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Objective: Childhood obesity has become a global public health crisis. Previous

studies have shown that nutritional supplementation during pregnancy may be

protective against offspring obesity. However, the research in this area is still

emerging and the impact of moderators, such as birth weight, upon outcomes

has not been fully explored. This study aimed to examine the combined effect

of maternal supplementation with iron, calcium, folic acid, and multivitamin

during pregnancy on the risk of obesity in Chinese preschoolers born

macrosomia.

Methods: A total of 6,031 singleton children, born macrosomia, aged 3–6.5

years old were recruited from Longhua District in Shenzhen of China in 2021.

Their mothers were asked to complete a structured questionnaire for

collecting the sociodemographic characteristics of the child and parents, the

child's birth-related characteristics, and maternal supplementation with iron,

calcium, folic acid, and multivitamins during pregnancy. The children's weight

and height were measured using a standardized method by well-trained

medical staff from the Women’s and Children’s Hospital of Longhua District of

Shenzhen.

Results: After controlling for confounding variables, including other nutrients,

the results of a series of logistic regressions showed that only iron

supplementation (AOR= 0.75, 95% CI = 0.60–0.92) during pregnancy was

negatively associated with the presence of obesity in preschoolers born

macrosomia in boys. In contrast, there was no independent associations

between maternal prenatal ingestion of iron, calcium, folic acid, or

multivitamin supplements and obesity in preschool girls born macrosomia.

Examination of interaction effects through crossover analyses showed that

maternal supplementation with both iron and calcium (AOR=0.68, 95% CI =

0.49–0.94), and both iron and multivitamins (AOR= 0.64, 95% CI = 0.48–0.86)

during pregnancy significantly reduced the risk of obesity in male preschoolers

born macrosomia. Furthermore, interaction analysis found a multiplicative

interaction between maternal iron and multivitamin supplementation during

pregnancy on the risk of obesity in male preschoolers born macrosomia (IOR

= 0.52, 95% CI = 0.35–0.79).
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Conclusion: Our findings suggest that iron supplementation during pregnancy

may reduce the risk of obesity in preschoolers born macrosomia in boys, with

this effect enhanced with the combined ingestion of calcium and multivitamin

supplementation.

KEYWORDS

obesity, supplementation during pregnancy, iron, calcium, folic acid, multivitamin,

preschoolers, macrosomia

1 Introduction

The worldwide public health crisis of childhood obesity has

become a reality. Overweight and obese children had an increase in

prevalence from 4.2% in 1990 to 6.7% in 2010, as revealed by

cross-sectional studies in 144 countries, which represents a relative

increase of 60% (1). In 2016, the number of obese girls and boys

worldwide exceeded 50 million and 74 million respectively (2). By

2030, it is expected that the prevalence rate of obesity in Chinese

children aged 0–7 will hit 6.0%, meaning that the prevalence of

obesity among Chinese children will rise to 6.64 million (3). Wang

et al. conducted a survey in Chinese aged 3–7 years and found that

there was a 10.38% obesity prevalence rate among preschoolers,

with the detection rate of obesity in boys was twice as high as that

in girls (4). Overweight or obese children are more prone to

psychiatric disorders such as depression, anxiety, and low self-

esteem (5, 6), and more susceptible to a variety of metabolic and

cardiovascular diseases including hypertension, hyperlipidemia, and

type 2 diabetes mellitus (7–10). Moreover, a cohort study found

that about three-fourths of overweight or obese children continued

to have excess weight into adulthood (11). As such, obesity in

childhood results in significant lifetime economic and social costs,

including increased spending on health care, reduced wages, and

reduced likelihood of employment (12–15). It is therefore critical to

identify risk and protective factors for childhood obesity to steer the

creation of potent public health measures.

Childhood obesity is the result of a multifactorial combination

of genetics, prenatal and postnatal lifestyle, and the environment.

In terms of genetic factors, the genes most studied in relation to

obesity include the FTO and MC4R genes, while the TCF7l,

MTNR1B, ADRB3, INSIG2, APOB48R genes have been related to

glucose and lipid metabolism (16). Prenatal factors like mother’s

pre-pregnancy BMI and father’s BMI have been strongly

associated with offspring obesity (17). The risk of obesity

increases for children born via cesarean section compared to

those born via vaginal delivery (18, 19). In addition, rapid

maternal weight gain during pregnancy, environmental tobacco

exposure and maternal alcohol consumption affect fetal

metabolism and growth and further result in increased rates of

childhood obesity (20–23). Similarly, excessive catch-up growth

of premature infants and low birth weight infants can lead to

childhood obesity (24). Furthermore, an earlier meta-analysis

demonstrated that macrosomia was an independent risk factor

for obesity (25). In addition, postnatal influences on childhood

obesity have been well studied. For example, the short duration

of breastfeeding, irrational feeding practices, short sleep, low

physical activity and long screen time exacerbated the likelihood

of obesity in children (26–28).

Macrosomia, a term used to describe a fetus that weighs more

than or equal to 4 kg at birth, is associated with gestational

diabetes mellitus, pre-pregnancy weight, weight gain during

pregnancy, and nutritional factors during pregnancy (29). In

recent years, the prevalence of macrosomia has been 8.7% in

China (30). A similar incidence rate of 8.07% has recently been

found in the United States (31). These high incidence rates are

concerning given that macrosomia increases the incidence of

cesarean section, perinatal and neonatal complications, compared

with normal birth weight fetuses (32, 33). Macrosomia have been

exposed to an adverse environment of hyperinsulinemia and

hyperglycemia in the uterus, resulting in increased fat and protein

storage in the fetus (34). According to the Development Origins of

Health and Disease Hypothesis (DOHaD) (35), malnutrition

during fetal development can promote obesity through metabolic,

genetic and behavioral changes. Studies based in France (36) and

China (37) have found that higher birth weight and macrosomia

are positively correlated with high BMI growth trajectory patterns

of children in the early postnatal period, a prospective cohort

study in Asia have suggested that the rapid growth pattern of BMI

trajectory in infancy and early childhood will increase the risk of

overweight/obesity in children in the future (38). Macrosomia is

known to be an independent risk factor for childhood obesity, but

not all children born macrosomia will become obese. Early

nutrition may influence the incidence of macrosomia and

subsequent metabolic patterns through persistent changes in DNA

methylation, increasing susceptibility to certain chronic diseases

(39, 40). Given that early nutrition can have an impact on the

formation of macrosomia and may also have an effect on

childhood obesity after birth, it is very necessary to pay attention

to the future obesity situation of this special group of macrosomia.

So the authors wondered what role nutritional factors play in

childhood obesity in macrosomia.

Maternal malnutrition during pregnancy can lead to adverse

birth outcomes such as macrosomia and low birth weight infants,

and an increased risk of childhood obesity (41–43). Iron is a

component of hemoglobin. The decrease in hemoglobin

concentration due to increased blood volume during pregnancy

leads to maternal iron-deficiency anemia. Prior studies have

shown that the correlation between pregnant women’s

hemoglobin concentration and adverse birth outcomes in

offspring is U-shaped (41, 42). The risk of future metabolic

diseases, including obesity, could be reduced by taking iron

supplementation during pregnancy (44). Calcium
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supplementation during pregnancy might also be beneficial in

reducing the risk of gestational diabetes (GDM) and hypertensive

disorders of pregnancy (45, 46). Maternal calcium dysfunction

directly affects the synthesis and metabolism of fat in offspring

(47). Folic acid during pregnancy can reduce the risk of fetal

neural tube malformations, megaloblastic anemia, and pregnancy

hypertension (45, 48). Wang et al. found, after adjusting for

maternal weight during pregnancy, that children of mothers with

adequate folate concentrations had a 43% lower risk of overweight

or obesity compared to children of mothers with low folate

concentrations (49). Multivitamins refer to products that are

synthesized in A specific dose ratio and contain multiple vitamins

including A, B, C, D, E and K. Multivitamin supplementation has

been shown to effectively reduce the occurrence of complications

during pregnancy, the risk of preterm birth, low birth weight, and

the birth of macrosomia (50, 51).

Thanks to the extensive health education and free folic acid

distribution policy in China, the utilization of nutritional

supplements during pregnancy is high. The results of a 2018

survey in China showed that 82.03% of expecting mothers took

nutritional supplements during pregnancy, especially with a

relatively high supplementation rate of calcium and folic acid

(52). Calcium supplementation is mainly due to the burden on

bones caused by the weight gain of pregnant women and the

demands of the fetus (46, 53). The relatively low iron

supplementation rate might be due to the effectiveness of iron-

containing diet intervention and the side effects of iron

supplements (54, 55), but it is undeniable that iron remains one

of the most commonly used nutritional supplements during

pregnancy. Due to the significant increase in the demand for a

variety of vitamins during pregnancy, single-vitamin

supplementation may not always be sufficient to meet the

nutritional needs of pregnant women. Therefore, we selected the

above four nutritional supplements (iron, calcium, folic acid and

multivitamins) as independent variables in this study.

The objective of this study, therefore, was to examine the

combined effects of prenatal iron, calcium, folic acid and

multivitamin supplementation on obesity in preschoolers born

macrosomia in China. To provide a basis for the precise

classification and management of obesity in the future.

2 Methods

2.1 Study population

All kindergartens in Longhua District, Shenzhen, China were

surveyed for the study population, which comprised 69,639

mother-infant pairs, 7,078 of these children were macrosomia.

We used the definition of macrosomia as birth weight greater

than or equal to 4 kg, and the preschool age range included 3–

6.5 years. Because of missing data (26 pairs due to height

information, 89 pairs due to weight information, 528 pairs for

mother’s age at birth, 183 pairs for father’s age at birth, 239 pairs

for age at birth, 200 pairs for father’s literacy, 157 pairs for

mother’s pre-pregnancy body mass index, 1 pair for monthly

family income status, 1 pair for mode of delivery, and 29 pairs

for maternal gestational hypertension), data from a total of 961

pairs were excluded. In addition, data from 86 pairs were

excluded due to a combination of either the child or parent’s age

being outside the inclusion criteria (53 pairs whose children’s age

was higher or lower than preschool age, and 58 pairs whose

parents’ age was above or below the childbearing age). The final

sample used in the data analysis involved 6,031 mother-child

pairs of macrosomia. Written informed consent was obtained

from all participants at enrollment. The study protocol was

approved by the Ethics Committee of the School of Public

Health, Sun Yat-sen University.

2.2 Data collection

Mothers who were enrolled in this study were asked to

complete a self-report structured questionnaire for collecting

sociodemographic characteristics of the child and parents (such as

age, sex, pre-pregnancy maternal BMI, parental marital status,

parental education level, household income, and whether or not

the child was an only child), prenatal maternal supplementation

with iron, calcium, folic acid, and multivitamins, as well as

variables related to birth (mode of delivery, gestational age, and

birth weight). The obtained data were verified accordingly with the

data in the maternal and child health system, and the missing

information during the on-site investigation was supplemented as

much as possible to ensure the accuracy of the data.

2.3 Measurement of prenatal maternal
nutrient supplementation

We collected data on iron, calcium, folic acid, and multivitamin

supplementation during pregnancy using the following questions:

(1) Did the mother take iron supplements during pregnancy? (2)

Did mothers take calcium supplements during pregnancy? (3)

Did the mother take folic acid supplements during pregnancy?

(4) Did the mother take multivitamins supplements during

pregnancy? The answer to each question is 1 for “yes” and 0 for

“no”. In the survey, pregnant women were asked to consider

whether they took nutritional supplements according to the

doctor’s recommendation.

2.4 Measurement and definition of obesity

The well-trained medical staffs from Women’s and Children’s

Hospital of Longhua District of Shenzhen were responsible for

measuring children’s weight and height using a portable

electronic scale (cent value = 0.01 kg) by placing the scale on a

flat surface and having the preschooler stand in the center of the

scale with his/her hat off, bare feet, and wearing tight-fitting

lightweight clothing. After the value had stabilized, the medical

staff read and recorded the measurement with an accuracy of

0.01 kg. Height was measured using a column-type body
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altimeter (cent value = 0.1 cm). The column-type body altimeter

was placed vertically against the wall on a horizontal floor.

Preschoolers were asked to stand on the pedal with heels closed,

feet separated at a 60-degree angle, chest raised, abdomen tucked

in, eyes looking straight ahead, and the back of the head,

buttocks, and heels pressed against the column. The medical staff

slid a slider to the top of the skull of the child being measured

and read the measurements at a height level with the slider.

In this study, we applied the index of body mass index (BMI) as

a criterion of childhood obesity diagnostic criteria, and BMI was

calculated by dividing weight (kilograms) by the square of height

(meters). Obesity was characterized by a BMI that fell within or

exceeds the reference values for gender and age, which were

derived from normative data obtained from two representative

national cross-sectional surveys in China: the National 2005

Survey of Growth and Development of Children Under 7 Years

of Age in Nine Cities of China and the 2005 National

Monitoring of Primary and Secondary School Students’ Physical

Fitness and Health. Based on the above data, Li Hui et al.

recommend cut-off points for obesity in Chinese children aged

2∼18 years which involved an age-specific BMI above the 96.3rd

percentile for boys and the 98.0th percentile for girls (56). These

cut-offs were used in the present study. A systematic review

study of children and adolescents aged 2–19 years has supported

the use of BMI measured by health professionals as a valid

method of assessing body fat in children and adolescents (57).

2.5 Potential confounding variables

Based on previous findings (58, 59), potential confounding

variables included in this study were the child’s sex, child’s age,

mode of delivery, parents’ age at the childbirth, maternal

prepregnancy BMI, marital status, parents’ education level, family

income, whether the only child, gestational diabetes mellitus,

patterns and duration of breastfeeding, frequency of outdoor

activities at age 0–1 years, outdoor activities of time 0–1 years of

age, nutritional status of 0–1 years old, frequency of outdoor

activities at age 1–3 years, outdoor activities of time 1–3 years of

age and nutritional status of 1–3 years old. Moreover, previous

research results in our group have shown that supplementation

of nutrients such as folic acid during pregnancy can affect pre-

school obesity in children who are small for gestational age (60),

so it is necessary to adjust other nutrients in the model.

2.6 Statistical analyses

Continuous variables were described by mean and standard

deviation (SD), and categorical variables were described by frequency

and percentage. Comparisons of categorical and numerical variables

were performed using chi-square and t-tests, respectively.

A series of binary logistic regression analyses, controlling for

potentially confounding variables were conducted to test the

association between nutritional supplementation with iron, calcium,

folic acid, and multivitamins during pregnancy and obesity in

preschoolers born macrosomia. Their multiplicative interactions on

obesity were tested by creating multiplicative terms in the logistic

regression models, and the strength of the multiplicative

interactions was expressed as the interaction of odds ratio (IOR). If

the 95% CI of the IOR spanned 1, the multiplicative interaction was

considered non-significant. Moreover, crossover analyses were

utilized to assess the additive interaction effects and modification

effects among the combination of four nutrients. Adjusted odds

ratio (AOR), relative excess risk due to interaction (RERI), and

attributable proportion due to interaction (AP) were calculated to

quantify the magnitude of these effects. If the 95% CIs of RERI and

AP did not span 0, the additive interaction was considered

statistically significant. Furthermore, after stratifying by sex, the

previously mentioned analyses were replicated to assess the sex-

specific relationships between prenatal supplementation and obesity

in preschoolers born with macrosomia.

Considering the existence of missing data, sensitivity analysis

was used to compare with the results of the main analysis

content to ensure the reliability of the analysis results.

RStudio version 4.1.2 (Poist, BOSTON, MA, USA) was used for

all statistical analyses, and two-tailed p-values < 0.05 were

considered statistically significant.

3 Results

3.1 Characteristics of participants

The demographic characteristics of the participants can be found

in Table 1, with 62.38% of the children in the study being male and

37.62% being female. The children’s mean age was 4.86 years

(SD = 0.84), the father’s mean age was 31.69 years (SD = 5.10), and

the mother’s mean age was 29.59 years (SD = 4.46). The mean

birth weight of the children at birth was 4.25 kg (SD = 0.42) and

the gestational week at delivery was 39.20 weeks (SD = 2.04).

Vaginal deliveries (52.33%) were slightly more numerous than

other modes of delivery such as cesarean section (47.67%), only

530 mothers (8.79%) admitted to a history of gestational diabetes.

The mean height of the children was 111.16 cm (SD = 8.06), the

mean weight was 19.83 kg (SD = 4.05), the mean BMI of the

children was 15.99 kg/m2 (SD = 2.37), and the mean pre-

pregnancy BMI of the mothers was 21.47 kg/m2 (SD = 3.03). Only

32.20% of the children in the study population were reported as

having no siblings, and the vast majority of children had married

parents (98.64%). The percentage of fathers with a high school

education or above was 87.71%, while for mothers, it was 84.88%.

More than three-quarters of the participants had a monthly

income exceeding 10,000 CNY (86.12%). 60% of the children were

exclusively breastfed after birth for an average of 9.19 months.

Three quarters of children engaged in outdoor physical activity

more than three times per week and more than half spent more

than 60 min per time outdoors at the age of 0–1 years. More than

99 percent of parents considered their children’s nutritional status

to be average or above at age 0–1. By the age of 1–3 years, 69.11%

of the children had outdoor exercise more than three times per

week, 67.72% of the children had outdoor exercise more than one
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TABLE 1 Comparison of demographic characteristics between obese and non-obese children born macrosomia.

Characteristics Total Obesity, N (%) p

No Yes

Total 6,031 5,184 (85.96) 847 (14.04)

Age [(Mean ± SD) (years)] 4.86 ± 0.84 4.85 ± 0.85 4.89 ± 0.81 0.221

Sex

Male 3,762 (62.38) 3,191 (61.55) 571 (67.41) 0.001

Female 2,269 (37.62) 1,993 (38.45) 276 (32.59)

Current height of child [(Mean ± SD) (cm)] 111.16 ± 8.06 111.15 ± 7.76 111.17 ± 9.72 0.950

Current weight of child [(Mean ± SD) (kg)] 19.83 ± 4.05 18.93 ± 3.00 25.34 ± 5.11 <0.001

Current BMI of child [(Mean ± SD) (kg/m2)] 15.99 ± 2.37 15.27 ± 1.39 20.37 ± 2.40 <0.001

Gestational age at birth [(Mean ± SD) (weeks)] 39.20 ± 2.04 39.22 ± 2.00 39.10 ± 2.24 0.130

Birthweight [(Mean ± SD) (kg)] 4.25 ± 0.42 4.25 ± 0.42 4.25 ± 0.40 0.926

Maternal age [(Mean ± SD) (years)] 29.59 ± 4.46 29.59 ± 4.45 29.75 ± 4.52 0.255

Paternal age [(Mean ± SD) (years)] 31.69 ± 5.10 31.70 ± 5.08 31.63 ± 5.27 0.705

Maternal pre-pregnancy BMI [(Mean ± SD) 21.47 ± 3.03 21.39 ± 3.00 21.94 ± 3.20 <0.001

Mode of delivery

Vaginal delivery 3,156 (52.33) 2,724 (52.55) 432 (51.00) 0.426

Cesarean section, forceps, vacuum extraction 2,875 (47.67) 2,460 (47.45) 415 (49.00)

Gestational diabetes mellitus

No 5,501 (91.21) 4,732 (91.28) 769 (90.79) 0.688

Yes 530 (8.79) 452 (8.72) 78 (9.21)

Marital state

Married 5,949 (98.64) 5,113 (98.63) 836 (98.70) 0.996

Divorced, remarried, spouse loss, unmarried 82 (1.36) 71 (1.37) 11 (1.30)

The only child

No 1,942 (32.20) 1,701 (32.81) 241 (28.45) 0.013

Yes 4,089 (67.80) 3,483 (67.19) 606 (71.55)

Maternal education level

Junior high school or lower 912 (15.12) 779 (15.03) 133 (15.70) 0.193

High school 1,285 (21.31) 1,087 (20.97) 198 (23.38)

College or higher 3,834 (63.57) 3,318 (64.00) 516 (60.92)

Paternal education level

Junior high school or lower 741 (12.29) 638 (12.31) 103 (12.16) 0.024

High school 1,256 (20.83) 1,050 (20.25) 206 (24.32)

College or higher 4,034 (66.89) 3,496 (67.44) 538 (63.52)

Household income [(Chinese Yuan)]

0–9,999 837 (13.88) 711 (13.72) 126 (14.88) 0.516

10,000–19,999 1,996 (33.10) 1,719 (33.16) 277 (32.70)

20,000–29,999 1,292 (21.42) 1,099 (21.20) 193 (22.79)

30,000–39,999 797 (13.22) 697 (13.45) 100 (11.81)

≥40,000 1,109 (18.39) 958 (18.48) 151 (17.83)

Breastfeeding patterns

Exclusive breastfeeding 3,665 (60.77) 3,165 (61.05) 500 (59.03) 0.360

Artificial feeding 623 (10.33) 525 (10.13) 98 (11.57)

Mixed feeding 1,743 (28.90) 1,494 (28.82) 249 (29.40)

Breastfeeding duration [(Mean ± SD) (years)] 9.19 ± 6.47 9.23 ± 6.43 8.92 ± 6.74 0.202

Frequency of outdoor activities at age 0–1 years

<3 times/week 1,506 (24.97) 1,272 (24.54) 234 (27.63) 0.060

≥3 times/week 4,525 (75.03) 3,912 (75.46) 613 (72.37)

Outdoor activities of time 0–1 years of age

<60 min/time 2,689 (44.59) 2,301 (44.39) 388 (45.81) 0.463

≥60 min/time 3,342 (55.41) 2,883 (55.61) 459 (54.19)

Nutritional status of 0–1 years old

Poor-nourished 57 (0.95) 50 (0.96) 7 (0.83) 0.174

General 1,170 (19.40) 1,025 (19.77) 145 (17.12)

Well-nourished 4,804 (79.66) 4,109 (79.26) 695 (82.05)

(Continued)
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hour per time, and only 1.11% of the parents thought their children’s

nutritional status was poor.

The prevalence of obesity in preschoolers born macrosomia

was 14.04%, and the weight and BMI levels of obese children

were significantly higher than those of the normal-weight

population. There were significant differences in children’s sex,

maternal pre-pregnancy BMI, being the only child, father’s

education level, frequency of outdoor activities at age 1–3 years,

and nutritional status of 1–3 years old.

3.2 Associations between the maternal
nutrients supplementation during
pregnancy and obesity in preschoolers born
macrosomia

After controlling for potential confounding variables except

nutrients, the results of logistic regression analyses showed that

maternal supplementation with iron (AOR = 0.76, 95% CI = 0.65–

0.90), calcium (AOR = 0.74, 95% CI = 0.61–0.91), and folic acid

(AOR= 0.77, 95% CI = 0.60–0.98) during pregnancy were

significantly and negatively associated with obesity in preschoolers

born macrosomia. In contrast, no significant association was

found between multivitamin supplementation during pregnancy

and childhood obesity (Table 2). After further adjustment of other

nutrients on this basis, only iron supplementation during

pregnancy (AOR= 0.79, 95% CI = 0.67–0.94) was negatively

associated with obesity in preschoolers born macrosomia. The

adjustment process for single or two nutrients is detailed in

Supplementary Tables S1, S2. Sensitivity analysis showed there was

a significant effect of calcium supplementation during pregnancy

on childhood obesity in girls (AOR= 0.79, 95% CI = 0.64–0.98), as

shown in Supplementary Table S10.

3.3 Combined effects of maternal nutrients
supplementation during pregnancy on
obesity in preschoolers born macrosomia

Table 3 presents the combined effects of maternal nutritional

supplementation during pregnancy on obesity in preschoolers

born macrosomia. After adjusting for potential confounding

variables, the results of the crossover analyses showed that

maternal supplementation with iron and calcium (AOR = 0.68,

95% CI = 0.52–0.88), iron and folic acid (AOR = 0.71, 95%

CI = 0.51–0.98), iron and multivitamin (AOR = 0.75, 95%

CI = 0.59–0.94) during pregnancy all significantly reduced the

likelihood of obesity in preschoolers born macrosomia. There

was a multiplication interaction effect between iron and

multivitamin supplementation during pregnancy on obesity in

preschoolers born macrosomia (IOR = 0.70, 95% CI = 0.50–0.97).

The results of the crossover analysis adjusting separately for the

other nutrient are detailed in Supplementary Table S3. Sensitivity

analyses of iron supplementation showed the same results

(Supplementary Table S11).

3.4 Combined effects of maternal nutrients
supplementation during pregnancy on
obesity in preschoolers born macrosomia
after stratification by sex

After stratification by sex, the results of the logistic regression

indicated that maternal iron supplementation (AOR= 0.75, 95%

CI = 0.60–0.92) during pregnancy was significantly negatively

associated with obesity in male preschoolers born macrosomia

(Table 4). In girls, after controlling for the specified confounding

variables except the other nutrients, the results of the logistic

regression showed that maternal calcium supplementation

(AOR= 0.67, 95% CI = 0.47–0.96) during pregnancy was negatively

associated with the presence of obesity in female preschoolers born

macrosomia. However, after adjusting for the other three nutrients,

no significant results were found, especially after adjusting for folic

acid (Supplementary Table S6), with the results showing the

protective effect of calcium supplementation during pregnancy

against preschool obesity was less significant. The adjustment

process for single or two nutrients is detailed in Supplementary

Tables S4–S7. Sensitivity analysis showed the same results in boys.

There was a marginal effect of calcium supplementation during

pregnancy on childhood obesity in girls (AOR = 0.69, 95%

CI = 0.46–1.01), as shown in Supplementary Table S12.

TABLE 1 Continued

Characteristics Total Obesity, N (%) p

No Yes

Frequency of outdoor activities at age 1–3 years

<3 times/week 1,863 (30.89) 1,561 (30.11) 302 (35.66) 0.001

≥3 times/week 4,168 (69.11) 3,623 (69.89) 545 (64.34)

Outdoor activities of time 1–3 years of age

<60 min/time 1,947 (32.28) 1,650 (31.83) 297 (35.06) 0.068

≥60 min/time 4,084 (67.72) 3,534 (68.17) 550 (64.94)

Nutritional status of 1–3 years old

Poor-nourished 67 (1.11) 53 (1.02) 14 (1.65) <0.001

General 1,561 (25.88) 1,404 (27.08) 157 (18.54)

Well-nourished 4,403 (73.01) 3,727 (71.89) 676 (79.81)
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Table 5 presents the combined effects of maternal

supplementation during pregnancy on obesity in preschoolers

born macrosomia after stratification by sex. Among boys, the

results of the crossover analyses showed that maternal

supplementation with iron and calcium (AOR = 0.68, 95%

CI = 0.49–0.94), iron and multivitamin (AOR = 0.64, 95%

CI = 0.48–0.86) during pregnancy significantly reduced the risk of

obesity in male preschoolers born macrosomia. The results from

the sensitivity analysis in boys also showed that supplementation

of iron and folic acid (AOR = 0.65, 95% CI = 0.44–0.95) during

pregnancy significantly reduced the risk of obesity in

preschoolers born macrosomia (Supplementary Table S13).

A multiplicative interaction between maternal iron and

multivitamin supplementation during pregnancy on obesity was

TABLE 2 Association of maternal nutritional supplements with obesity in preschoolers born macrosomia.

Nutritional supplements Total, N= 6,031 Obesity (N, %) OR (95% CI) AOR (95% CI)a AOR (95% CI)b

Iron

No 3,777 583 (15.44) 1.00 1.00 1.00

Yes 2,254 264 (11.71) 0.73 (0.62, 0.85)*** 0.76 (0.65, 0.90)** 0.79 (0.67, 0.94)**

Calcium

No 842 147 (17.46) 1.00 1.00 1.00

Yes 5,189 700 (13.49) 0.74 (0.61, 0.90)** 0.74 (0.61, 0.91)** 0.82 (0.66, 1.03)

Folic acid

No 525 93 (17.71) 1.00 1.00 1.00

Yes 5,506 754 (13.69) 0.74 (0.58, 0.94)* 0.77 (0.60, 0.98)* 0.89 (0.68, 1.18)

Multivitamin

No 3,667 541 (14.75) 1.00 1.00 1.00

Yes 2,364 306 (12.94) 0.86 (0.74, 1.00)* 0.91 (0.78, 1.07) 0.99 (0.84, 1.18)

aAdjusted for child’s sex, child’s age, mode of delivery, parents’ age at the childbirth, maternal prepregnancy BMI, marital status, parents’ education level, family income, whether the only child,

gestational diabetes mellitus, patterns and duration of breastfeeding, frequency of outdoor activities at age 0–1 years, outdoor activities of time 0–1 years of age, nutritional status of 0–1 years

old, frequency of outdoor activities at age 1–3 years, outdoor activities of time 1–3 years of age and nutritional status of 1–3 years old in models.
bAdjusted for child’s sex, child’s age, mode of delivery, parents’ age at the childbirth, maternal prepregnancy BMI, marital status, parents’ education level, family income, whether the only child,

gestational diabetes mellitus, patterns and duration of breastfeeding, frequency of outdoor activities at age 0–1 years, outdoor activities of time 0–1 years of age, nutritional status of 0–1 years

old, frequency of outdoor activities at age 1–3 years, outdoor activities of time 1–3 years of age, nutritional status of 1–3 years old, and other nutrients in models.

*p < 0.05.

**p < 0.01.

***p < 0.001.

TABLE 3 Combined effects of maternal nutritional supplements on obesity in preschoolers born macrosomia.

Nutritional
supplements

Total,
N= 6,031

Obesity
(N, %)

AOR
(95% CI)a

AOR
(95% CI)b

IOR
(95% CI)b

RERI
(95% CI)b

AP (95% CI)b

Iron Calcium 0.56 (0.3, 1.04) −0.57 (−1.41, 0.27) −0.84 (−2.04, 0.36)

No No 760 131 (17.24) 1.00 1.00

No Yes 3,015 452 (14.99) 0.84 (0.68, 1.04) 0.88 (0.69, 1.13)

Yes No 80 16 (20.00) 1.30 (0.72, 2.35) 1.36 (0.75, 2.48)

Yes Yes 2,174 248 (11.41) 0.64 (0.50, 0.81)*** 0.68 (0.52, 0.88)**

Iron Folic acid 1.04 (0.44, 2.47) 0.06 (−0.62, 0.73) 0.08 (−0.88, 1.04)

No No 469 86 (18.34) 1.00 1.00

No Yes 3,308 497 (15.02) 0.80 (0.62, 1.04) 0.89 (0.67, 1.19)

Yes No 56 7 (12.5) 0.69 (0.30, 1.59) 0.76 (0.33, 1.78)

Yes Yes 2,198 257 (11.69) 0.63 (0.47, 0.83)** 0.71 (0.51, 0.98)*

Iron Multivitamin 0.70 (0.50, 0.97)* −0.66 (−0.33, 0.00) −0.44 (−0.90, 0.01)*

No No 2,647 407 (15.38) 1.00 1.00

No Yes 1,130 176 (15.58) 1.07 (0.88, 1.31) 1.14 (0.93, 1.40)

Yes No 1,020 134 (13.14) 0.88 (0.71, 1.09) 0.93 (0.75, 1.17)

Yes Yes 1,234 130 (10.53) 0.69 (0.56, 0.87)** 0.75 (0.59, 0.94)*

aAdjusted for child’s sex, child’s age, mode of delivery, parents’ age at the childbirth, maternal prepregnancy BMI, marital status, parents’ education level, family income, whether the only child,

gestational diabetes mellitus, patterns and duration of breastfeeding, frequency of outdoor activities at age 0–1 years, outdoor activities of time 0–1 years of age, nutritional status of 0–1 years

old, frequency of outdoor activities at age 1–3 years, outdoor activities of time 1–3 years of age and nutritional status of 1–3 years old in models.
bAdjusted for child’s sex, child’s age, mode of delivery, parents’ age at the childbirth, maternal prepregnancy BMI, marital status, parents’ education level, family income, whether the only child,

gestational diabetes mellitus, patterns and duration of breastfeeding, frequency of outdoor activities at age 0–1 years, outdoor activities of time 0–1 years of age, nutritional status of 0–1 years

old, frequency of outdoor activities at age 1–3 years, outdoor activities of time 1–3 years of age, nutritional status of 1–3 years old, and other nutrients in models.

*p < 0.05.

**p < 0.01.

***p < 0.001.
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found in male preschoolers born macrosomia (IOR = 0.52, 95%

CI = 0.35–0.79). Among girls, none of the cross-over analyses

were significant. An additive interaction between maternal iron

and folic acid supplementation during pregnancy on obesity was

observed in female preschoolers born macrosomia (REFI = 0.65,

95% CI = 0.03–1.33, AP = 0.85, 95% CI =−0.18–1.88). The results

of the crossover analysis adjusting separately for the other

nutrient are detailed in Supplementary Table S8.

4 Discussion

To our knowledge, this is the first study to examine the

combined effects of maternal supplementation with iron,

calcium, folic acid, and multivitamin during pregnancy on

obesity in preschoolers born macrosomia in China. The results of

supplementary correlation tests showed that the ingestion of any

two nutrients were not completely independent, but the

correlation coefficients were all small (Supplementary Table S9).

4.1 Associations between the maternal iron
supplementation during pregnancy and
obesity in preschoolers born macrosomia

Iron supplementation during pregnancy was found to be

significantly associated with a reduced risk of obesity in

preschoolers born with macrosomia. However, this result was

only found in boys. Previous studies on the relationship between

maternal iron supplementation during pregnancy have mostly

focused on birth weight and the presence of obesity in

adulthood, with few studies examining the impact upon obesity

during the early childhood period. The Cambridge Baby Growth

Study found that at 3 months of age, infants from high-income

families, whose mothers had received iron supplementation

during pregnancy, had 0.15 mm thicker skinfold than those

whose mothers had not received iron supplementation. However,

no such differences in obesity indicators were found in

subsequent follow-up at 2 years and 9.5 years of age (61).

Similarly, previous results from another birth cohort in the

TABLE 4 Association of maternal nutritional supplements with obesity in preschoolers born macrosomia after stratification by sex.

Sex Nutritional supplements Total Obesity (N, %) OR (95% CI) AOR (95% CI)a AOR (95% CI)b

Male

Iron

No 2,425 407 (16.78) 1.00 1.00 1.00

Yes 1,337 164 (12.27) 0.69 (0.57, 0.84)*** 0.72 (0.59, 0.88)** 0.75 (0.60, 0.92)**

Calcium

No 567 101 (17.81) 1.00 1.00 1.00

Yes 3,195 470 (14.71) 0.80 (0.63, 1.01) 0.78 (0.61, 0.99)* 0.87 (0.66, 1.14)

Folic acid

No 333 61 (18.32) 1.00 1.00 1.00

Yes 3,429 510 (14.87) 0.78 (0.59, 1.05) 0.78 (0.57, 1.06) 0.89 (0.64, 1.25)

Multivitamin

No 2,314 370 (15.99) 1.00 1.00 1.00

Yes 1,448 201 (13.88) 0.85 (0.70, 1.02) 0.89 (0.73, 1.09) 0.98 (0.80, 1.21)

Female

Iron

No 1,352 176 (13.02) 1.00 1.00 1.00

Yes 917 100 (10.91) 0.82 (0.63, 1.06) 0.87 (0.66, 1.15) 0.92 (0.69, 1.23)

Calcium

No 275 46 (16.73) 1.00 1.00 1.00

Yes 1,994 230 (11.53) 0.65 (0.46, 0.93)* 0.67 (0.47, 0.96)* 0.71 (0.47, 1.08)

Folic acid

No 192 32 (16.67) 1.00 1.00 1.00

Yes 2,077 244 (11.75) 0.67 (0.45, 1.01)* 0.73 (0.48, 1.13) 0.88 (0.54, 1.44)

Multivitamin

No 1,353 171 (12.64) 1.00 1.00 1.00

Yes 916 105 (11.46) 0.89 (0.69, 1.16) 0.97 (0.73, 1.28) 1.05 (0.78, 1.40)

aAdjusted for child’s sex, child’s age, mode of delivery, parents’ age at the childbirth, maternal prepregnancy BMI, marital status, parents’ education level, family income, whether the only child,

gestational diabetes mellitus, patterns and duration of breastfeeding, frequency of outdoor activities at age 0–1 years, outdoor activities of time 0–1 years of age, nutritional status of 0–1 years

old, frequency of outdoor activities at age 1–3 years, outdoor activities of time 1–3 years of age and nutritional status of 1–3 years old in models.
bAdjusted for child’s sex, child’s age, mode of delivery, parents’ age at the childbirth, maternal prepregnancy BMI, marital status, parents’ education level, family income, whether the only child,

gestational diabetes mellitus, patterns and duration of breastfeeding, frequency of outdoor activities at age 0–1 years, outdoor activities of time 0–1 years of age, nutritional status of 0–1 years

old, frequency of outdoor activities at age 1–3 years, outdoor activities of time 1–3 years of age, nutritional status of 1–3 years old, and other nutrients in models.

*p < 0.05.

**p < 0.01.

***p < 0.001.
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United Kingdom did not find an association between maternal iron

intake during pregnancy and obesity in children at age 10 years

(62). Studies using C282Y of the hemochromatosis gene (HFE)

as an instrumental variable of iron status also failed to find

an association between iron during pregnancy and obesity in

adult offspring (63). The differences in the above results may be

due to the differences in different ethnic populations, the ages

of the research subjects, and the corresponding obesity

screening indicators.

However, the results of experiments with rats show that iron

supplementation during pregnancy can reduce plasma

triglyceride levels in fetus and adult rats, and reduce the risk of

metabolic diseases such as obesity by down-regulating the

expression of genes involved in bile acid synthesis and fatty acid

synthesis pathways, especially cholesterol 7α-hydroxylase and its

upstream regulator liver X receptor α (44). Perinatal iron

deficiency in Dawley rats increases the effect of high-fat diet on

offspring body weight, and this body weight gain is mainly due

to the accumulation of visceral fat (64). Hepcidin is a major

inhibitor of intestinal iron absorption. Emanuele et al. found that

hepcidin concentration was significantly increased in obese

children and showed a clear dose-response relationship (65).

Maternal pre-pregnancy BMI, iron supplementation,

erythropoiesis-stimulating activity and inflammatory response all

affect maternal hepcidin secretion (66). Nicole et al. found that

the amount of placental transfer of maternal iron and neonatal

iron absorption were related to the levels of inflammatory

factors. Although the study did not directly observe the

TABLE 5 Combined effects of maternal nutritional supplements on obesity in preschoolers born macrosomia after stratification by sex.

Nutritional
supplements

Total Obesity (N, %) AOR (95% CI)a AOR (95% CI)b IOR
(95% CI)b

RERI (95% CI)b AP
(95% CI)b

Male 3,762 571 (15.18)

Iron Calcium 0.46 (0.22, 0.97)* −0.80 (−1.92, 0.31) −1.19 (−2.77, 0.39)

No No 511 89 (17.42) 1.00 1.00

No Yes 1,914 318 (16.61) 0.91 (0.70, 1.18) 0.96 (0.72, 1.28)

Yes No 56 12 (21.43) 1.45 (0.72, 2.91) 1.52 (0.75, 3.08)

Yes Yes 1,281 152 (11.87) 0.64 (0.47, 0.86)** 0.68 (0.49, 0.94)*

Iron Folic acid 0.68 (0.26, 1.81) −0.33 (−1.40, 0.75) −0.48 (−2.00, 1.04)

No No 298 55 (18.46) 1.00 1.00

No Yes 2,127 352 (16.55) 0.86 (0.62, 1.19) 0.93 (0.65, 1.34)

Yes No 35 6 (17.14) 0.99 (0.38, 2.56) 1.08 (0.41, 2.82)

Yes Yes 1,302 158 (12.14) 0.62 (0.43, 0.89)** 0.69 (0.46, 1.02)

Iron Multivitamin 0.52 (0.35, 0.79)** −0.59 (−1.02, −0.16) −0.92 (−1.64, −0.19)**

No No 1,707 279 (16.34) 1.00 1.00

No Yes 718 128 (17.83) 1.17 (0.92, 1.49) 1.24 (0.97, 1.59)

Yes No 607 91 (14.99) 0.95 (0.73, 1.23) 0.99 (0.76, 1.30)

Yes Yes 730 73 (10.00) 0.60 (0.45, 0.80)*** 0.64 (0.48, 0.86)**

Female 2,269 276 (12.16)

Iron Calcium 0.74 (0.22, 2.43) −0.30 (−1.76, 1.15) −0.45 (−2.59, 1.68)

No No 251 42 (16.73) 1.00 1.00

No Yes 1,101 134 (12.17) 0.71 (0.48, 1.04) 0.74 (0.48, 1.14)

Yes No 24 4 (16.67) 1.19 (0.38, 3.75) 1.23 (0.39, 3.94)

Yes Yes 893 96 (10.75) 0.64 (0.42, 0.98)* 0.67 (0.42, 1.07)

Iron Folic acid 3.09 (0.38, 25.23) 0.65 (−0.03, 1.33)* 0.85 (−0.18, 1.88)*

No No 171 31 (18.13) 1.00 1.00

No Yes 1,181 145 (12.28) 0.69 (0.44, 1.08) 0.81 (0.49, 1.34)

Yes No 21 1 (4.76) 0.27 (0.03, 2.10) 0.31 (0.04, 2.47)

Yes Yes 896 99 (11.05) 0.64 (0.40, 1.03) 0.77 (0.44, 1.34)

Iron Multivitamin 1.12 (0.64, 1.98) 0.11 (−0.42, 0.64) 0.11 (−0.43, 0.65)

No No 940 128 (13.62) 1.00 1.00

No Yes 412 48 (11.65) 0.92 (0.64, 1.33) 1.00 (0.68, 1.46)

Yes No 413 43 (10.41) 0.80 (0.55, 1.17) 0.87 (0.59, 1.29)

Yes Yes 504 57 (11.31) 0.89 (0.62, 1.28) 0.98 (0.67, 1.43)

aAdjusted for child’s sex, child’s age, mode of delivery, parents’ age at the childbirth, maternal prepregnancy BMI, marital status, parents’ education level, family income, whether the only child,

gestational diabetes mellitus, patterns and duration of breastfeeding, frequency of outdoor activities at age 0–1 years, outdoor activities of time 0–1 years of age, nutritional status of 0–1 years

old, frequency of outdoor activities at age 1–3 years, outdoor activities of time 1–3 years of age and nutritional status of 1–3 years old in models.
bAdjusted for child’s sex, child’s age, mode of delivery, parents’ age at the childbirth, maternal prepregnancy BMI, marital status, parents’ education level, family income, whether the only child,

gestational diabetes mellitus, patterns and duration of breastfeeding, frequency of outdoor activities at age 0–1 years, outdoor activities of time 0–1 years of age, nutritional status of 0–1 years

old, frequency of outdoor activities at age 1–3 years, outdoor activities of time 1–3 years of age, nutritional status of 1–3 years old, and other nutrients in models.

*p < 0.05.

**p < 0.01.

***p < 0.001.
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correlation with maternal hepcidin, this may be due to the relative

intensity of maternal inflammation and iron depletion, which offset

each other (67, 68). Given that iron is highly abundant in the

placenta and is an essential cofactor for the formation of reactive

oxygen species (ROS), excessive iron accumulation can lead to

excessive ROS production and severe autophagy defects in the

offspring (69, 70). At the same time, mitochondrial function

defects and mitochondrial DNA damage caused by iron

deficiency also increase ROS formation (71). The essence of

obesity is a systemic chronic inflammatory response. Changes in

iron content during pregnancy lead to changes in inflammatory

response and oxidative status in offspring, resulting in metabolic

or functional disorders, which in turn leads to increased

susceptibility to obesity and its related complications (72). These

biological mechanisms support our finding, and suggest that the

impact of ingesting iron supplements during pregnancy on

macrosomia may involve long-term programming effects.

Why did such results only occur in male children? In vitro

experiments have found that apoptosis caused by iron-dependent

lipid peroxidation induced by the transcription factor BACH1

can stimulate the secretion of FGF21 and inhibit obesity in mice

on a high-fat diet (73). A study in the United States found

dietary iron deficiency deregulates iron balance in the inguinal

White adipose tissue (iWAT) and impairs adaptive

thermogenesis, thereby escalating the diet-induced weight gain in

male mice (74). An animal experiment in Japan found that iron

supplementation regulates obesity and hepatic steatosis induced

by a high-fat diet in male mice through mitochondrial signaling

(75).A study in Beijing involving school-aged children found that

epigenetic modifications of nuclear DNA and mitochondrial

DNA were associated with the disorder of serum iron biomarkers

in metabolically unhealthy obese children (76). Most of the

discussions on the mechanism of iron on male obesity have

focused on dietary induction after birth, but the mechanism also

provides enlightenment on the effect of maternal iron dose

on offspring.

4.2 Combined effects of maternal nutrients
supplementation during pregnancy on
obesity in preschoolers born macrosomia
after stratification

In male macrosomia, we also found that there was a

multiplicative interaction effect of maternal iron supplementation

and multivitamin supplementation on preschool obesity, but no

significant independent effect of maternal multivitamin

supplementation on preschool obesity in male. Multivitamin

supplementation during pregnancy could enhance the protective

effect of iron supplementation on preschool obesity in boys born

with macrosomia. In contrast to our findings, several studies in

North American laboratories have shown that a high-

multivitamin diet during pregnancy increases the development of

an obese phenotype in male offspring, involving gut microbiota

abundance and epigenetic changes in hypothalamic systems that

regulate food intake. The high-vitamin diet group had higher

leptin concentrations and leptin receptor expression and

decreased proopiomelanocortin (POMC) expression related to

appetite suppression (77–79). Multivitamin supplementation

during pregnancy may have an obesogenic effect on the offspring

Unfortunately, there are no studies on the mechanism of the

combined effects of iron and multivitamins supplenmentation

during pregnancy. As mentioned earlier, animal experiments

have shown that rats with perinatal iron deficiency have

increased visceral fat volume (64). In a mother-infant cohort

study in Singapore, it was observed that maternal vitamin

D levels in the second trimester of pregnancy were negatively

correlated with neonatal abdominal subcutaneous adipose tissue

volume, especially deep subcutaneous adipose tissue (DSAT),

whose metabolism is similar to visceral adipose tissue (80). It is

speculated that iron and vitamin D may interact at the binding

sites of fat metabolism-related receptors and thus affect the

outcome of obesity. However, the mechanisms and pathways of

various nutrients on obesity are extremely complex, and further

animal experiments and human trials are needed to prove.

The protective effect of iron supplementation on preschool

obesity in boys born with macrosomia appeared to be enhanced

by incorporating calcium supplementation simultaneously. No

research has been conducted on the effects of ingesting iron and

calcium supplements simultaneously during pregnancy on

childhood obesity. After supplementation, calcium enters the body

and is converted into calcium ions (Ca2+). As a second messenger,

it mediates multiple non-selective cation channel family Transient

Receptor Potential (TRP) channels in adipocytes, regulates the

differentiation and maturation of white adipose tissue and the

formation of brown adipose tissue (81). The novel tetraspanin

MS4A15 interacts with Ca2+ to specifically block ferroptosis by

altering the lipid profile of overexpressing cells (82). Iron and

calcium can jointly regulate mitophagy and cell metabolism to

affect homeostasis. Combined, this evidence supports our finding

that prenatal iron and calcium supplementation may have a

protective effect against offspring’s obesity.

In female children with macrosomia, the results showed there

was an additive interaction between folic acid and iron

supplementation during pregnancy on preschool childhood

obesity, but folic acid and iron supplementation had no

significant association with preschool obesity. Therefore, the

results should be interpreted with caution. However, in contrast a

randomized controlled trial in China found no difference

between iron-folic acid supplementation and iron

supplementation alone (83). The Boston Birth cohort found a

nonlinear L-shaped association between maternal plasma folate

concentration in the third trimester and the risk of offspring

overweight and obesity (mean age, 6.2 years) (49). The results of

a systematic review has also supports that folic acid

supplementation during pregnancy had a protective effect on

offspring obesity and insulin resistance (84). Similarly, both iron

and folic acid supplementation during pregnancy can reduce the

risk of adverse pregnancy outcomes such as preterm birth and

stillbirth and the mortality of offspring within 5 years of age (85,

86). In a previous study of small for gestational age infants, our

research group found that iron supplementation during
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pregnancy enhanced the protective effect of folic acid

supplementation during pregnancy on childhood obesity, but no

significant interaction was found (60). As a methyl donor of one-

carbon metabolism, folate participates in epigenetic regulation

such as DNA methylation, DNA synthesis and repair, and plays

an important role in normal fetal growth and development (87).

Both in vitro and in mice, folic acid supplementation within the

physiological range has been found to induce differential

expression of growth genes in placental cells, thereby affecting

fetal weight (88, 89). Animal experiments suggest that iron

metabolism regulates folate-dependent one-carbon unit cycle

metabolism (90), and supplementation of iron and folic acid can

promote the transcription of genes encoding folate and

ferroportin (91). The literature is still unclear regarding the

interaction between iron and folate. For example, on the one

hand Joanna et al. found that the combination of iron and folic

acid significantly reduced iron levels in the liver and spleen of

female rats (92). So far, no studies, outside our research group,

have examined the combined effects of the two on obesity.

4.3 Sensitivity analyses

We excluded information from 1,047 mother-infant pairs

before analysis. After excluding height, weight, and nutritional

supplement missing data, there were 6,936 mother-infant pairs.

In the sensitivity analyses based on this population with missing

data, similar significant results of iron supplementation on

preschool obesity in male macrosomia were found

(Supplementary Tables S10–S13). However, in the sensitivity

analysis among girls, the results of calcium supplementation

showed a significant protective effect against preschool obesity in

macrosomia, whereas only a marginal effect was found in our

main analyses. In addition, we found that iron and folic acid

supplementation during pregnancy could enhance the protective

effect of calcium supplementation on preschool obesity in girls

born with macrosomia. This indicates that the removal of

missing information has a certain bias on the results, which

affects the significance of some results. Based on 15 randomized

controlled trials worldwide, a meta-analysis revealed that calcium

supplementation (500–2,000 mg) can increase fetal birth weight

(93). However, in contrast an exploratory analysis carried out by

Karakis et al., calcium intake was not found to be related to

obesity in children aged 5 years and above (94). This result may

be due to the differences in the period, dosage and continuity of

calcium supplementation during pregnancy. It has been found in

obesity-prone rats that low calcium can lead to an increase in

body fat and a decrease in body protein, thereby affecting early

body weight (95). Li et al. found that abnormal calcium intake

during pregnancy and lactation, such as calcium deficiency, low

calcium, and high calcium, may increase adipocytes by encoding

the adipogenic differentiation potential of offspring bone marrow

mesenchymal stem cells and regulating the significant expression

of Wnt/β-catenin signaling pathway, which aggravates obesity

induced by high-fat diet in adulthood (96). Unfortunately, these

results are based only on male offspring.

4.4 Sex specific differences

As described above, the relationship between supplementation

and combined effects of different nutrients during pregnancy and

preschool obesity in macrosomia differs between males and

females. We propose that there may be a number of possible

reasons for sex being a moderator in these associations. First, it

is possible that this may be due sex differences in body fat

composition, a difference that has been observed as early as the

third trimester, suggesting that mesenchymal cells may have sex

differences in determining the fate of muscle and adipocyte

lineages (97). Second, experiments, by Gallou-Kabani et al., in

mice showed that the overall methylation pattern of the placenta

was different between males and females, even when they were

exposed to the same uterine environment (98). Third, boys

develop more rapidly in utero than girls, and boys have longer

placenta but lower reserve capacity, increasing their vulnerability

to malnutrition (99). Fourth, sex differences in hypothalamic

gene expression of pro-melanocortin, leptin receptor (genes that

inhibits food intake) and neuropeptide Y, agouti associated

protein (genes that promotes food intake), which are involved in

the regulation of food intake, were found in the rat study (100).

4.5 Limitation

The results of this study have some limitations as follows. First, this

study is a retrospective observational studywithall data about the useof

nutritional supplementation coming from self-report ofmothers 3–6.5

years post-birth. As such, their recall might have been be affected by

memory bias. Second, the present study was qualitative and didn’t

collect information on the dose, frequency, and duration of nutrient

use, or the serum levels of the nutrients investigated in this study. In

addition to including these measures, in future studies, researchers

should consider measuring biomarkers such as the nutritional

concentrations in the mothers’ or umbilical cord blood to validate

self-reported supplementation and obtain quantitative information.

Due to the lack of this quantitative information, the conclusions we

draw are preliminary and need to be replicated using more precise

measures of nutrient supplementation. This is a complicated issue

that requires further validation studies given that the timing, dosage

and duration of nutrient supplementation recommended by Chinese

doctors is personalized for each mother and changes over the course

of the pregnancy. Third, the study participants were all from

Longhua District, Shenzhen, China. There may be some limitations

in extrapolating the results from this sample to other populations

due to differences in diet. Fourth, we only evaluated the effect of

nutritional supplementation during pregnancy and did not measure

maternal nutrient intake through diet during pregnancy. Future

studies may also include the use of food frequency questionnaires to

derive more accurate associations. Fifth, we used BMI as a measure

of obesity. The index of BMI shows obvious racial and regional

differences. The screening criteria adopted in this study were

different from those of WHO and IOTF. Therefore, it will be

important to replicate the findings of this study using other measures
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of obesity such as skinfold thickness and waist circumference, or

utilizing bioelectrical impedance or dual-energy x-ray

absorptiometry as measures of body fat. Sixth, obesity is a

complicated disease caused by multiple factors, including genetic and

behavioral factors, and the confounding factors adjusted for in this

study wasn’t exhaustive. Other potential covariates need to include in

future studies such as paternal obesity, maternal diet during

pregnancy and the dietary nutrition of infants or preschoolers.

Seventh, we excluded information from 1,047 (14.79%) mother-

infant pairs that could have caused selection bias before analysis.

Eighth, we did not collect the information on the specific vitamins

that comprised the multivitamin used by the mothers during

pregnancy, so we could not identify the associations between specific

combinations of vitamin supplementation and offspring’ obesity.

5 Conclusions

To summarize, our study demonstrates that maternal iron

supplementation during pregnancy significantly affects the

likelihood of obesity in male preschoolers born with macrosomia.

Calcium and multivitamin supplementation during pregnancy

could enhance the protective effect of iron supplementation on

obesity in male macrosomia. These findings suggest that

encouraging maternal iron supplementation during pregnancy

may reduce the risk of obesity in male preschoolers born

macrosomia. However, these conclusions may be limited by the

lack of more detailed quantitative data about the nutrient

supplementation engaged in by the participants. Further research

is required to explore how timing, dosage and duration of

maternal nutrient supplementation during pregnancy may

predict childhood obesity in children with macrosomia, and

clarify how sex may be a moderator of these associations.
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