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Introduction: PURA syndrome is a rare genetic disorder first described in themedical

literature in 2014. It is caused by pathogenic variants in the PURA gene, which is

located on chromosome 5. The PURA gene is crucial for the production of the

pur-α protein, which is expressed in all tissues, including the nervous system,

muscles, and blood. The pur-α protein plays a vital role in normal brain

development. The estimated incidence of PURA syndrome is 1 in 1,000,000, and as

of 2024, approximately 706 cases of the syndrome have been identified worldwide.

Aim of study: The aim of the study was to present a case description of PURA

syndrome and the genetic basis of the neurodevelopmental disorder in a

15-year-old girl.

Case report: This manuscript presents the case of a 15-year-old girl of Polish

descent diagnosed with PURA syndrome through genetic testing. She was

admitted to the Department of Orthopedics and Spine Surgery at the Medical

University of Gdansk for surgical treatment of advanced idiopathic scoliosis

caused by a postural defect.

Conclusion: PURA syndrome is a rare genetic condition that requires further

research and observation. Although it shares many clinical features with other

neurological disorders, certain symptoms—such as speech disorders, the

ability to follow and execute simple commands, and an excessive acoustic

reaction to surprises—should raise suspicion of this condition. These indicators

should prompt genetic testing for confirmation and the implementation of

appropriate multidisciplinary care for the patient.

KEYWORDS

PURA syndrome, PURA gene, neurodevelopment disorders, genetic disease, genetic

defect

1 Introduction

PURA syndrome is a neurodevelopmental disorder inherited in an autosomal

dominant manner, classified as a rare disease (1). It is listed in the OMIM (Online

Mendelian Inheritance in Man) database with the identifier #616158 (2). The PURA

gene (Purine-rich element-binding protein A) encodes the Pur-α protein, which has

regulatory functions in processes such as DNA repair and replication, as well as mRNA

transport and translation (3, 4). This protein plays a crucial role in proper brain

development after birth, including the formation of new synaptic connections,

maturation of dendrites, and the proliferation of neural cells (5–8). PURA syndrome is
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caused by a heterozygous pathogenic sequence variant in the

PURA gene, which is located on chromosome 5q31 (9). As of

October 2024, approximately 706 cases of PURA syndrome have

been confirmed worldwide across 60 countries (10). A total of

317 pathogenic variants of the PURA gene have been identified,

with the most common variant being p.Phe233del (10). de novo

mutations are most common (9, 11). PURA syndrome is

characterized by moderate to severe developmental delays,

including challenges in motor skills and speech. Individuals with

this syndrome may experience hypothermia, hypotonia (reduced

muscle tone), apnea (breathing interruptions), feeding difficulties,

excessive hiccups, uncoordinated eye movements, visual

disturbances, dystonia (involuntary muscle contractions),

dyskinesia (difficulty with movement) and scoliosis, which occurs

in 48% of cases (1, 9, 12–14). The individual displays facial

features that may be considered dysmorphic (15). Less

commonly, PURA syndrome may be associated with congenital

heart defects, endocrine disorders, genitourinary malformations,

and skeletal abnormalities (1, 9, 12, 13). A mutation in the

PURA gene is linked to an autosomal dominant form of

intellectual disability type 31 (OMIM:616158).

The majority of individuals affected by PURA syndrome are

nonverbal, and many are unable to move independently (9).

Approximately half of these patients experience epilepsy, with

seizures typically beginning in infancy or early childhood;

however, the age of onset can vary significantly (5). The syndrome

is associated with a high incidence of epilepsy. There is an unclear

relationship between genotype and phenotype in PURA syndrome,

as patients with identical genetic variants can exhibit a wide range

of symptoms and severity. Despite significant advances in

molecular genetics, the complete clinical characteristics and

epidemiological profile of PURA syndrome are still not fully

understood (14, 16, 17). It is important to note that no cases from

several continents have been documented in the existing scientific

literature (14, 16, 17). The aim of the study was to present a case

description of PURA syndrome and the genetic basis of the

neurodevelopmental disorder in a 15-year-old girl.

Taniguchi et al. conducted a systematic review to explore the

genotype-phenotype correlations in neurodevelopmental

disorders associated with PURA syndrome. The authors found

that patients with the 5q31.3 deletion syndrome experienced a

higher incidence of congenital malformations, respiratory

difficulties, and gait issues. In the case of PURA syndrome,

variants that cause protein shortening, such as nonsense or

frameshift mutations, were linked to increased speech deficits.

Interestingly, the location of the PURA variant did not influence

the occurrence of congenital defects or neurodevelopmental

outcomes (18). Symptoms in PURA are presented on Figure 1.

2 PURA protein structure

PURA protein (purine-rich element binding protein A) is a

protein consisting of 322 amino acids with repeated nucleic acid-

binding domains (15). It is encoded by the PURA gene located on

chromosome 5 (5q31) (4, 19). The PURA protein is primarily

located in the cell nucleus and cytoplasm of neurons (4, 6, 20–22).

The molecular weight of the PURA protein is 35–37 kDa. There

are three domains of this protein, the so-called PUR repeats,

namely PUR I, PUR II and PUR III (4). In humans, the PUR

FIGURE 1

Central vs. peripheral symptoms in PURA (30).
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domain typically consists of 55–70 amino acids. Each of these

domains can bind both DNA and RNA (23). Additionally, PUR

they domains participate in dimer formation and interact with

other proteins (24) Notably, the structure of the PURA protein

lacks classical domains such as the helix-turn-helix (HTH)

motif or a zinc finger (Figure 2). One of its key structural

features is a high content of α-helical motifs, along with a

tertiary structure that enables flexible nucleotide binding and

involvement in various cellular processes (25). Pur-alpha has

been demonstrated to bind to both single- and double-

stranded nucleic acids that contain GGN motifs (4). Neuronal

DNA/RNA binding protein Pur-alpha is a regulator of

transcription and a major factor in mRNA localization (4). In

addition to its DNA and RNA binding abilities, Pur-alpha also

exhibits dsDNA destabilizing activity in an ATP-independent

manner (26). Pur-alpha-mediated binding of nucleic acids

involves three central PUR repeats, which are flanked on the

N-terminal side by unstructured glycine-rich sequences and on

the C-terminal side by regions rich in glutamine and

glutamate (27). PUR-alpha interacts with the expanded CGG

repeats of FMR1 RNA (28). It is assumed that FMR1 mRNA

expression with abnormal trinucleotide repeat expansions is a

major cause of neurodegenerative tremor/ataxia syndrome

associated with a fragile X chromosome (11).PUR-alpha also

interacts with the expanded GGGGCC repeat RNAs arising

from hexanucleotide repeat expansions in the first intron of

the c9orf72 transcript (29). These interactions of PUR-alpha

protein with repeat RNAs lead to sequesteration and loss of

PUR-alpha protein function. This loss of function contributes

to the pathogenesis of Fragile X-associated tremor/ataxia

syndrome (FXTAS) and amyotrophic lateral sclerosis/

frontotemporal dementia (ALS/FTD), respectively (4, 22).

The table below provides information on which selected RNA

the Pur-alpha protein binds to and its function (Table 1).

3 Aim of the study

The aim of the study was to describe the physical and

neurodevelopmental presentation of a 15 year old with

PURA syndrome.

4 Material and methods

To write this manuscript, a review of articles was conducted

using the PubMed, Google Scholar, and Mendeley search

engines. The keywords used were “Pura syndrome,” “intellectual

disability,” and “scoliosis.” From the articles found and analyzed,

those deemed relevant to the topic of this manuscript and

valuable as sources of information were selected. The manuscript

cites 54 publications and scientific reports. Additionally, it

presents the case of a 15-year-old female patient who required

surgical treatment in the Department of Orthopedics and Spine

Surgery at the Medical University of Gdańsk due to an advanced

postural defect, specifically scoliosis.

5 Case presentation

A 15-year-old girl was admitted to the Department of

Orthopedics and Spine Surgery at the Medical University of

Gdansk, where she was diagnosed with PURA syndrome,

confirmed by genetic testing. She was admitted due to an

advanced postural defect in the form of idiopathic scoliosis

(Figures 3–5). This condition significantly impacted her quality

of life and caused considerable difficulties in maintaining proper

posture and movement.

A girl was born to young, healthy, and unrelated parents, with

no history of genetic diseases in the family and no exposure to

harmful environmental factors. She was a product of an

uncomplicated first pregnancy, delivered naturally at 41 weeks,

with a birth weight of 3,800 grams. She scored 8 points on the

Apgar scale. In the early childhood period, the child showed

symptoms in the form of motor development disorders

(difficulty lifting the head in the neonatal period, upper and

lower limbs), involuntary movements, unstable gait on a broad

base, as well as verbal communication disorders (the child only

FIGURE 2

Graphic diagram of the PURA protein structure (44).
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utters sounds, does not speak single words). Facial

dysmorphia, uncoordinated eye movements, and hypotonia

of the trunk muscles were also observed. Additionally,

feeding problems and symptoms of gastroesophageal reflux

were present, including a persistent cough (without other

features of an upper respiratory tract infection),

regurgitation of gastric contents, and empty belching.

Episodes of epileptic seizures were and still are present—for

FIGURES 3 AND 4

Radiological imaging study showing spinal deformity before surgical treatment.

TABLE 1 The selected RNA binds to the Pur-alpha protein, and it is important to understand what function this interaction serves.

Type of RNA Examples Function of interaction Source

mRNA Myelin Basic Protein mRNA, Amyloid Precursor Protein mRNA,

Microtubule-Associated Protein 1B mRNA

Transport to dendrites, local translation, regulation

of protein synthesis in neurons

(45)

Viral RNA Trans-Activation Response (TAR) element of Human

Immunodeficiency Virus Type 1, Regulatory RNA of JC Virus

Regulation of viral transcription, replication, and

RNA stability

(46)

Pathological repeat RNA Expanded GGGGCC hexanucleotide repeats in Chromosome 9

open reading frame 72 (C9orf72)

Binding to toxic RNA repeats, protection from

neurotoxicity associated with ALS/FTD

(46)

Long Non-Coding RNA (lncRNA) Brain Cytoplasmic RNA 1 (BC1), Brain Cytoplasmic RNA 200

(BC200)

Regulation of mRNA localization and translation in

neurons

(45)

Structured regulatory RNA RNA G-quadruplexes, stem-loop (hairpin) structures Recognition of RNA secondary structures, control

of translation efficiency

(47)

Stress granule-associated RNA Various mRNAs recruited to stress granules during cellular stress Formation and maintenance of stress granules,

translational arrest under stress conditions

(46)

RNA associated with fragile X mental

retardation protein (FMRP)

G-quadruplex-rich neuronal RNAs bound by FMRP Co-regulation of translation in neuronal projections

through RNA–protein complexes

(48)
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this reason, the girl is treated with valproic acid. Due to

delays in psychomotor development and decreased muscle

tone from infancy, she was referred to a genetic counseling

center for further evaluation. During the diagnostic process,

chromosomal abnormalities were examined, revealing a

normal karyotype of 46, XX. Conditions such as Prader-

Willi syndrome and spinal muscular atrophy were excluded.

Molecular studies conducted using next-generation

sequencing identified a mutation in one allele of the PURA

gene when the girl was 8 years old. Specifically, there was a

single nucleotide change (c.470T > G) in exon one, resulting

in a missense mutation that alters methionine to arginine

(p.Met157Arg). Bioinformatics analysis indicated that this

mutation is pathogenic and of de novo origin.

In the Orthopedic and Spine Surgery clinic, after properly

preparing the patient and obtaining the necessary consents

from the girl’s legal guardian for the proposed surgical treatment

and anesthesia, the procedure of posterior correction and

posterolateral stabilization was performed. The surgical

procedure and anesthesia were completed without

complications. During the recovery period, the child did not

experience any neurological deficits and was rehabilitated

successfully, resulting in a satisfactory postoperative outcome.

The girl was discharged from the clinic on the fifth day after

the operation for continued outpatient care. Nine weeks post-

operation, the patient attended a follow-up visit at the trauma

and orthopedic surgery clinic. An imaging study, a

toposcan of the spine, was conducted (see Figures 6, 7).

According to the consulting orthopedic surgeon, the results of

the operation were satisfactory. The girl continued her

rehabilitation program and gradually regained her mobility,

which her parents noted significantly improved her quality

of life.

6 Discussion

Our case illustrates the defining features of PURA syndrome,

such as hypotonia, motor and speech delays, epilepsy, and

scoliosis, as outlined in the literature (19, 30–34). However, it is

important to note that symptoms can vary among individuals.

For instance, Liu et al. (14) reported a newborn who experienced

feeding difficulties, lethargy, and respiratory failure—symptoms

that were not present in our patient. Additionally, while some

patients may show signs of multi-organ involvement, this was

not evident in our case. PURA syndrome is typically diagnosed

in childhood, but the age at which individuals are diagnosed can

vary from infancy to adulthood. One study indicated that the

average age of diagnosis is 7.4 years, with the youngest patient

being just 11 months old and the oldest being 27 years old (14).

Conditions that should be considered in the differential diagnosis

include Prader-Willi syndrome, myotonic dystrophy, spinal

muscular atrophy, and congenital muscular dystrophy (35).

Ongoing research suggests that there may be morphological

abnormalities associated with the central nervous system (36)

including inappropriate acoustic responses to unexpected sounds.

For instance, Mroczek et al. (37) described variations in nerve

fiber size and rapidly progressive muscular atrophy, which aligns

with our patient’s presentation of decreased muscle tone and

muscular atrophy. Common characteristics of PURA syndrome

include abnormal movements and varying severity of epilepsy

over time (32). Epilepsy is a frequent occurrence in PURA

syndrome, affecting around 50% of patients (33, 34). Our patient

has been diagnosed with epilepsy and is currently being treated

with valproic acid. The severity and types of seizure activity can

differ significantly, highlighting the phenotypic diversity

associated with PURA syndrome. Several studies have indicated

that apnea is particularly prevalent among newborns with PURA

syndrome (11–13) and may serve as a diagnostic indicator.

However, apneas were not observed in our case. Skeletal

abnormalities, such as scoliosis, are significant features of PURA

syndrome (38). In our patient, the worsening scoliosis negatively

impacted thoracic organ function, which was evident through

shallow breathing and deterioration in gas exchange, as

confirmed by acid-base balance analysis. Similar cases have

reported gastrointestinal disorders, such as reflux and

constipation, likely stemming from impaired motility (15, 39–41).

Though diagnosing PURA syndrome can be challenging, the

presence of characteristic symptoms should prompt appropriate

testing to confirm the diagnosis.

FIGURE 5

Computer tomography scan before surgical treatment.
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7 Conclusion

PURA syndrome is a rare genetic disorder characterized by

various systemic and organ-related symptoms. It includes specific

features such as speech disorders, difficulty following simple

commands, inadequate acoustic responses to unexpected sounds,

and feeding difficulties starting from the neonatal period. These

symptoms should prompt genetic testing to confirm the

diagnosis and allow for appropriate multidisciplinary

therapeutic management.

Early and rapid genetic testing in children with

developmental disorders is important because it makes it

possible to implement early psycho-motor rehabilitation and

early detection of additional complications, which in some

diseases coexist with a genetic disease. Thanks to genetic

testing, we can predict whether the next child also has a risk

of developing the disease. In addition, parents can prepare for

the presence of additional diseases and faster intervention is

possible (18, 38, 42, 43, 49–51).
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FIGURES 6 AND 7

Toposcan after surgical treatment of idiopathic scoliosis.
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