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Background: Heart failure (HF) in children under five years of age carries a high

risk of in-hospital mortality, yet existing pediatric risk assessment tools lack

specificity for this population. There is a pressing need for reliable,

interpretable prediction models tailored to pediatric HF.

Methods: We retrospectively analyzed 630 hospitalized children under five with

heart failure from 2013 to 2024. After excluding those with uncorrected

congenital heart disease or terminal comorbidities, 67 variables were assessed,

and seven key predictors were identified using the Boruta algorithm. Six

machine learning models were developed; the Extreme Gradient Boosting

(XGB) model was selected and interpreted using SHAP. External validation

included 73 additional cases.

Results: The XGB model achieved high predictive performance (AUC: 0.916

training, 0.851 internal validation, 0.846 external validation). The top predictors

were NT-proBNP, pH, PCT, LDH, WBC, creatinine, and platelet count. SHAP

analysis confirmed the clinical relevance of these variables.

Conclusion: This study presents a reliable, interpretable machine learning model

for predicting in-hospital mortality in young children with heart failure. It holds

promise for early risk stratification and timely intervention, potentially

improving outcomes in this high-risk population.
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pediatric heart failure, in-hospital mortality, machine learning, risk prediction,
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1 Introduction

For Heart failure (HF) in pediatric populations represents a significant global health

challenge, contributing substantially to mortality rates among children under five years

of age worldwide (1). In young children, the most common underlying etiologies of HF

include congenital heart disease and cardiomyopathy (2). Although the overall

incidence of pediatric HF is relatively low—estimated between 0.9 and 7.4 cases per

100,000 children annually—the condition carries a markedly high morbidity and

mortality burden. Reported in-hospital mortality rates among pediatric HF patients

range from 7% to as high as 26%, particularly in younger children or those with

complex comorbidities (3, 4). In the United States alone, more than 14,000 pediatric
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hospitalizations annually are attributed to heart failure,

highlighting its substantial clinical impact relative to its low

incidence (5). While the absolute burden of HF in children is

lower than that observed in adult populations, affected pediatric

patients often demonstrate greater severity of illness. Children

with HF demonstrate significantly higher resource utilization—

including ICU admissions, longer hospital stays, and mechanical

circulatory support—than adults with HF. Moreover, mortality

rates for children with HF in emergency departments and

inpatient settings are frequently higher than those reported for

adults, reflecting both the clinical complexity and fragility of the

pediatric HF population (6).

These findings highlight the urgent need for improved risk

stratification tools tailored to the pediatric HF context,

particularly for children under five who are at heightened risk of

rapid deterioration. Nonetheless, widely used pediatric risk scores

such as PRISM-III and PIM-2 offer limited prognostic insight, as

they are not specifically designed for HF (7, 8). This further

reinforces the necessity for risk assessment tools specifically

tailored to pediatric HF. In recent years, advancements in

artificial intelligence have expanded the application of machine

learning (ML) in clinical research. ML techniques excel at

analyzing complex datasets, enhancing disease diagnosis,

prognostication, and treatment outcome prediction. Unlike

conventional statistical methods, ML algorithms can decipher

intricate nonlinear relationships and uncover previously

unrecognized associations, thereby identifying prognostic patterns

that may be overlooked by traditional scoring systems (9).

In cardiovascular medicine, ML algorithms have demonstrated

success in prognostic prediction for adult populations with HF and

other cardiac conditions (10–12). However, research on ML-based

risk modeling for pediatric HF remains scarce, with existing models

often limited by poor interpretability and generalizability. To

address this gap, this study aims to develop and validate an

optimized ML-based mortality risk prediction model using a

comprehensive dataset to predict in-hospital mortality among

children under five years of age with HF. Furthermore, SHapley

Additive exPlanations (SHAP) will be employed to improve

interpretability by quantifying the contribution of individual

clinical features to mortality risk. This dual approach aims to

offer a robust, interpretable framework to support clinical

decision-making and personalized care in this

vulnerable population.

2 Methods

2.1 Study design and participant

This study enrolled hospitalized children under 5 years with

heart failure who were admitted to the First Affiliated Hospital of

Xinjiang Medical University between January 2013 and

December 2024. The etiologies of heart failure included

congenital heart disease, cardiomyopathy, myocarditis, and

systemic or inflammatory causes such as severe infection or

metabolic derangements. Exclusion criteria comprised:

uncorrected major congenital heart disease (physiological single

ventricle or unoperated tetralogy of Fallot), non-cardiac terminal

illnesses (metastatic malignancies or irreversible genetic

disorders), and incomplete medical records. After applying

inclusion and exclusion criteria, 630 eligible patients were

ultimately enrolled and randomly allocated in a 7:3 ratio to

either the training set (n = 441) or validation set (n = 189). The

study protocol received ethical approval from the Institutional

Review Board of the First Affiliated Hospital of Xinjiang Medical

University (Ethics No.: 20220309-196). All methods were

performed in accordance with the relevant guidelines and

regulations. Given the retrospective nature of this investigation,

the ethics committee waived the requirement for informed

consent from pediatric participants and their legal guardians.

A comprehensive flowchart detailing participant screening and

study procedures is provided in Figure 1.

2.2 Data extraction

A total of 67 variables were collected from the electronic

medical record system, covering demographic data (sex, ethnicity,

age), clinical symptoms (New York Heart Association

classification, dyspnea, congenital heart disease, consciousness,

edema, cardiac murmur, lung rales, fever), vital signs (heart rate,

respiratory rate, blood pressure, body mass index), laboratory

tests (hematology, liver and renal function, lipid profile,

electrolytes, glucose, lactic dehydrogenase (LDH), N-terminal

pro-brain natriuretic peptide (NT-ProBNP), procalcitonin (PCT),

coagulation markers, potential of hydrogen (pH), and cardiac

ultrasound parameters (stroke volume, cardiac output, atrial and

ventricular dimensions, ejection fraction).

2.3 Feature screening

In this study, we employed the Boruta algorithm—a robust and

widely adopted feature selection method based on random forest—

to pre-select features in the training set. The Boruta algorithm

identifies key predictive variables by creating shadow features

(randomized copies of original features) and evaluating the

importance of original features against these shadows using

random forest classification. This approach ensures retention of

statistically significant variables, while reducing redundancy and

overfitting—making it particularly suitable for complex clinical

datasets (13, 14).

2.4 Model construction and verification

Features selected via Boruta were input into six distinct

machine learning models: Naive Bayes (NB), Logistic Regression

(LR), Decision Tree (DT), Extreme Gradient Boosting (XGB),

Support Vector Machine (SVM), and Light Gradient Boosting

Machine (LGBM), to optimize hyperparameters for

each algorithm.
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Model performance was evaluated using confusion matrix

metrics, including accuracy, the area under the curve (AUC) of

the receiver operating characteristic (ROC) curve, recall,

specificity, and the Brier score. The Brier score quantifies the

magnitude of deviation between predicted and actual outcomes,

with lower values indicating superior predictive performance

(15). ROC curve analysis and AUC comparisons were conducted

to identify the highest-performing model, complemented by

decision curve analysis and calibration curves to assess

clinical utility.

Feature importance ranking was performed to quantify the

contribution of individual variables to model outcomes. Shapley

values from cooperative game theory were applied to determine

each input variable’s influence on model predictions (16, 17). To

address the interpretability challenges inherent in machine

learning models, SHAP was applied to the optimal model to

quantify the contribution of each feature, thereby enhancing

clinical transparency and understanding. Global SHAP values

were visualized as bar plots to illustrate the average impact of

each feature. SHAP was utilized to elucidate predictions

generated by the optimal model.

2.5 External validation

For external validation, 73 cases (including 11 deaths) of

children under 5 years with heart failure treated at Urumqi

Youai Hospital were enrolled in the external validation cohort.

The external validation cohort was derived from different

hospitals within the same geographical region, demonstrating

clinical characteristics comparable to those of the training set.

We applied the data from the external validation set to the

model constructed from the training set, subsequently evaluating

the model’s performance, goodness-of-fit, and clinical utility

through the generation of ROC curves, calibration curves, and

decision curve analysis curves.

2.6 Statistical analysis

Data processing and statistical analyses were performed using R

(version 4.4.2) and Python (version 3.11.7). Continuous variables

with normal distributions are presented as mean ± standard

deviation, while skewed data are reported as median and

interquartile range. Student’s t-test was applied for normally

distributed continuous variables, and the Mann–Whitney U-test

for non-parametric comparisons. Categorical variables are

expressed as percentages or frequencies, with group differences

assessed via chi-square tests. Statistical significance levels were

established at P < 0.05.

3 Results

3.1 Patient characteristics

Based on inclusion and exclusion criteria, 630 eligible patients

were enrolled and divided into training and validation sets at a 7:3

ratio (Supplementary Table S1). Among the 630 children under 5

years with heart failure included in the analysis, 91 experienced

FIGURE 1

Flowchart of the participants included in the study.
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in-hospital mortality, yielding a mortality rate of 14%. Significant

differences were observed between survivors and non-survivors

across multiple parameters (Table 1). The Spearman correlation

analysis method was used to evaluate inter-indicator correlations

within the models (Supplementary Figure S1).

3.2 Feature selection

Feature selection using the Boruta algorithm identified seven

optimal predictors from 67 candidate features: NT-ProBNP,

platelet count (PLT), pH, LDH, PCT, creatinine, and white blood

cell count (WBC) (Figure 2). These variables demonstrated stable

predictive value across multiple model iterations (Supplementary

Figure S2). Restricted cubic spline analysis revealed the following

associations (Figure 3): creatinine exhibited a positive correlation

with mortality (P = 0.026), with a steep initial rise followed by

stabilization; PCT showed a U-shaped relationship with mortality

(P = 0.006), though its nonlinear association was not significant

(P = 0.653); LDH, NT-ProBNP, and WBC were positively

correlated with mortality, while pH inversely correlated with

mortality (P = 0.002), displaying a gradual decline from higher

values. PLT demonstrated a decreasing association with mortality

within the 0–400 range before stabilizing, with no significant

nonlinear relationship (P = 0.076), suggesting differential effects

depending on its levels.

3.3 Performance of 6 machine learning
prediction models

Six machine learning models—XGB, LGBM, SVM, DT, LR,

and NBM—were developed to predict in-hospital mortality. After

hyperparameter tuning, models were trained on the training set

and evaluated on the validation set. Among these, the XGB

model achieved the highest performance, with training and

validation AUCs of 0.916 and 0.851, respectively (Figures 4A,B).

Calibration curves confirmed strong alignment between predicted

probabilities and observed outcomes for XGB (Figures 4C,D),

while decision curve analysis demonstrated superior clinical net

benefit across most threshold probabilities (Figures 4E,F).

Precision-recall curves further validated the model’s robustness

(Figures 4G,H). In the training set, XGB exhibited a Brier score

of 0.072, sensitivity of 0.776, specificity of 0.922, and F1-score of

0.703; corresponding validation metrics were 0.080, 0.750, 0.891,

and 0.600, respectively (Figure 5 and Table 2). The lowest Brier

score indicated high accuracy and generalizability for mortality

prediction. A violin plot comparing feature importance across

models highlighted XGB and DT as the strongest predictors of

mortality, with XGB showing the highest reliability (peak value:

0.4; confidence interval: up to 1.0) (Supplementary Figure S3).

XGB was ultimately selected as the optimal model.Further

technical details regarding the XGB model’s configuration,

performance metrics, and analytical considerations are provided

in Supplementary Material 1.

3.4 Model interpretability

SHAP analysis was applied to visualize feature contributions in

the XGB model. The mean absolute SHAP values (Figure 6A)

ranked NT-ProBNP as the most influential predictor, followed by

pH, PCT, LDH, WBC, creatinine, and PLT. Directional impacts

of features on individual predictions are detailed in Figure 6B,

where yellow bars indicate features increasing mortality risk and

purple bars denote protective effects. For example, in a deceased

patient (Figure 6C), elevated NT-ProBNP (7,220; SHAP +1.51),

LDH (1,888; +0.846), PCT (5.74; +0.337), and pH (7.32; +0.251)

collectively shifted the prediction toward mortality {final output:

f (x) = 1.15; baseline: E [ f (x)] =−1.93}. Conversely, in a survivor

(Figure 6D), lower NT-ProBNP (1,900; SHAP −0.755), higher

PLT (535; −0.336), and other favorable values reduced mortality

risk [final output: f (x) =−3.65].

3.5 External validation

To verify the model’s generalization and practical value, an

external hospital database was used (Supplementary Table S2).

The model showed superior predictive performance: the ROC

curve (Figure 7A) had an AUC of 0.85, demonstrating good

discrimination for death risk; the calibration curve (Figure 7B)

showed the XGB model’s predicted mortality probability aligned

with actual outcomes. The decision curve analysis curve

(Figure 7C) indicated the model provided higher net clinical

benefit than “no intervention” and “universal intervention”

strategies in predicting mortality. Figure 7D’s feature analysis via

mean SHAP values visualized contributions of key predictors,

guiding clinical decisions on death risk assessment. The model

demonstrated favorable performance across key metrics including

brier score, sensitivity, specificity, and F1 score (Table 2).

4 Discussion

In this study, we developed an XGB machine learning model to

predict in-hospital mortality among children under five years old

with HF, and demonstrated robust performance across both

internal and external validation cohorts. The model achieved an

AUC of 0.916 in the training set and 0.851 in the internal

validation set, significantly outperforming other commonly used

models. Notably, performance remained stable in an external

validation cohort (AUC = 0.846), indicating strong

generalizability and the ability to effectively discriminate between

survivors and non-survivors in this high-risk population. This

level of accuracy is comparable to, or exceeds, that reported in

previous pediatric mortality prediction studies. For instance, Du

et al. reported an XGB-based model that achieved a sensitivity of

78.5% and specificity of 82.4% for predicting postoperative

mortality in children with congenital heart disease. Our model

demonstrated similar performance, suggesting that it is capable

of identifying the majority of fatal cases while minimizing false
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TABLE 1 Baseline characteristics of children under 5 years with
heart failure.

Variables Survival group
(n = 539)

Death group
(n= 91)

P

Sex, % 0.239

Female 249 (46.2) 36 (39.6)

Male 290 (53.8) 55 (60.4)

Ethnic group, % 0.053

Han Chinese 186 (34.5) 41 (45.1)

Ethnic minorities 353 (65.5) 50 (54.9)

Age (years) 0.7 (0.3, 1.7) 0.6 (0.3, 2.1) 0.897

NYHA, % <0.001

1 69 (12.8) 18 (19.8)

2 258 (47.9) 18 (19.8)

3 41 (7.6) 21 (23.1)

4 171 (31.7) 34 (37.4)

Dyspnea, % 0.506

No 403 (74.8) 71 (78)

Yes 136 (25.2) 20 (22)

CHD, % 0.393

No 475 (88.1) 83 (91.2)

Yes 64 (11.9) 8 (8.8)

Consciousness, % 0.105

No 467 (86.6) 73 (80.2)

Yes 72 (13.4) 18 (19.8)

LE-Edema, % 0.166

No 502 (93.1) 81 (89)

Yes 37 (6.9) 10 (11)

Card-Murmur, % 0.698

No 344 (63.8) 60 (65.9)

Yes 195 (36.2) 31 (34.1)

Lung-Moist, % 0.638

No 264 (49) 47 (51.6)

Yes 275 (51) 44 (48.4)

HR (bpm) 145.4 ± 28.1 143.1 ± 33.8 0.480

Fever, % 0.359

No 364 (67.5) 57 (62.6)

Yes 175 (32.5) 34 (37.4)

RR (breaths/min) 40.1 ± 14.2 37.8 ± 14.7 0.145

DBP (mmHg) 55.8 ± 12.5 54.7 ± 16.6 0.470

SBP (mmHg) 91.5 ± 15.1 92.3 ± 18.8 0.644

BMI (kg/m2) 15.4 ± 2.7 15.9 ± 2.5 0.094

WBC (×10⁹/L) 11.4 (8.0, 15.1) 12.2 (7.9, 18.5) 0.085

RBC (×1012/L) 4.1 ± 0.9 3.9 ± 1.0 0.035

Lymph (×10⁹/L) 4.5 (2.9, 6.7) 4.9 (2.6, 6.8) 0.938

Mono (×10⁹/L) 0.8 (0.5, 1.2) 0.8 (0.5, 1.5) 0.837

Neut (×10⁹/L) 4.3 (2.4, 7.3) 5.5 (2.5, 8.8) 0.140

Hb (g/L) 103.1 ± 22.4 97.1 ± 24.7 0.021

PLT (×10⁹/L) 348.6 ± 167.1 277.1 ± 161.1 <0.001

ALT (U/L) 26.0 (18.0, 45.7) 29.0 (15.5, 51.2) 0.846

AST (U/L) 47.3 (34.8,72.1) 47.1 (36.2,105.3) 0.208

GGT (U/L) 25.3 (14.0, 48.7) 28.2 (12.4, 65.7) 0.757

DBIL (μmol/L) 1.6 (0.3, 3.3) 3.2 (1.0, 5.3) <0.001

IBIL (μmol/L) 6.8 (4.2, 10.9) 6.8 (4.3, 12.7) 0.554

ALB (g/L) 36.6 ± 7.0 34.3 ± 7.6 0.004

GLO (g/L) 24.6 ± 6.4 23.7 ± 7.2 0.237

(Continued)

TABLE 1 Continued

Variables Survival group
(n = 539)

Death group
(n= 91)

P

Crea (μmol/L) 25.1 (19.4, 33.0) 28.0 (20.6, 40.7) 0.017

UA (μmol/L) 273.5 ± 152.2 332.8 ± 182.7 <0.001

TC (mmol/L) 3.1 ± 1.3 2.8 ± 1.3 0.047

TG (mmol/L) 1.3 (0.9, 1.7) 1.1 (0.8, 1.6) 0.091

HDL-C (mmol/L) 0.8 ± 0.4 0.8 ± 0.4 0.157

LDL-C (mmol/L) 1.9 ± 1.0 1.7 ± 0.9 0.029

K+ (mmol/L) 4.1 ± 0.7 4.3 ± 1.2 0.022

Na+ (mmol/L) 136.4 ± 5.9 135.8 ± 6.3 0.440

Cl− (mmol/L) 102.6 ± 7.0 102.9 ± 7.4 0.697

Ca (mmol/L) 2.3 ± 0.3 2.2 ± 0.3 0.009

P (mmol/L) 1.6 ± 0.5 1.7 ± 0.8 0.127

Mg2+ (mmol/L) 0.9 ± 0.2 1.0 ± 0.2 0.002

Glu (mmol/L) 5.6 ± 2.5 5.6 ± 3.1 0.804

LDH (U/L) 349.5 (270.3, 527.0) 397.6 (283.6, 766.2) 0.006

ALP (U/L) 174.8 (123.3, 247.1) 160.0 (109.9, 243.8) 0.408

ChE (U/L) 5,563.1 ± 2,129.2 4,898.2 ± 2,224.7 0.006

Cys-C (μmol/L) 1.2 ± 0.5 1.2 ± 0.7 0.153

TT (s) 24.7 ± 4.5 27.5 ± 11.3 <0.001

PT (s) 14.2 ± 8.7 16.7 ± 8.6 0.011

D-Dimer (μg/L) 617.0 (285.5, 1,657.5) 818.0 (465.5, 2,535.5) 0.005

pH 7.4 ± 0.2 7.3 ± 0.2 <0.001

GSP (mmol/L) 2.1 ± 0.6 2.1 ± 0.5 0.819

PCT (ng/ml) 0.2 (0.1, 1.4) 0.5 (0.1, 3.6) <0.001

NT-ProBNP

(pg/ml)

2,646.0 (1,403.5, 3,892.0) 6,661.0 (4,129.0,

8,467.0)

<0.001

CK (U/L) 85.0 (46.5, 181.0) 105.3 (50.1, 254.1) 0.084

Ccr (ml/min) 50.7 (32.5, 73.2) 43.0 (25.3, 81.2) 0.385

GFR (ml/min/

1.73m2)

750.4 (459.6, 1,089.5) 647.5 (393.7, 937.4) 0.050

SV (ml) 16.3 ± 10.6 16.7 ± 10.2 0.755

CO (L/min) 2.0 ± 1.2 2.0 ± 1.1 0.990

LAD (mm) 17.5 ± 5.4 17.4 ± 5.6 0.889

LVESD (mm) 17.7 ± 7.2 16.8 ± 6.1 0.298

LVEDD (mm) 25.9 ± 8.2 25.5 ± 7.4 0.618

LVEF (%) 63.4 ± 12.5 65.8 ± 10.2 0.079

IVS Thickness

(mm)

4.3 ± 1.3 4.5 ± 1.4 0.113

LVPW Thickness

(mm)

4.2 ± 1.2 4.4 ± 1.3 0.245

RAD (mm) 19.2 ± 5.8 19.3 ± 6.6 0.827

RV Internal Dim

(mm)

11.4 ± 3.4 11.1 ± 3.1 0.565

Data are mean ± SD or N (%). NYHA, New York Heart Association; CHD, congenital heart

disease; HR, heart rate; RR, respiratory rate; DBP, diastolic blood pressure; SBP, systolic blood

pressure; BMI, body mass index; WBC, white blood cell count; RBC, red blood cell count;

Lymph, lymphocyte count; Mono, monocyte count; Neut, neutrophil count; Hb,

hemoglobin; PLT, platelet count; ALT, alanine transaminase; AST, aspartate transaminase;

GGT, gamma-glutamyl transferase; DBIL, direct bilirubin; IBIL, indirect bilirubin; ALB,

albumin; GLO, globulin; Crea, creatinine; UA, uric acid; TC, total cholesterol; TG,

triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein

cholesterol; K+, potassium; Na+, sodium; Cl−, chloride; Ca, calcium; P, phosphorus; Mg2+,

magnesium; Glu, glucose; LDH, lactic dehydrogenase; ALP, alkaline phosphatase; ChE,

cholinesterase; Cys-C, cystatin C; TT, thrombin time; PT, prothrombin time; pH, potential

of hydrogen; GSP, glycated serum protein; PCT, procalcitonin; NT-ProBNP, N-terminal

pro-brain natriuretic peptide; CK, creatine kinase; Ccr, creatinine clearance; GFR,

glomerular filtration rate; SV, stroke volume; CO, cardiac output; LAD, left atrial diameter;

LVESD, left ventricular end-systolic diameter; LVEDD, left ventricular end-diastolic

diameter; LVEF, left ventricular ejection fraction; IVS Thickness, interventricular septum

thickness; LVPW Thickness, left ventricular posterior wall thickness; RAD, right atrial

diameter; RV Internal Dim, right ventricular internal dimension.
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positives among survivors (18). Such performance represents a

notable improvement over traditional logistic regression-based

tools (7) and highlights the added value of machine learning in

integrating and analyzing complex pediatric datasets.

Beyond overall accuracy, an important finding lies in the

model’s identification of top predictive features: notably NT-

proBNP, blood pH, PCT, LDH, WBC, creatinine, and PLT.

These variables reflect well-established pathophysiological

mechanisms associated with critical illness and offer insight into

risk stratification in young HF patients. NT-proBNP emerged as

the most influential predictor—a result aligned with extensive

evidence of its prognostic utility in both adult and pediatric heart

failure (19). The American Heart Association has emphasized

NT-proBNP as a key biomarker for assessing severity and

prognosis in pediatric HF (20). In a study by Chowdhury et al.,

an NT-proBNP level ≥520.2 pg/ml predicted moderate-to-severe

HF (≥ class II) with 83% sensitivity and 91% specificity. Median

NT-proBNP in non-survivors (11,681.01 pg/ml) was significantly

higher than in survivors (839.4 pg/ml, p < 0.001) (21). A recent

meta-analysis further confirmed the association between elevated

NT-proBNP and increased mortality risk, reporting a hazard

ratio of 1.65 (95% CI: 1.55–1.76) (22). The strong contribution of

NT-proBNP in our model reinforces its clinical relevance.

A child presenting with markedly elevated levels should be

regarded as high-risk and considered for early intensive

management or ICU monitoring. Likewise, blood pH was

identified as a top feature, indicating the prognostic relevance of

metabolic acidosis. A recent review highlighted compelling

evidence linking critically low arterial pH (mean 6.15) to sudden

infant death, underscoring its role in reflecting severe

physiological instability and end-organ failure (23).

Inflammatory and tissue injury markers also featured

prominently. PCT, a well-known biomarker of bacterial

infection and sepsis, is frequently elevated during systemic

inflammatory responses (24). Its inclusion in our model

suggests that infectious complications or systemic inflammation

may be common precipitants of decompensation in pediatric

HF. Elevated PCT levels on admission may help identify

patients in early sepsis or with infections exacerbating cardiac

dysfunction. Prior studies have shown that high PCT is

associated with increased risk of organ dysfunction and

mortality in critically ill pediatric populations (25, 26).

Similarly, LDH—a nonspecific enzyme released during tissue

breakdown or hypoxia—was identified as a strong predictor.

LDH often increases in conditions involving multi-organ injury,

hemolysis, or hepatic congestion, all of which are common in

advanced heart failure (27, 28). In a cohort of 4,343 critically ill

children, Wang et al. found that LDH had the highest

predictive accuracy for in-hospital mortality (AUC = 0.729) and

remained independently associated with death after adjusting

for age and organ dysfunction (OR = 2.45, 95% CI: 1.84–3.24)

(29). Furthermore, LDH was significantly associated with

30-day mortality and ICU length of stay, surpassing traditional

cardiac biomarkers in predictive performance. The combination

FIGURE 2

Feature selection based on Boruta algorithm. Green represents acceptable variables.
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FIGURE 3

The association between variables and hospital mortality. Creatinine (A), PCT (B), pH (C), LDH (D), PLT (E), NT-proBNP (F), WBC (G): the restricted cubic

splines with four knots. The horizontal dashed line represents the reference OR of 1.0.
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FIGURE 4

Establishment and validation of the machine learning prediction model. (A,B) Present the ROC curves. (C,D) Show the calibration curves. (E,F) Display

the decision curve analysis. (G,H) Illustrate the recall-precision curves.
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of low pH and elevated LDH effectively captured the clinical

profile of systemic shock and widespread cellular injury. This

represents an especially ominous pattern in children with

underlying HF.

Creatinine elevation reflects impaired renal function, which in

HF patients may result from low cardiac output or venous

congestion (30). A landmark meta-analysis of 16 studies

involving over 80,000 HF patients reported a 15% increased risk

FIGURE 5

Performance metrics comparison across Six machine learning models. (A,B) Represent the training set and the validation set, respectively. The

evaluated metrics include F1 score, recall, precision, negative predictive value (Neg Pred value), positive predictive value (Pos Pred value),

specificity, and sensitivity.
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TABLE 2 Predictive performances of six machine learning models in training and validation sets for in-hospital mortality prediction.

Model AUC (95% CI) Brier score Sensitivity Specificity Precision Recall F1 Pos Pred value Neg Pred value

Training set

LR 0.732 (0.670, 0.794) 0.117 0.821 0.54 0.242 0.821 0.374 0.242 0.944

DT 0.830 (0.770, 0.889) 0.075 0.759 0.933 0.612 0.759 0.678 0.612 0.965

XGB 0.916 (0.878, 0.954) 0.072 0.776 0.922 0.642 0.776 0.703 0.642 0.958

SVM 0.637 (0.560, 0.715) 0.128 0.358 0.877 0.343 0.358 0.35 0.343 0.884

LGBM 0.871 (0.826, 0.916) 0.088 0.761 0.845 0.468 0.761 0.58 0.468 0.952

NBM 0.769 (0.706, 0.832) 0.124 0.672 0.799 0.375 0.672 0.481 0.375 0.931

Validation set

LR 0.683 (0.560, 0.806) 0.104 0.625 0.552 0.169 0.625 0.265 0.169 0.91

DT 0.724 (0.577, 0.870) 0.092 0.522 0.928 0.5 0.522 0.511 0.5 0.933

XGB 0.851 (0.760, 0.942) 0.080 0.75 0.891 0.5 0.75 0.6 0.5 0.961

SVM 0.516 (0.382, 0.651) 0.111 0.208 0.836 0.156 0.208 0.179 0.156 0.879

LGBM 0.778 (0.665, 0.890) 0.093 0.583 0.83 0.333 0.583 0.424 0.333 0.932

NBM 0.736 (0.618, 0.854) 0.108 0.542 0.782 0.265 0.542 0.356 0.265 0.921

External validation set

XGB 0.846 (0.538–1.000) 0.069 0.500 1.000 1.000 0.500 0.667 1.000 0.929

FIGURE 6

The shapley additive exPlanations values of the best prediction model, XGB. (A) Average impact of features on model predictions. (B) Detailed impact

analysis of each feature SHAP interpretation of the XGB model. Every dot in a row symbolizes a patient, and its color denotes the feature value—yellow

denotes a value that is greater and purple denotes a value that is lower. The more dispersed the points of the graph represent the greater the impact of

the variables on the model. (C,D) Personalized predictions for a patient. The risk and protective variables are symbolized by the yellow and plum bars.

Higher functional significance is indicated by longer bars.
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of mortality per 0.5 mg/dl increase in creatinine, with more than a

twofold mortality risk in patients with moderate-to-severe renal

dysfunction (creatinine ≥1.5 mg/dl) (31). Our findings confirm

that elevated creatinine in children is associated with increased

mortality risk, likely reflecting severe hemodynamic compromise,

renal hypoperfusion, or concurrent nephrotoxic injury.

Elevated WBC count is commonly linked to systemic

inflammation or infection, which are frequent precipitants of

decompensation in pediatric heart failure. In addition to WBC,

platelet count has shown independent prognostic significance.

A large retrospective analysis of the MIMIC-IV database revealed

that thrombocytopenia was strongly associated with 28-day

mortality in sepsis patients, with a nearly twofold increase in risk

for those with platelet counts below 50 × 109/L (32). Notably,

WBC and platelet indices can be jointly interpreted as markers

of the host hematologic response to critical illness. The platelet-

to-white cell ratio has been shown to outperform other complete

blood count–derived indices in predicting mortality in several

acute inflammatory diseases, including acute heart failure. Lower

platelet-to-white cell ratio, reflecting elevated WBC and/or

thrombocytopenia, was significantly associated with short-term

mortality and in some cohorts exceeded age in prognostic

relevance (33). Collectively, these findings illustrate that our

model not only identifies clinically relevant biomarkers associated

with pediatric HF mortality but also mirrors established

physiological mechanisms, reinforcing its potential as a clinically

meaningful tool.

A key strength of our study was the use of SHAP analysis to

enhance transparency and bridge the gap between algorithmic

predictions and clinical reasoning. A common criticism of

machine learning in clinical contexts is the “black box” nature of

many algorithms, which can limit clinician trust and uptake (34).

By applying SHAP, we were able to deconstruct each prediction

into individual feature contributions, thereby improving

transparency in decision-making (35). For example, elevated NT-

proBNP and low pH may emerge as dominant contributors to a

high-risk classification, whereas normal WBC count may offset

risk. This level of interpretability ensures that the model’s

predictions are aligned with established clinical reasoning,

increasing its potential for integration into real-world practice.

FIGURE 7

External validation shows excellent performance in models. (A) XGB validation set ROC curve. (B) XGB validation set calibration curve. (C) XGB

validation set decision curve analysis curve. (D) Average impact of features on model predictions.
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When embedded within hospital systems, interpretable ML

models like ours could actively support real-time decision-

making by alerting clinicians to high-risk pediatric HF patients

and guiding timely intervention. In resource-limited

environments, ML-powered triage systems could help allocate

scarce critical care resources—such as ICU beds or surgical

capacity—to those pediatric patients most likely to benefit (36,

37). At a broader level, such tools may support global health

equity by addressing preventable HF-related mortality among

children under five. Given that our model relies solely on

routinely collected laboratory and clinical variables, it can be

integrated into electronic health record (EHR) systems to

generate automated risk scores at the point of admission. Such

implementation could allow frontline providers to prioritize

high-risk patients early and streamline escalation-of-care

decisions. Our model thus functions not only as an early

warning system, but also as a strategic tool for informing both

clinical practice and policy development aimed at achieving

Sustainable Development Goal 3.2 (38).

Although the model performed well, certain methodological

limitations remain. Boruta may underrepresent weak predictors

in imbalanced data, and early stopping in XGB, while helpful,

does not fully eliminate overfitting risk given the low event rate.

5 Limitations

Despite the promising results, our study has several important

limitations. First, it was retrospective in nature, relying on

observational medical record data. This introduces potential for

missing data, documentation errors, and residual confounding, and

limits causal inference. Second, although we performed external

validation, the size of the external cohort was relatively small.

Larger and more heterogeneous validation cohorts—across multiple

institutions and geographic regions—are needed to confirm

generalizability. Further multi-center validation studies are currently

being planned. Third, the presence of unmeasured confounders

cannot be excluded. Variables such as nutritional status, pre-

admission medication history, and timing of hospital presentation

may influence disease severity, treatment decisions, and outcomes,

potentially affecting model performance. Lastly, only basic

echocardiographic parameters (e.g., ejection fraction, chamber size)

were consistently available, while advanced imaging metrics (e.g.,

strain imaging, tissue Doppler, cardiac MRI) were largely missing

and thus excluded, which may limit the model’s physiological depth.

6 Conclusion

This study developed and externally validated an XGB-based

model to predict in-hospital mortality in children under five with

heart failure, achieving high accuracy and generalizability. By

identifying clinically meaningful predictors and incorporating

SHAP analysis, the model offers both predictive performance and

interpretability. These findings support its potential as a clinical

decision-support tool for early risk stratification, guiding

interventions and resource allocation. Further prospective

studies are warranted to confirm its utility across diverse

healthcare settings.
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