%)

PDA(no) 159 (83.2%) 115 (85.8%) 44 (77.2%) 1.56 0.21

PDA(yes) 32 (16.8%) 19 (14.2%) 13 (22.8%)

Distress(no) 175 (91.6%) 124 (92.5%) 51 (89.5%) 0.17 0.68

Distress(yes) 16 (8.4%) 10 (7.5%) 6 (10.5%)

Dirty(no) 181 (94.8%) 129 (96.3%) 52 (91.2%) 1.16 0.28

Dirty(yes) 10 (5.2%) 5 (3.7%) 5 (8.8%)

Embryolemma(no) 155 (81.2%) 108 (80.6%) 47 (82.5%) 0.01 0.92

Embryolemma(yes) 36 (18.8%) 26 (19.4%) 10 (17.5%)

Delivary(eutocia) 101 (52.9%) 69 (51.5%) 32 (56.1%) 0.19 0.67

Delivary(cesarean) 90 (47.1%) 65 (48.5%) 25 (43.9%)

Motherdiabetes(no) 148 (77.5%) 102 (76.1%) 46 (80.7%) 0.25 0.61

Motherdiabetes(yes) 43 (22.5%) 32 (23.9%) 11 (19.3%)

MotherHBP(no) 170 (89%) 118 (88.1%) 52 (91.2%) 0.15 0.7

MotherHBP(yes) 21 (11%) 16 (11.9%) 5 (8.8%)

Placentalinflammation(no) 179 (93.7%) 126 (94%) 53 (93%) 0 1

Placentalinflammation(yes) 12 (6.3%) 8 (6%) 4 (7%)

NEC(no) 141 (73.8%) 99 (73.9%) 42 (73.7%) 0 1

NEC(yes) 50 (26.2%) 35 (26.1%) 15 (26.3%)

Sex (female) 86 (45.03%) 23 (12.04%) 63 (32.98%) 0 1

Sex (male) 105 (54.97%) 27 (14.14%) 78 (40.84%)

Age 32.04 ± 4.39 32.25 ± 4.65 31.54 ± 3.7 0.92 0.34

Gestational 259.27 ± 21.51 259.34 ± 20.57 259.09 ± 23.77 0.08 0.77

Polyembryony 0.14 ± 0.35 0.14 ± 0.35 0.14 ± 0.35 0 0.98

Weight 2,729.19 ± 746.08 2,718.17 ± 728.71 2,755.11 ± 791.46 0.11 0.74

Onset day 8.66 ± 8.26 8.43 ± 8.65 9.21 ± 7.29 2.21 0.14

Bowel thickness 2.16 ± 1.05 2.17 ± 1.06 2.14 ± 1.02 0 0.99

crp 10.42 ± 24.38 9.84 ± 23.22 11.77 ± 27.07 1.03 0.31

alp 206.29 ± 93.6 197.95 ± 88.29 225.91 ± 103.24 3.95 0.05

alb 34.12 ± 4.07 34.05 ± 4.23 34.27 ± 3.71 0.01 0.91

Procalcitonin 1.73 ± 5.03 1.82 ± 5.56 1.5 ± 3.51 1.51 0.22

plt 318.01 ± 105.35 319.28 ± 104.1 315.02 ± 109.12 0.01 0.92

inr 1.15 ± 0.14 1.14 ± 0.14 1.15 ± 0.13 0.04 0.85

wbc 12.82 ± 5.37 12.76 ± 5.3 12.97 ± 5.58 0.1 0.75

hgb 169.79 ± 26.74 170.37 ± 27.4 168.42 ± 25.32 0.03 0.86
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compared to the training set (80.6%). The cohort was slightly

skewed towards males (55.0%), with a similar distribution in

the training set (53.0% male) and a slightly higher proportion

of males in the validation set (59.6%). The mean age of the

neonates was 32.0 ± 4.4 days, with the training set having a

slightly older mean age (32.3 ± 4.7 days) than the validation set

(31.5 ± 3.7 days). The mean onset day of symptoms was

8.7 ± 8.3 days overall. The validation set had a slightly later

mean onset day (9.2 ± 7.3 days) compared to the training set

(8.4 ± 8.7 days). Mean bowel thickness was 2.2 ± 1.1 mm, with

very similar values in both the training (2.2 ± 1.1 mm) and

validation (2.1 ± 1.0 mm) sets. No statistically significant

differences were observed between the training and validation

sets for any of the examined variables.

3.2 Comparison of different machine
learning methods

The performance of various machine learning algorithms in

predicting NEC was evaluated using AUC and accuracy. The

results are summarized in Table 2. Across the tested algorithms,

XGBoost demonstrated the highest mean AUC (0.97, 95% CI:

0.92–0.99), indicating excellent discriminatory ability.

3.3 Feature ranked and selection

Through the application of the XGBoost algorithm, the top 10

most influential variables were identified based on their feature

importance scores (Figure 2A). The relationship between the

number of variables and the model’s AUC was systematically

evaluated to determine the optimal subset of features (Figure 2B).

The analysis demonstrated that incorporating the top 5 variables

achieved a robust AUC, with minimal incremental improvement

observed when additional variables were included.

3.4 ROC curve

The predictive performance of the three models—the USPN

model, US model, and Serological model—was assessed using

ROC curve analysis. Figure 3 displays the ROC curves for each

model in both the training (Figure 3A) and validation

(Figure 3B) sets. Table 3 presents a comprehensive comparison

of the USPN, US, and serological models in both the training

TABLE 2 Comparision of all algorithm.

Model Mean
AUC

AUC 95%
CI Lower

AUC 95%
CI Upper

Mean
Accuracy

Logistic

Regression

0.92 0.81 0.95 0.94

Random

Forest

0.94 0.89 0.97 0.96

Gradient

Boosting

0.94 0.89 0.97 0.94

SVC 0.94 0.89 0.96 0.92

Decision Tree 0.84 0.77 0.9 0.84

K-Nearest

Neighbors

0.88 0.8 0.91 0.82

Naive Bayes 0.91 0.85 0.96 0.89

XGBoost 0.97 0.92 0.99 0.92

LightGBM 0.91 0.87 0.94 0.91

Ridge

Classifier

0.91 0.85 0.95 0.92

Extra Trees 0.95 0.92 0.96 0.94

AdaBoost 0.92 0.9 0.95 0.93

Voting

Classifier

0.92 0.9 0.97 0.93

FIGURE 2

Variable importance and AUC performance analysis. (A) Top 10 Important Features: This bar chart displays the ten most important variables identified

by the XGBoost model, ranked by their importance scores. The variable “Bowel peristalsis” is the most significant predictor, followed by C-reactive

protein (CRP), albumin (ALB), and bowel thickness. The importance scores reflect the contribution of each feature to the model’s predictive

capability, with higher scores indicating greater relevance in predicting outcomes. (B) AUC vs. Number of Features: This line graph illustrates the

relationship between the number of features used in the model and the corresponding Area Under the Curve (AUC) values. The AUC values

increase with the addition of features, demonstrating improved predictive performance. Notably, the model achieves a robust AUC with just five

features, indicating that a streamlined model can maintain high accuracy while simplifying the predictive process. The red line represents the AUC

curve, with data points indicating the AUC values for each subset of features.

Yang et al. 10.3389/fped.2025.1606571

Frontiers in Pediatrics 06 frontiersin.org

https://doi.org/10.3389/fped.2025.1606571
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


and validation sets, including AUC, sensitivity, specificity, PPV,

NPV, and accuracy. In the training set, the USPN model

demonstrated the highest AUC (0.85), followed by the US model

(0.76) and the serological model (0.72). The USPN model also

exhibited a good balance between sensitivity (0.80) and specificity

(0.77). In the validation set, the USPN model again achieved the

highest AUC (0.88), with a 95% confidence interval suggesting

robust performance (0.76–0.99). Notably, the USPN model in the

validation set demonstrated perfect specificity (1.00) and PPV

(1.00), along with high sensitivity (0.73), NPV (0.91) and

accuracy (0.93).

3.5 Calibration curve

Model calibration was assessed using Brier scores, Hosmer-

Lemeshow (HL) tests, and calibration slopes/intercepts. The

USPN model demonstrated good calibration on both training

and validation sets. However, the US and Serological models

showed evidence of miscalibration, particularly on the training

sets, as indicated by significant HL p-values (p < 0.05) and/or

slopes deviating from 1. The US model on the test set showed a

particularly concerning slope of 0.41 (Table 4). Calibration

curves for the USPN, US, and serological models were generated

to assess the agreement between predicted probabilities and

observed proportions in both the training (Figure 4A) and

validation (Figure 4B) sets. Ideally, a perfectly calibrated model

would follow the diagonal dashed line, indicating

perfect agreement.

3.6 Decision curve analysis (DCA)

To evaluate the clinical utility of the USPN, US, and serological

models, we performed DCA. Figure 5 presents the DCA curves for

the training (Figure 5A) and validation (Figure 5B) sets. To further

quantify the improvements in risk prediction offered by the USPN

model, we calculated the NRI, IDI, and Relative Net Benefit,

comparing the USPN model to both the US and serological

models. These results are presented in Table 5. In the training

set, the USPN model showed substantial improvements in risk

classification compared to both the US (NRI = 0.39, IDI = 0.62)

and serological (NRI = 0.60, IDI = 0.69) models. However, the

relative net benefit was 0.00 in both comparisons in the training

FIGURE 3

ROC curves for predictive models in training and validation sets. (A) ROC curves for the training set, comparing the USPN model (AUC = 0.86), US

model (AUC = 0.76), and Serological model (AUC = 0.72). (B) ROC curves for the validation set, comparing the USPN model (AUC = 0.88), US

model (AUC = 0.73), and Serological model (AUC = 0.80). The USPN model consistently demonstrates superior discriminatory performance

compared to the US and Serological models in both training and validation datasets.

TABLE 3 Different model comparision in train and test set.

Dataset Model AUC AUC 95% CI Lower AUC 95% CI Upper Sensitivity Specificity PPV NPV Accuracy

Train USPN 0.85 0.77 0.94 0.8 0.77 0.56 0.91 0.78

US 0.76 0.65 0.86 0.51 0.93 0.75 0.84 0.82

Serological 0.72 0.61 0.82 0.31 0.97 0.84 0.8 0.80

Test USPN 0.88 0.76 0.99 0.73 1 1 0.91 0.93

US 0.73 0.57 0.75 0.33 0.88 0.5 0.79 0.74

Serological 0.75 0.65 0.85 0.4 1 1 0.82 0.84
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set. In the validation set, the USPN model continued to

demonstrate improvements in risk prediction compared to the

US (NRI = 0.28, IDI = 0.49) and serological (NRI = 0.33,

IDI = 0.44) models. Importantly, in the validation set, the USPN

model also showed a positive relative net benefit compared to

both the US model (0.18) and the serological model (0.17).

These results indicate that the USPN model not only improves

risk classification but also provides a clinically meaningful net

benefit compared to the other models in an independent

validation set.

3.7 Precision-recall (PR) curves

To further evaluate the performance of the USPN, US and the

serological model, we generated PR curves. Figure 6 presents the

PR curves for both the training (Figure 6A) and validation

(Figure 6B) set, these results emphasize the USPN model as the

most robust and reliable model across both datasets, offering

superior precision and recall compared to the US and

Serological models.

3.8 Shapley additive exPlanations (SHAP)

The SHAP value plot (beeswarm) (Figure 7) was used to

visualize the impact of different features (CRP, bowel peristalsis,

bowel thickness, procalcitonin, and albumin) on the model’s

predictions. SHAP values quantify the contribution of each

feature to the model’s output, with positive values indicating an

increase in the predicted outcome and negative values indicating

a decrease. To enhance the clinical applicability of the USPN

model, we analyzed the distribution of SHAP values for the top

five features. The results indicated consistent NEC risk elevation

when specific thresholds were crossed. Specifically, CRP > 20 mg/

L, procalcitonin > 2.0 ng/ml, albumin < 25 g/L, bowel wall

TABLE 4 Calibration indication in different model.

Dataset Model Brier Score HL p-value Calibration Slope Calibration Intercept

Train USPN 0.01 0.65 1.02 0.02

US 0.14 0.02 1.18 0.04

Serological 0.16 0.04 1.22 −0.03

Test USPN 0.06 0.6 1.11 −0.09

US 0.16 0.05 0.41 0.26

Serological 0.12 0.04 1.23 −0.12

FIGURE 4

Calibration curves in the training and validation sets. (A) shows the calibration curves of the USPN, US, and Serological models in the training set. The

USPN model (blue) generally demonstrates the closest alignment to the diagonal across most probability ranges, although it slightly overestimates risk

at lower predicted probabilities. By contrast, the US model (orange) shows moderate agreement with the diagonal at mid-range probabilities but

deviates for higher values, reflecting some degree of miscalibration. The Serological model (green) exhibits relatively good calibration at moderate

predicted probabilities but becomes less accurate at the extremes. (B) illustrates the corresponding calibration curves in the validation set. The

USPN model again appears best calibrated overall, remaining relatively close to the diagonal. The US model displays notable fluctuations,

particularly at higher predicted probabilities, while the Serological model shows an underestimation trend at mid-range probabilities but aligns well

with the diagonal at higher ranges. These findings are consistent with the quantitative calibration metrics, indicating that the USPN model provides

superior calibration across both datasets compared with the other two models.
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thickness > 2.6 mm, and absent or markedly reduced bowel

peristalsis were associated with higher predicted risk of NEC.

These findings offer potential clinical guidance for early

risk stratification.

3.9 Waterfall plots illustrating feature
contributions to model predictions

To dissect the individual predictions generated by the XGBoost

model, we generated waterfall plots using SHAP values, as presented

in Figure 8. This figure showcases four representative cases, stratified

by the concordance between actual and predicted outcomes.

3.10 Case-specific interpretation of false
positive and false negative predictions

To further explore the clinical relevance of model errors, we

analyzed the representative false positive (FP) and false negative

(FN) cases shown in Figures 8B,C.

In the FP case, the model predicted NEC primarily due to

markedly reduced bowel peristalsis (SHAP +4.45), despite low

CRP (1.09 mg/L, SHAP −1.28) and normal bowel wall thickness

(2.16 mm, SHAP −0.59). Clinical review revealed that the patient

had early-onset sepsis with transient ileus, which likely accounted

for the peristalsis suppression without actual NEC. This

illustrates how the model may over-rely on a single dominant

feature, leading to overestimation in the absence of

supporting inflammation.

In the FN case, the model failed to predict NEC in an extremely

preterm neonate with early-stage disease. SHAP analysis showed

that normal peristalsis (SHAP −1.55) and very low CRP

(0.14 mg/L, SHAP −0.96) significantly suppressed the predicted

probability. Although NEC developed later, the patient’s initial

clinical profile was subtle, without marked inflammation or

imaging changes. This case highlights the difficulty of early NEC

detection when signs are not yet pronounced.

These observations emphasize the need for incorporating

temporal biomarker trends, gestational age, and sepsis status into

future models to improve performance in borderline or

atypical cases.

4 Discussion

This study demonstrates that an XGBoost-based fusion model

incorporating ultrasound and serological markers (USPN model)

significantly improves the prediction of NEC in neonates

compared to models relying solely on ultrasound or serological

FIGURE 5

Decision curve analysis (DCA) for the training and validation sets. (A) For the training set compares the clinical net benefits of the USPN, US, and

Serological models. The DCA shows the net benefit of each model across different threshold probabilities. The USPN model (blue line) provides

the highest net benefit at most threshold probabilities, demonstrating superior clinical utility compared to the other models. The US model

(orange line) shows a lower net benefit, particularly at higher threshold probabilities, reflecting its relatively poorer performance. The Serological

model (green line) performs similarly to the US model, offering limited net benefit across most threshold probabilities. (B) For the validation set

presents similar trends. The USPN model continues to outperform the other models across a wide range of threshold probabilities, showing the

highest net benefit, particularly at threshold values between 0.1 and 0.5. The US model and Serological model again display lower net benefits,

with the US model performing slightly better than the Serological model at certain points but still underperforming compared to the USPN model.

TABLE 5 DCA indication in different model.

Dataset Model NRI IDI Relative Net Benefit

Train USPN vs. US 0.39 0.62 0.00

USPN vs. Serological 0.60 0.69 0.00

Test USPN vs. US 0.28 0.49 0.18

USPN vs. Serological 0.33 0.44 0.17
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data. This finding highlights the potential of integrating

multimodal data and machine learning to enhance diagnostic

accuracy and inform clinical decision-making in this vulnerable

population. The superior performance of the fusion model

suggests that NEC is a complex disease process that is best

characterized by a combination of imaging and biomarker data.

Our results build upon previous research that has explored the

use of ultrasound or serological markers for NEC prediction. For

example, Wang et al. retrospectively analyzed 144 neonates with

suspected or confirmed NEC, comparing abdominal ultrasound

and plain x-rays for diagnostic accuracy and prognostication.

Their study found that ultrasound was superior to x-ray in

detecting portal venous gas and intestinal dilatation in confirmed

NEC cases. Furthermore, ultrasound findings of intestinal

dilatation, bowel wall thickening, and ascites were significantly

associated with the need for surgery or death, suggesting their

potential utility in predicting disease severity. While this study

highlights the value of abdominal ultrasound, it did not

FIGURE 6

Precision-Recall (PR) curves for training and validation sets. (A) (Training Set): The USPN method (blue curve) achieves the highest AUC (0.85), followed

by the US method (orange curve, AUC = 0.62) and the Serological method (green curve, AUC = 0.58). (B) (Validation Set): The USPN method maintains

the highest AUC (0.86), while the US method (AUC = 0.49) and the Serological method (AUC = 0.74) exhibit lower performance.

FIGURE 7

Beeswarm plot of SHAP values for top predictive features from XGBoost model. The beeswarm plot summarizes the SHAP values for the top five

predictive features as determined by the XGBoost model. Each point on the plot represents a single patient. The x-axis denotes the SHAP value,

representing the impact of the feature on the model’s output (log-odds scale). Features are listed on the y-axis in descending order of

importance. Color denotes the feature value for each patient, ranging from low (blue) to high (red), as indicated by the color gradient on the right.

Positive SHAP values indicate that the feature contributes to increasing the predicted probability of NEC, while negative SHAP values indicate a

contribution towards decreasing the predicted probability. The features displayed are: C-reactive protein, Bowel peristalsis, Bowel thickness,

Procalcitonin, and Albumin.
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incorporate serological markers, limiting its ability to leverage the

combined predictive power of both modalities, as explored in our

current research (17). In contrast to studies focusing solely on

imaging, Garg et al. (18) investigated the clinical impact of NEC-

associated sepsis and its relationship to inflammatory markers.

They found that infants with NEC-associated sepsis had

significantly higher CRP levels and lower platelet counts at NEC

onset and 24 h after onset compared to those without sepsis.

While Garg et al. primarily focused on the consequences of NEC-

associated sepsis and its impact on outcomes like length of stay

and mortality, our study aims to leverage serological markers,

alongside ultrasound findings, for early prediction of NEC

development, whereas our study demonstrates the synergistic

effect of combining these modalities within a machine

learning framework.

Several studies have also explored the use of machine learning

for NEC prediction. Leiva et al. (15) systematically reviewed the

potential of multi-omics (genomics, proteomics) combined with

machine learning to identify NEC biomarkers, highlighting its

ability to decode disease subtypes and therapeutic targets through

heterogeneous data integration. However, their analysis revealed

critical limitations in existing approaches: (1) reliance on single-

omics data that may not fully capture the complexity of NEC;

(2) small sample sizes in many studies, potentially leading to

overfitting risks; (3) exclusion of imaging modalities like

ultrasound, which limits early diagnostic utility. In contrast, our

study advances the field by addressing these gaps. We rigorously

compared 12 machine learning algorithms to optimize model

generalizability, ultimately selecting XGBoost model with SHAP-

based interpretability. Crucially, we integrated ultrasonographic

markers with serological markers. This multimodal strategy not

only improves sensitivity for early NEC but also addresses the

“black-box”. By bridging imaging biomarkers with host response

dynamics, we provide a clinically actionable tool that aligns with

Leiva’s call for “phenotype-aware AI models” while overcoming

the translational barriers of pure omics approaches.

Although the predictive variables were collected within 24 h

before the formal diagnosis of NEC, they reflect routine

monitoring performed during the early phase of clinical

suspicion, prior to overt disease recognition or intervention. The

model was specifically designed to operate at this early stage,

utilizing parameters triggered by subtle signs rather than clear

NEC manifestations.

Elevated CRP and procalcitonin levels, indicative of systemic

inflammation, were strong predictors of NEC in our study,

consistent with the established role of inflammation in the

pathogenesis of the disease. Zeng’s (19). study demonstrate the

similar result. Gaudin et al. (20) further emphasized the

prognostic value of CRP, demonstrating a correlation between

elevated CRP levels and the risk of post-NEC intestinal stricture.

our findings, combined with Gaudin et al.’s work, highlight the

continued clinical relevance of CRP, particularly in assessing

disease severity and predicting long-term complications. The

readily availability and widespread use of CRP and procalcitonin

assays make it a valuable tool in the initial assessment of NEC

risk, Lee’s (21) findings were similar with ours.

FIGURE 8

Waterfall plots of feature contributions across prediction-outcome categories. (A) True Negatives (TN): Feature contributions (negative SHAP values)

dominated by physiological CRP (<5 mg/L) and normal peristalsis (≥3 episodes/hour). (B) False Positives (FP): Misclassification driven by transient CRP

spikes (10–15 mg/L) overriding protective peristalsis signals. (C) False Negatives (FN): Early-stage NEC cases where moderate biomarker elevations

failed to offset borderline peristalsis. (D) True Positives (TP): Synergistic contributions from hyperinflammation (CRP >20 mg/L), ileus

(peristalsis = 0), and severe hypoalbuminemia (<2.0 g/dl).
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Our study identified hypoalbuminemia as a significant risk

factor for the development of NEC, consistent with the findings

of Mohd Amin et al., (22) who demonstrated that a low albumin

level, particularly when combined with elevated CRP (CRP/ALB

ratio≥ 3), is strongly associated with poor outcomes, including

the need for surgical intervention and mortality in neonates with

NEC. Hypoalbuminemia may reflect systemic inflammation,

malnutrition, or increased vascular permeability, all of which are

implicated in the pathogenesis of NEC. The liver’s reduced

capacity to synthesize albumin in preterm infants, compounded

by the inflammatory response, may further exacerbate this

condition. The CRP/ALB ratio, as highlighted by Mohd Amin

et al., serves as a valuable prognostic tool, integrating both

inflammatory and nutritional status, which aligns with our

findings that hypoalbuminemia independently predicts NEC risk.

Reduced bowel peristalsis and increased bowel wall thickness,

as assessed by ultrasound, reflect intestinal ischemia and

inflammation, key features of NEC, Chen demonstrated that in

patients with reduced or absent intestinal peristalsis, the

incidence of NEC is ten times higher than in those with normal

peristalsis (23). This finding is consistent with our study, which

also identified reduced bowel peristalsis as an independent risk

factor for NEC. Esposito et al., (24) in their comprehensive

review of NEC imaging, further support the significance of these

ultrasound findings. They highlight that in the early stages of

NEC, when x-ray findings may be non-specific, ultrasound can

reveal direct signs such as bowel wall thickening (generally

considered pathological when exceeding 2.6 mm) and abnormal

bowel wall echoic patterns, reflecting the loss of normal wall

layering due to inflammation and edema. Our study’s

identification of increased bowel wall thickness as an

independent risk factor aligns with this observation, reinforcing

the value of ultrasound in detecting early intestinal changes

indicative of NEC. Priyadarshi’s findings are also similar to

ours (25).

While these ultrasound-based features are strongly associated

with NEC risk, analysis of misclassified cases revealed that their

predictive performance may vary depending on the broader

clinical context. In certain cases, reduced bowel peristalsis alone

contributed disproportionately to high-risk predictions, even

when inflammatory markers such as CRP remained low and

bowel wall thickness was within normal range. These false

positive predictions often occurred in neonates with transient

ileus or non-NEC-related sepsis, suggesting that peristalsis,

though sensitive, may lack specificity when interpreted in isolation.

Conversely, false negative predictions were more frequently

observed in extremely preterm infants with early-stage or atypical

NEC. In these cases, CRP and procalcitonin levels were often

within normal limits, and bowel ultrasound findings were subtle

or absent. Such presentations, while clinically recognized, may

escape detection in models that rely solely on static, single-

timepoint data.

These findings underscore the need to incorporate additional

contextual and temporal information into future model

iterations. Potential strategies include the use of time-series

trends in inflammatory biomarkers, integration of gestational age

and birth weight, and inclusion of comorbid conditions such as

sepsis or hemodynamic instability. Furthermore, modeling

feature interactions—such as interpreting reduced peristalsis as

high risk only in the presence of elevated CRP—may enhance

model specificity and reduce misclassification in borderline

clinical scenarios.

In our cohort, only 13 neonates (6.8%) had a gestational age

<32 weeks, which limited the feasibility of performing

gestational-age–stratified analysis of ultrasound findings. Future

multicenter studies with larger and more balanced cohorts are

needed to investigate how NEC presentation varies with

gestational maturity, as highlighted by Battersby et al. (26).

5 Limitations

This study has several notable limitations. First, the

retrospective design introduces potential selection and

information biases, as data were extracted from existing medical

records rather than prospectively collected. Although we

implemented strict inclusion and exclusion criteria, residual

confounding may still exist. Second, this was a single-center

study conducted in a tertiary NICU, which may limit the

diversity of patient populations, clinical practices, and imaging

protocols—factors that can affect model generalizability. Third,

the relatively small sample size (n = 191), while sufficient for

initial model development and internal validation, increases the

risk of overfitting and may not fully capture the heterogeneity of

NEC presentations.

In fact, the discrepancy between the training AUC (0.97) and

validation AUC (0.88) may reflect some degree of overfitting,

despite the implementation of mitigation strategies such as

10-fold cross-validation, hyperparameter tuning via grid search,

and SHAP-based feature selection. These techniques helped

reduce dimensionality and overfitting risk, but further refinement

is still necessary.

To improve the robustness and external applicability of the

USPN model, future studies should focus on prospective

validation in larger, multicenter cohorts. This would allow model

calibration across varying institutions and patient subgroups,

enhancing its clinical utility. In addition, the incorporation of

further regularization techniques (e.g., L1/L2 penalty), model

simplification, or ensemble averaging may help improve

performance stability and reduce the risk of overfitting in

future implementations.

6 Conclusion

In conclusion, our study demonstrates that an XGBoost-based

fusion model incorporating ultrasound and serological markers

significantly improves the prediction of NEC in neonates. This

finding has important clinical implications and highlights the

potential of integrating multimodal data and machine learning to

enhance diagnostic accuracy and inform clinical decision-making

in this vulnerable population. Future research should focus on
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validating our findings in larger multi-center studies and exploring

the use of the model to guide clinical decision-making and to

personalize treatment strategies.

Data availability statement

The datasets presented in this article are not readily available

because of concerns regarding patient privacy and confidentiality.

Requests to access the datasets should be directed to the

corresponding author via email: feitianlu.fpm@163.com.

Ethics statement

The study protocol was approved by the Institutional Review

Board (IRB) of Women and Children’s Hospital [IRB approval

number: (KY-2025-046-K01)]. Written informed consent was

obtained from the parents or legal guardians of all participating

infants. All procedures were conducted in accordance with the

ethical standards of the institutional and national research

committees, and with the 1975 Declaration of Helsinki, as

revised in 2008.

Author contributions

YY: Data curation, Writing – original draft. SZ: Project

administration, Writing – review & editing. XL: Writing –

original draft, Resources. YZ: Formal analysis, Writing – review

& editing. LL: Writing – review & editing, Funding acquisition.

CZ: Resources, Writing – original draft. XZ: Writing – review &

editing, Conceptualization.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Acknowledgments

The authors affirm that all data and analyses presented in this

manuscript are original and accurately reflect the findings of

the study.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. (2011)
364(3):255–64. doi: 10.1056/NEJMra1005408

2. Fehr J, Konigorski S, Olivier S, Gunda R, Surujdeen A, Gareta D, et al. Publisher
correction: computer-aided interpretation of chest radiography reveals the spectrum of
tuberculosis in rural South Africa. NPJ Digit Med. (2021) 4(1):115–23. doi: 10.1038/
s41746-021-00485-6

3. Hu X, Liang H, Li F, Zhang R, Zhu Y, Zhu X, et al. Necrotizing enterocolitis:
current understanding of the prevention and management. Pediatr Surg Int. (2024)
40(1):32–43. doi: 10.1007/s00383-023-05619-3

4. De Bernardo G, Vecchione C, Langella C, Ziello C, Parisi G, Giordano M, et al.
Necrotizing enterocolitis: a current understanding and challenges for the future. Curr
Pediatr Rev. (2024) 6(12):358–72. doi: 10.2174/0115733963318619240923062033

5. Bazacliu C, Neu J. Necrotizing enterocolitis: long term complications. Curr
Pediatr Rev. (2019) 15(2):115–24. doi: 10.2174/1573396315666190312093119

6. Pugh CP, Baber M, White G. Necrotizing enterocolitis following treatment of
congenital syphilis with penicillin in a term newborn. SAGE Open Med Case Rep.
(2023) 11(6):205–18. doi: 10.1177/2050313X231172672

7. Silva CT, Daneman A, Navarro OM, Moore AM, Moineddin R, Gerstle JT, et al.
Correlation of sonographic findings and outcome in necrotizing enterocolitis. Pediatr
Radiol. (2007) 37(3):274–82. doi: 10.1007/s00247-006-0393-x

8. Bohnhorst B. Usefulness of abdominal ultrasound in diagnosing necrotising
enterocolitis. Archives of disease in childhood. Fetal Neonatal Ed. (2013) 98(5):
F445–F50. doi: 10.1136/archdischild-2012-302848

9. Silva CT, Daneman A, Navarro OM, Moineddin R, Levine D, Moore AM. A
prospective comparison of intestinal sonography and abdominal radiographs in a
neonatal intensive care unit. Pediatr Radiol. (2013) 43(11):1453–63. doi: 10.1007/
s00247-013-2777-z

10. Feng W, Hou J, Die X, Sun J, Guo Z, Liu W, et al. Application of coagulation
parameters at the time of necrotizing enterocolitis diagnosis in surgical intervention
and prognosis. BMC Pediatr. (2022) 22(1):259. doi: 10.1186/s12887-022-03333-y

11. Evennett N, Alexander N, Petrov M, Pierro A, Eaton S. A systematic review of
serologic tests in the diagnosis of necrotizing enterocolitis. J Pediatr Surg. (2009)
44(11):2192–201. doi: 10.1016/j.jpedsurg.2009.07.028

12. Sharif SP, Friedmacher F, Amin A, Zaki RA, Hird MF, Khashu M, et al. Low
serum albumin concentration predicts the need for surgical intervention in
neonates with necrotizing enterocolitis. J Pediatr Surg. (2020) 55(12):2625–9.
doi: 10.1016/j.jpedsurg.2020.07.003

13. Wang D, Zhang F, Pan J, Yuan T, Jin X. Influencing factors for surgical
treatment in neonatal necrotizing enterocolitis: a systematic review and meta-
analysis. BMC Pediatr. (2024) 24(1):512–23. doi: 10.1186/s12887-024-04978-7

14. Huang P, Luo N, Shi X, Yan J, Huang J, Chen Y, et al. Risk factor analysis and
nomogram prediction model construction for NEC complicated by intestinal
perforation. BMC Pediatr. (2024) 24(1):143–52. doi: 10.1186/s12887-024-04640-2

15. Leiva T, Lueschow S, Burge K, Devette C, McElroy S, Chaaban H. Biomarkers of
necrotizing enterocolitis in the era of machine learning and omics. Semin Perinatol.
(2023) 47(1):151693–700. doi: 10.1016/j.semperi.2022.151693

Yang et al. 10.3389/fped.2025.1606571

Frontiers in Pediatrics 13 frontiersin.org

mailto:feitianlu.fpm@163.com
https://doi.org/10.1056/NEJMra1005408
https://doi.org/10.1038/s41746-021-00485-6
https://doi.org/10.1038/s41746-021-00485-6
https://doi.org/10.1007/s00383-023-05619-3
https://doi.org/10.2174/0115733963318619240923062033
https://doi.org/10.2174/1573396315666190312093119
https://doi.org/10.1177/2050313X231172672
https://doi.org/10.1007/s00247-006-0393-x
https://doi.org/10.1136/archdischild-2012-302848
https://doi.org/10.1007/s00247-013-2777-z
https://doi.org/10.1007/s00247-013-2777-z
https://doi.org/10.1186/s12887-022-03333-y
https://doi.org/10.1016/j.jpedsurg.2009.07.028
https://doi.org/10.1016/j.jpedsurg.2020.07.003
https://doi.org/10.1186/s12887-024-04978-7
https://doi.org/10.1186/s12887-024-04640-2
https://doi.org/10.1016/j.semperi.2022.151693
https://doi.org/10.3389/fped.2025.1606571
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


16. Ranger BJ, Lombardi A, Kwon S, Loeb M, Cho H, He K, et al. Ultrasound for
assessing paediatric body composition and nutritional status: scoping review and
future directions. Acta Paediatr. (2025) 114(1):14–23. doi: 10.1111/apa.17423

17. Wang L, Li Y, Liu J. Diagnostic value and disease evaluation significance of
abdominal ultrasound inspection for neonatal necrotizing enterocolitis. Pak J Med
Sci. (2016) 32(5):1251–6. doi: 10.12669/pjms.325.10413

18. Garg PM, Paschal JL, Ansari MAY, Block D, Inagaki K, Weitkamp JH. Clinical
impact of NEC-associated sepsis on outcomes in preterm infants. Pediatr Res. (2022)
92(6):1705–15. doi: 10.1038/s41390-022-02034-7

19. Zeng Q, Zeng L, Yu X, Yuan X, Ma W, Song Z, et al. Clinical value of
prokineticin 2 in the diagnosis of neonatal necrotizing enterocolitis. Biomarkers.
(2024) 29(6):361–7. doi: 10.1080/1354750X.2024.2393342

20. Gaudin A, Farnoux C, Bonnard A, Alison M, Maury L, Biran V, et al.
Necrotizing enterocolitis (NEC) and the risk of intestinal stricture: the value of
C-reactive protein. PLoS One. (2013) 8(10):e76858–e70. doi: 10.1371/journal.pone.
0076858

21. Lee ES, Kim EK, Shin SH, Choi YH, Jung YH, Kim SY, et al. Factors associated
with neurodevelopment in preterm infants with systematic inflammation. BMC
Pediatr. (2021) 21(1):114. doi: 10.1186/s12887-021-02583-6

22. Amin M, Zaki AT, Friedmacher RA, Sharif SP. C-reactive protein/albumin ratio
is a prognostic indicator for predicting surgical intervention and mortality in neonates
with necrotizing enterocolitis. Pediatr Surg Int. (2021) 37(7):881–6. doi: 10.1007/
s00383-021-04879-1

23. Chen J, Mu F, Gao K, Yan C, Chen G, Guo C. Value of abdominal
ultrasonography in predicting intestinal resection for premature infants with
necrotizing enterocolitis. BMC Gastroenterol. (2022) 22(1):524–35. doi: 10.1186/
s12876-022-02607-0

24. Esposito F, Mamone R, Di Serafino M, Mercogliano C, Vitale V, Vallone G, et al.
Diagnostic imaging features of necrotizing enterocolitis: a narrative review. Quant
Imaging Med Surg. (2017) 7(3):336–44. doi: 10.21037/qims.2017.03.01

25. Priyadarshi A, Tracy M, Kothari P, Sitaula C, Hinder M, Marzbanrad F, et al.
Comparison of simultaneous auscultation and ultrasound for clinical assessment of
bowel peristalsis in neonates. Front Pediatr. (2023) 11:1173332. doi: 10.3389/fped.
2023.1173332

26. Battersby C, Longford N, Costeloe K, Modi N, Group UKNCNES.
Development of a gestational age-specific case definition for neonatal necrotizing
enterocolitis. JAMA Pediatr. (2017) 171(3):256–63. doi: 10.1001/jamapediatrics.2016.
3633

Yang et al. 10.3389/fped.2025.1606571

Frontiers in Pediatrics 14 frontiersin.org

https://doi.org/10.1111/apa.17423
https://doi.org/10.12669/pjms.325.10413
https://doi.org/10.1038/s41390-022-02034-7
https://doi.org/10.1080/1354750X.2024.2393342
https://doi.org/10.1371/journal.pone.0076858
https://doi.org/10.1371/journal.pone.0076858
https://doi.org/10.1186/s12887-021-02583-6
https://doi.org/10.1007/s00383-021-04879-1
https://doi.org/10.1007/s00383-021-04879-1
https://doi.org/10.1186/s12876-022-02607-0
https://doi.org/10.1186/s12876-022-02607-0
https://doi.org/10.21037/qims.2017.03.01
https://doi.org/10.3389/fped.2023.1173332
https://doi.org/10.3389/fped.2023.1173332
https://doi.org/10.1001/jamapediatrics.2016.3633
https://doi.org/10.1001/jamapediatrics.2016.3633
https://doi.org/10.3389/fped.2025.1606571
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/

	Ultrasound combined with serological markers for predicting neonatal necrotizing enterocolitis: a machine learning approach
	Introduction
	Materials and methods
	Study design and patient population
	Data collection
	Ultrasound image analysis
	Machine learning model development
	Model training and optimization
	Model evaluation
	Model comparison
	Statistical analysis
	Explainable AI (XAI) analysis

	Result
	Base line of all patients
	Comparison of different machine learning methods
	Feature ranked and selection
	ROC curve
	Calibration curve
	Decision curve analysis (DCA)
	Precision-recall (PR) curves
	Shapley additive exPlanations (SHAP)
	Waterfall plots illustrating feature contributions to model predictions
	Case-specific interpretation of false positive and false negative predictions

	Discussion
	Limitations
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


