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The VACTERL association is a non-random cluster of congenital malformations

involving six distinct conditions: vertebral defects (V), anal atresia (A), cardiac

defects (C), tracheoesophageal malformation (TE), renal defects (R), and limb

anomalies (L), and is diagnosed when a fetus exhibits three or more of these.

Its prevalence is approximately 0.47–0.58 per 10,000 live births. This paper

examines the effect of disruptions in the Sonic Hedgehog and cilia-associated

signaling pathways, genetically related developmental variations, and maternal

environmental factors on the development of VACTERL. In the SHH signaling

pathway, we focus on the effects of Sonic Hedgehog ligands, GLI transcription

factors, and factors influencing GLI activity (RAC1 and ZIC3), as well as

downstream targets (FOXF1 and HOXD13) and other genes and proteins

involved in the regulation of SHH signaling (FGF8 and LPP), in the

pathogenesis of VACTERL. In this context, ZIC3, which was shown to play a

major role in VACTERL pathogenesis in large-scale resequencing, and TRAP1,

which was associated with VACTERL pathogenesis in whole-exome

resequencing, were highlighted. We also examine the cilia-associated signaling

pathways, particularly the role of IFT172 and candidate ciliopathy genes. In

addition, we describe the influence of TRAP1, COL11A2, SALL4, WBP11, Copy

Number Variants, and maternal environmental factors on VACTERL. We also

discuss current diagnostic, therapeutic, and prognostic approaches including

prenatal and postnatal treatment options. Furthermore, we highlight the

advantages of thoracoscopic surgery over traditional open-surgical treatment

while discussing the differential diagnosis of VACTERL from other neonatal

malformations with similar symptoms, such as Townes-Brocks syndrome,

Baller-Gerold syndrome, and CHARGE syndrome.
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1 Introduction

The VACTERL association is a rare, complex congenital malformation with

multifactorial causes. According to data published by the European Commission, the

prevalence of this condition was 0.47–0.58 per 10,000 live births between 2012 and

2022 (1). This association comprises six primary anomalies (Figure 1): vertebral defects
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(V), anal atresia (A), cardiac defects (C), tracheoesophageal

malformation (TE), renal defects (R), and limb anomalies (L) (2).

Quan and Smith first described the disorder as the VATER

association in 1972 (3), notably defining R as radial dysplasia,

rather than renal defects, as it is understood today. VACTERL

usually requires repeated surgeries and may have residual

sequelae or even recurrence, and a few patients may not show

symptoms or sequelae related to VACTERL until adulthood (4).

Thankfully, the severity and likelihood of sequelae have been on

the decline in recent years due to medical advances. At the same

time, the psychological and social problems caused by VACTERL

should not be ignored, including anxiety and depression of

patients and their families, and the decline of patients’ work

efficiency, etc., which require the support and help of all sectors

of society (5). A home-centered approach to care seems to be

more beneficial for VACTERL patients.

This review discusses the pathogenesis, diagnosis, therapy, and

prognosis of VACTERL association. It aims to enrich the diagnostic

thinking of clinicians, reduce neonatal sequelae, and enhance

neonatal survival by providing ideas for further research into the

pathogenesis of VACTERL.

2 Clinical manifestation of the
VACTERL association

Currently, there is no universally accepted diagnostic standard

for the VACTERL association. However, most clinicians and

researchers agree that a diagnosis is warranted if a fetus exhibits

at least three of the six characteristic congenital abnormalities:

vertebral defects, anal atresia, cardiac defects, tracheoesophageal

malformation, renal defects, and limb anomalies (6). However, it

has not reached full acceptance, with some researchers and

clinicians believing that 2 major malformations and one

associated feature are sufficient (7). However, some researchers

have mentioned that the presence of more than three

malformations is not necessarily VACTERL syndrome, and that

other neonatal malformations may be present if they are more

pronounced and genetically compatible, e.g., a child with

concurrent heart defects, anal atresia, vertebral anomalies with

early-onset epilepsy, global developmental delay with autistic

features, cerebellar hypoplasia, and characteristically dysmorphic

facial features (slanted head with downward sloping

blepharophimosis, short neck with webbing), the presence of

heterozygous de novo missense variants of the PACS2 gene

should be considered to be on the PACS2 spectrum of disorders

(8). An incomplete expression of VACTERL is termed partial

VACTERL (pVACTERL) (9).

Vertebral defects are observed in approximately 60%–80% of

children with VACTERL. These defects typically include vertebral

malformations such as hemivertebrae, butterfly vertebrae, wedge-

shaped vertebrae, vertebral fusion, multiple vertebrae anomalies,

or absent vertebrae, often accompanied by rib malformations.

Rib deformities and spinal defects are also commonly observed.

Anal atresia occurs in approximately 55%–90% of cases,

presenting with symptoms such as frequent postnatal vomiting,

difficulty with nasogastric tube insertion, and absence of stool.

Cardiac defects are present in approximately 75% of affected

children, most commonly manifesting as congenital heart defects,

including atrial septal defect, ventricular septal defect, patent

FIGURE 1

The primary anomalies of VACTERL.
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ductus arteriosus, hypoplastic left heart syndrome, transposition of

the great arteries, persistent arterial duct, and tetralogy of Fallot

(10). Tracheoesophageal fistula with esophageal atresia is found

in approximately 50%–80% of VACTERL cases, often

manifesting as esophageal atresia or tracheoesophageal fistula, and

may be accompanied by pulmonary developmental abnormalities.

Clinical symptoms include episodic coughing after swallowing,

progressively worsening dysphagia and dyspnea, difficulty inserting

nasogastric tubes, and complications such as pneumonia and

pleural effusion. Renal defects affect approximately 30%–50% of

children with VACTERL and include conditions such as unilateral

renal hypoplasia, horseshoe kidney, cystic kidneys, and cystic

dysplastic kidneys. Occasionally, ureteral and urogenital tract

abnormalities may also be present. Limb anomalies are observed

in approximately 40%–70% of cases, including absent or displaced

thumbs, polydactyly, syndactyly, and forearm deformities

(including radial hypoplasia) (6, 11–14).

These six primary features constitute the core manifestations of

VACTERL. Additionally, there are several types of “extension” of

VACTERL, which may include abnormalities such as widening of

the posterior fossa, hydrocephalus, cerebellar malformations,

cerebral hypoplasia, cervical lymphangioma, pulmonary

cystadenoma or sequestration, pulmonary hypoplasia,

diaphragmatic hernia, and facial asymmetry (hemifacial

microsomia). Other associated conditions include absent or

hypoplastic nasal bones, cleft lip and/or palate, microtia, external

ear malformations, hearing loss, abnormal arteries, moyamoya

disease, congenital intestinal malrotation, duodenal stenosis or

atresia, single umbilical artery, umbilical cord cyst, umbilical

hernia, persistent right umbilical vein, congenital genital

abnormalities, cryptorchidism, ambiguous genitalia (14),

intrauterine growth restriction (15), pancreatic structural

anomalies (16), and biliary tract abnormalities (17). Furthermore,

several conditions have been associated with VACTERL,

including gray platelet syndrome in neonates (18), Omenn

syndrome (19), and spinal muscular atrophy (20).

Based on the statistical analysis of clinical manifestations in

affected children (13, 19, 21–38), we derived the probabilities of

different malformations: V 60%, A 70%, C 55%, TE 50%, R 65%,

L 40%. Two noteworthy phenomena were observed: the

incidence of VAR (20% of all cases) was higher than that of

other malformation combinations, and the incidence of single

umbilical artery and club foot was also higher than that of

other malformations.

3 Pathogenesis

The pathogenesis of VACTERL remains unclear. Research

suggests VACTERL has a multifactorial etiology, involving the

interaction of various teratogenic factors. At the molecular level,

current research focuses on Sonic Hedgehog (SHH) signaling

pathways, cilia-associated signaling pathways, and other genes

influencing embryonic development. Maternal gestational status, the

fetal environment, and the use of assisted reproductive techniques

(ARTs) may also contribute to VACTERL development. These

factors influence fetal growth and organogenesis, ultimately

contributing to the development of VACTERL.

3.1 Sonic hedgehog signaling pathways

SHH signaling pathways may contribute to renal defects within

the VACTERL association (39). SHH signaling is involved in

dorsoventral axis formation and the development of the foregut,

gastrointestinal tract, craniofacial structures, upper and lower

limb buds, and the cardiovascular system. In knockout mouse

models, the disruption of relevant SHH signaling genes resulted

in tracheoesophageal fistula, anal atresia, and ectopic pancreas

during foregut and gastrointestinal tract development (40). In

limb bud development, ectopic expression of SHH leads to the

development of syndactyly (41). In craniofacial development,

abnormalities in SHH signaling lead to facial malformations (42).

Hedgehog ligands, transcription factors, downstream targets,

and genes involved in the regulation of SHH signaling are

involved in the pathogenesis of VACTERL (Figure 2).

3.1.1 Hedgehog ligands
Hedgehog ligands (Shh, Ihh, and Dhh), upon binding to their

transmembrane receptor Ptch, activate the signaling regulator

SMO, which activates GLI transcription factors (43). Variant in

the ligand Shh in SHH signaling prevents normal activation of

SHH signaling, leading to malformations. In the study by Kim

et al., murine models of Shh−/− had a VACTERL phenotype

(40), demonstrating that altered Hedgehog ligands lead to the

development of VACTERL. However, there are no patients with

the SHH variant of VCATERL present and SHH−/− is lethal

for humans.

3.1.2 GLI transcription factors
GLI is a transcriptional activator in SHH signaling, responsible

for signal transduction from the cytoplasm to the nucleus (43).

Variants in Gli1, Gli2, and Gli3 within the SHH signaling

pathway in mice can potentially cause renal defects (44). Kim

et al. demonstrated that Gli2−/−, Gli3−/−, Gli2−/−, and Gli3+/−

double heterozygous mutant mice develop VACTERL-associated

symptoms (40). Jessica Ritter et al. reported on a patient with a

GLI1 variant who developed all the symptoms of VACTERL,

validating the predictions of this murine models (45).

Beyond the direct effects of GLI, other factors influencing GLI

activity may contribute to VACTERL pathogenesis. Rie Seyama

et al. reported a case of a suspected VACTERL patient presenting

with a RAC1 variant (RAC1-p.Tyr40His). It was shown that the

GTP hydrolysis activity of this variant is slightly lower than

normal and that RAC1-p.Tyr40His does not activate its effector

molecule PAK1 even in the active GTP-bound form, while the

downstream effector system may also be hampered by the

p.Tyr40His variant, which inactivates the downstream pathway

(46). RAC1 activates GLI nuclear translocation in SHH signaling

(47), suggesting that RAC1 may influence VACTERL

development by affecting GLI nuclear translocation. ZIC3, a

member of the GLI superfamily of proteins, plays critical roles in
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causing left-right pattern defects, midline abnormalities, and

cardiac malformations in humans (48–51). It was identified in

large-scale resequencing as one of the genes that may contribute

to VACTERL (52). In the SHH pathway, it can affect the

expression of GLI by interacting with the zinc finger structural

domain of GLI, thereby modulating the SHH signaling pathway

(53, 54). ZIC3 is also involved in the WNT signaling pathway,

transforming growth factor β signaling, and other signaling

pathways that regulate the left-right pattern of the embryo (48,

54). Meanwhile, experiments in mice showed that Zic3 is

extremely important for the formation of protozoal embryos and

is expressed in the ectoderm, mesoderm, and endoderm of the

embryo (55). When Zic3 is mutated it may affect the

development of these germ layers, e.g., abnormal expression of

Zic3 in the ectoderm may lead to neural tube defects, while

abnormal expression in the endoderm may lead to defects in the

craniofacial region, skeleton, and limbs. Hilger et al. reported

four VACTERL patients with ZIC3 variants, three of whom had

recurrent disease-causing variant (p.Gly17Cys), and these four

patients exhibited ACR, AR, AC, and AR, respectively (52).

Notably, in patients with the presence of the ZIC3 p.Gly17Cys

variant, the covalent addition of myristoyl esters is disrupted as

Gly17 disrupts the covalent addition of myristoyl esters when it

substitutes for other small residues, allowing for damage to the

N-myristoylation site, which affects the interaction of ZIC3 with

other proteins (52). When this site is damaged, the regulatory

function of ZIC3 is impaired, which may cause abnormalities in

the SHH pathway. Variants in this gene may cause

malformations affecting the heart (C), kidneys (R), and limbs (L)

(52, 53, 56). Given that the ZIC3 gene is x-linked, variants can

result in X-linked VACTERL, and it is also closely related to

VACTERL-H.

Furthermore, IFT172, which encodes the intraflagellar

transport (IFT) protein (57) essential for GLI function, may also

contribute to VACTERL pathogenesis if impaired (58). Jessica

Ritter et al. reported on a patient with the IFT172 variant who

had all the symptoms of VACTERL (45).

3.1.3 Downstream targets
The forkhead transcription gene FOXF1 is an important

downstream target of SHH signaling (59). FOXF1 is expressed in

the esophagus, trachea, vertebrae, anus, and reproductive organs.

Variants in FOXF1 can lead to malformations in these organs.

A study reported a case of a VACTERL patient who presented

with a FOXF1 de novo variant (p.Gly220Cys) (52). FOXF1

variants have also been shown to cause tracheoesophageal fistula

(60). The severity and presentation of each malformation may

depend on the residual function and amount of FOX1 protein

present (52).

FIGURE 2

Effect of SHH signaling on the onset of VACTERL. Shh ligands activate the SHH signaling pathway. The transcription factors GLI, ZIC3, IFT172, and RAC1

influence signaling, while FOXF1 and HXOD13 act as downstream targets that influence SHH signaling. The FGF8 and LPP (acting through PEA3)

modulate SHH signaling. Additionally, the GLI is involved in regulating the FGF8 expression, which affects the SHH pathway. When the above

factors are mutated, they may contribute to the pathogenesis of VACTERL.
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HOXD13 is another downstream target of SHH signaling.

Garcia-Barceló et al. reported a case of a VACTERL patient with

a HOXD13 variant. Mouse models with the Hoxd13 variant

exhibited limb, intestinal, and genitourinary malformations (61).

The mouse model predictions have been confirmed by a number

of case reports in which patients with HOXD13 variants also

presented with limb anomalies, anal atresia, cardiac defects, and

abnormalities of the urinary tract (61). This suggests a possible

association between HOXD13 and these malformations.

3.1.4 Genes and proteins regulating the SHH
signaling pathway

FGF8 and SHH signaling promote each other through the

Hedgehog-FGF signaling axis, which regulates embryonic

development. Experiments in mice show that Fgf8 may act

downstream of Hh signaling, while Gli also regulates Fgf8

expression (62). FGF8 activates pathways like Ras—ERK, PI3K—

AKT, and phospholipase C gamma-protein kinase C (PLC γ-PKC)

to regulate embryonic development (63). Zeidler et al. identified

two cases of FGF8 variants in VACTERL patients (64). Given the

role of FGF8 in embryonic development, variants may lead to

various malformations in the vertebrae (V), anus (A), heart (C),

trachea (T), esophagus (E), kidneys (R), and facial regions

(63–65). However, since FGF8 is involved in multiple signaling

pathways to regulate fetal development, it is possible that a single

metabolic pathway is involved. However, it is more likely that

multiple pathways are involved in causing neonatal malformations.

Lipoma-preferred partner (LPP) is a LIM domain protein that

regulates the function of polyomavirus enhancer activator 3

homolog (PEA3), which is involved in the regulation of SHH

signaling as an ETS transcription factor (66). Arrington et al.

detected LPP haploinsufficiency in a patient with VACTERL

(67). LPP haploinsufficiency may contribute to cardiac

anomalies. This variant could disrupt PEA3 function, leading to

dysregulated SHH signaling and ultimately abnormal organ

development related to VACTERL pathogenesis.

3.2 Cilia-associated signaling pathways

In mammalian development, primary cilia are of great

significance in the morphogenesis of various organs (45). Faults in

the structure and function of primary cilia can lead to a series of

developmental abnormalities and metabolic disorders (68, 69). Due

to defects in primary cilia, patients may present clinically with

malformations similar to those of VACTERL (45, 70–72).

Additionally, some studies have found variants in candidate

ciliopathy genes in some VACTERL patients, such as TTLL11 (73).

Thus, abnormalities in cilia-associated signaling pathways may

contribute to VACTERL.

The cilia-associated signaling pathways interact with the SHH

signaling pathway. Given that key components of SHH signaling

localize to cilia, and SHH-signaling is required for the

production of numerous cilia proteins, the structure and function

of cilia and SHH signaling are co-dependent (45). Intraflagellar

transport (IFT) is one of the structural units of cilia, which is

involved in the transport of relevant molecules in the cilia. IFT is

a highly conserved bidirectional flow within eukaryotic cilia that

transports microtubule proteins and some receptor molecules.

Furthermore, IFT is essential in the structural assembly and

maintenance of primary cilia. It also plays an important role in

cell motility, signaling, embryonic development and organ

function (74–77). It stands at the core of the SHH signaling

pathway, acting downstream of SMO and upstream of GLI,

which is essential for GLI functioning (78). Avc1 is a

hypophenotypic mutant allele of Ift172, and Ift172 encodes a

component of IFT (58). Friedland-Little et al. found that a

mouse with Ift172Avc1 may develop the VACTERL association

with hydrocephalus (VACTERL-H) (58). When IFT172 is

mutated, it affects the structural function of IFT, which in turn

affects the SHH signaling pathway, IFT, and cytogenesis, leading

to the pathogenesis of VACTERL. VACTERL syndrome caused

by variants in IFT57 and IFT88 has also been reported (45).In

addition to regulating fetal development by affecting the SHH

signaling and cilia-associated signaling pathways, the above genes

and proteins themselves are involved in fetal development

through other pathways. For example, FGF8 can regulate

embryonic development through Ras—ERK, PI3K—AKT, and

phospholipase C gamma-protein kinase C (PLC γ-PKC).

3.3 Other genes involved in VACTERL
pathogenesis

In addition to the SHH signaling and cilia-associated signaling

pathways mentioned earlier, there are many genes related to

VACTERL, such as TRAP1, COLLA2, SALL4, B9D1, FREM1,

ZNF157, SP8, ACOT9, and TTLL11.

TNF receptor-associated protein 1 (TRAP1) encoded by

TRAP1 is the mitochondrial version of heat shock protein 90

(79), involved in anti-apoptotic and endoplasmic reticulum stress

signaling (80). Whole-exome resequencing shows an association

between TRAP1 variants and VACTERL pathogenesis (81). In a

study of TRAP1 in the Xenopus laevis, it was found that TRAP1

is expressed with developing neural crest cells, somites, renal

arches, and pharyngeal arches, and is involved in the

developmental processes of several organs. Embryos treated with

Gamitrinip-TPP (TRAP1 inhibitor) exhibit abnormalities in

craniofacial cartilage, muscle development, and urinary tract

development (82).The Xenopus laevis is a model system for

studying gene function, so this study suggests a possible

mechanism by which human TRAP1 variants lead to VACTERL.

In addition, it has been shown that TRAP1 can affect the

signaling of the Wnt pathway by regulating the co-receptors of

Wnt ligands, LRP5 and LRP6, to modulate embryonic

development. When TRAP1 is variant, it leads to down-

regulation of LRP5/6 receptors and impaired pathway activation

of WNT (83). Saisawat et al. identified TRAP1 as a VACTERL-

associated protein and reported two cases of VACTERL patients

with TRAP1 variants, presenting as VACTERL, ACTEL and both

with missense variants in the HSP90 structural domain of

TRAP1 (81). COLLA2 (collagen, type XI, alpha 2) encodes the
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α2 subunit of collagen type XI and is important for bone

development and connective tissue formation (84). It has also

been reported that COLLA2 may be a candidate gene for vertebral

defects and congenital scoliosis (85). Variants in this gene may be

involved in the development of vertebral defects (V) in the

VACTERL association. SALL4 regulates fetal development by

stabilizing embryonic stem cells and is essential for fetal neural

tissue, kidney, heart and limb development (86), and according to

experimental studies in mice, it can also cooperate with Gli to

regulate fetal bone development (87, 88). Watanabe et al.

suggested that SALL4 haploinsufficiency may lead to VACTERL

and identified a patient with SALL4-deficient VACTERL (30).

SALL4 variants can adversely affect the anal, heart, kidney, bone,

and craniofacial structures (30, 87, 89), leading to the hypothesis

that SALL4 variants may be involved in VACTERL pathogenesis.

In addition, variants in this gene are involved in the pathogenesis

of the thalidomide disaster. Loss-of-function variants in WBP11

which lead to congenital disease in humans may also cause

VACTERL. Martin et al. reported four cases of VACTERL due to the

WBP11 variant (90). However, Bo Kyung Shin et al. reported a

different situation, where WBP11 was mutated but did not produce

VACTERL, showing only vertebral anomaly and Sprengel’s

deformity (91). Additionally, exome sequencing studies have

suggested associations between VACTERL association and genes

such as FREM1, B9D1, TTLL11, ACOT9, ZNF157, and SP8 (73).

Most of the aforementioned genes, including ZIC3, FOXF1,

HOD13, FGF8, LPP, TRAP1, FREM, B9D1, TTLL11, ACOT9,

ZNF157, and SP8, are associated with renal defects. This correlation

between these genes and clinical symptoms highlights their

importance in further elucidating the pathogenesis of VACTERL.

Copy Number Variants (CNV) is also an important cause of

VACTERL. The CNV by microdeletion at 19p13.11 patients

present with VAR, which has 3 genes (MAP1S, FCHO1,

UNC13A/MUNC13A-1) that are mainly associated with

autophagy regulation, lattice protein-mediated endocytosis, human

T cell development and function, vesicle maturation during

synaptic cytokinesis, and maintenance of cellular homeostasis.

These genes are involved in cellular processes that are highly

active during embryogenesis (92). 1p36.23 duplication (92), 8p23

deletion, 12q23.1 duplication (93), Xq27.1 Microdeletion (94), etc.

have also been reported to cause VACTERL.

3.4 Other factors related to VACTERL

VACTERL pathogenesis is a complex multifactorial process.

Beyond the molecular factors described previously, maternal

environmental factors during pregnancy may play a role. These

include maternal folate levels before conception and during

gestation, pre-existing or gestational diabetes mellitus, chronic

lower obstructive pulmonary diseases, and twin pregnancies. The

use of ARTs may also be a contributing factor.

Low pre-conception folate levels increase the risk of DNA

methylation disturbances, which may contribute to VACTERL

development (11). Folate plays a crucial part in one-carbon

metabolism, purine and pyrimidine synthesis, and methylation.

Maternal folate deficiency leads to decreased levels of levomefolic

acid (a folate cycle form) and depletion of S-adenosylmethionine,

resulting in decreased DNA cytosine methylation. Research data

show that gestational diabetes mellitus increases VACTERL risk

(9). Additionally, pregestational diabetes can increase the risk of

VACTERL. Statistically, the children of pregnant women with

pregestational diabetes have more than three times the risk of

developing VACTERL and are prone to cardiac defects and

genitourinary malformations, as well as an increased prevalence

of craniofacial anomalies, ear anomalies, and hearing loss,

compared with the offspring of healthy pregnant women (95).

Romy van de Putte et al. showed chronic lower obstructive

pulmonary diseases and ART application lead to increased

prevalence of VACTERL (95). Carolina I Galarreta et al. also

showed that twin pregnancies were significantly associated with

the occurrence of microtia in patients with VACTERL (9).

However, it has also been suggested that twin pregnancies are

not associated with VACTERL development (95).

In addition, environmental factors, such as fetal exposure to

estrogen and/or progesterone, statins, and lead in utero, may increase

the risk of the disease (96). Environmental factors such as drugs,

alcohol, food, and nutrition may interfere with gene expression and

affect embryonic development, which in turn leads to VACTERL

(97). Therefore, understanding these factors is important for taking

preventive measures to reduce VACTERL incidence.

Notably, there is an overlap in clinical symptoms between

VACTERL and other embryonic developmental malformations, and

a common pathogenesis may be present. For example, variants in

FGF8 are mainly found in patients with Kallmann syndrome (KS),

and VACTERL patients with detectable FGF8 variants have bilateral

cryptorchidism, a key phenotype in KS (64). Factors contributing to

VACTERL development may also contribute to other diseases. For

example, pregestational diabetes is associated with caudal regression

syndrome (98), and the B9d1 and Frem1 genes have been

associated with Meckel-Gruber syndrome and the Fraser-related

Manitoba oculotrichoanal syndrome (73). The reason for these

phenomena may be the presence of the same organ developmental

abnormalities in different diseases, and these genes play a vital role

in the normal development of the corresponding organs. The

association between clinical symptoms and pathogenic factors

suggests a possible overlap of pathogenesis between VACTERL and

other neonatal malformations, providing ideas for further

exploration of the pathogenesis of VACTERL.

Based on the preceding discussion, several key points emerge.

First, is there a spectrum of malformations that encompasses

VACTERL and neonatal malformations with the same causative

genes as its causative genes and similar symptoms? Several

congenital disorders demonstrate both genetic overlap and

phenotypic similarities with VACTERL. For instance, caudal

regression syndrome (associated with CDX2 variants) manifests

features overlapping with VACTERL (ARL) as well as its

distinctive lower limb deformities (99), while theoculo-auriculo-

vertebral spectrum (linked to ZIC3 variants) presents with both

VACTERL features and microtia (100). Emerging clinical

evidence supports this spectrum hypothesis. In Carolina

I Galarreta’s study of 263 VACTERL patients, ear anomalies were
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found in 10.2%, ear malformations were found in 5.9%, hearing

loss was found in 13.9%, and orofacial clefts were found in 3.1%

(9). Notably, these features—ear malformations, hearing loss, and

orofacial clefts—constitute hallmark manifestations of other

distinct syndromes such as CHARGE syndrome with Ear

malformations and Cleft lip and/or palate, and may be

accompanied by VTECRL; Goldenhar syndrome with Ocular and

auricular malformations, and may be accompanied by VACRL.

This phenotypic overlap raises the possibility that these

congenital diseases may exist in the same spectrum of

malformations, rather than different ones.

Second, although some studies have pointed out that the above

genes are involved in the pathogenesis of VACTERL, large-scale

resequencing has shown that many of the above genes do not play

a major role in the pathogenesis of VACTERL, such as FGF8

(101), and even, the causative genes confirmed by large-scale

resequencing so far are TRAP1 and ZIC3 (101). In addition there

is controversy over whether FOXF1 is pathogenic for VACTERL,

which was found to be the causative gene in the large-scale

resequencing by Alina C Hilger et al (52). However, Corina

E Thiem’s study refutes this idea (101).Therefore, first, larger-scale

sequencing may be required to determine which genes truly cause

VACTERL. Second, researchers should not only consider the

impact of a single gene but also the interactions between genes

and between genes and the environment, studying how these

combined effects influence VACTERL. Third, further research is

needed on the relationship between this disease and other

congenital malformations to better provide genetic counseling for

parents and to select more effective prognostic methods.

4 Diagnosis and differential diagnosis

The diagnosis of VACTERL is mainly based on the patient’s

clinical manifestations, as well as relevant imaging studies, but

the role of autopsy and molecular diagnosis should not be ignored.

The diagnosis of VACTERL primarily relies on imaging

techniques, including x-ray, ultrasound, magnetic resonance

imaging (MRI), and radiography. The diagnosis of VACTERL

can be divided into prenatal and postnatal periods, with the

prenatal period relying mainly on ultrasonography. The following

tests are commonly used in the postnatal period, for evaluating

cardiac defects and renal defects, ultrasound is the primary

diagnostic modality. x-ray is typically used for assessing the spine

and limbs. Esophageal atresia and tracheoesophageal fistula can

also be detected on x-ray, and radiography is the preferred

method for confirming tracheoesophageal malformations (6).

4.1 Diagnostic imaging

The radiological diagnosis of VACTERL can be categorized

into prenatal and postnatal diagnoses. Prenatal diagnosis

primarily relies on ultrasound and MRI, which enable the early

detection of abnormalities and make timely intervention possible.

Radiologic features that may suggest prenatal VACTERL include

colonic dilatation, vertebral defects, amniotic fluid, absence of

gastric vesicles, and limb abnormalities (22). However, routine

ultrasound screenings can sometimes miss certain conditions. For

example, abnormalities in the renal system can be missed due to

poor imaging conditions (such as oligohydramnios or even

anhydramnios). Small cardiac defects, spinal segmentation

anomalies, polydactyly, tracheoesophageal fistula, anal atresia,

and genitourinary anomalies are often difficult to detect during

prenatal screenings. Also VACTERL-H is not easily detected on

ultrasound and most cases of VACTERL-H are detected after

birth, but VACTERL-H should be considered when progressive

ventricular enlargement is detected (32). Therefore, clinicians

should consider the possibility of VACTERL and use a systematic

approach to detect common malformations associated with it.

This approach involves initially examining the systems with the

highest incidence of any anomalies, including the vertebrae (V),

heart (C), trachea (T), and esophagus (E), followed by targeted

assessments of the anus (A), kidneys (R), and limbs (L) (6).

When two or more anomalies are found, it is necessary to

examine the remaining four systems for malformations.

Postpartum diagnosis primarily involves an x-ray examination of

the neonatal vertebrae and limbs. Because spinal deformities

typically do not cause discomfort in newborns, scoliosis may not

be detected during routine examinations. Furthermore, improper

positioning during x-ray imaging can lead to a failure to conduct

a thorough examination of the spinal skeletal system, which can

result in the missed diagnosis of spinal deformities (102).

Moreover, if the clinical presentation includes frequent vomiting,

persistent white saliva, or difficulty with gastric tube insertion,

esophageal atresia should be suspected; in this case, contrast

imaging should be performed for diagnosis and classification,

and the possibility of VACTERL association should be

considered. Ultrasound should also be used to examine the heart

and urinary system for abnormalities, as well as to assess other

organ systems for any potential issues. When diagnosing

tracheoesophageal fistulas it is important to note that some

tracheoesophageal fistulas are not associated with esophageal

atresia, in which case fluoroscopic esophagography and

bronchoscopy are the mainstay of confirming the diagnosis, as

well as CT and endoscopy. False-negative findings on

esophagography and CT can be reduced by proper localization

and the techniques mentioned above (103).

When diagnosing VACTERL, it is also important to consider

the patient’s symptoms, such as cough, salivation, cyanosis,

feeding difficulties, and respiratory distress, and to consider the

possibility of TE and perform the appropriate investigations. It

has also been suggested that some TEs without esophageal atresia

may not have these symptoms and may present with recurrent

pneumonia and respiratory symptoms in late infancy (103),

which should be noted by the clinician.

4.2 Molecular testing

Due to the phenotypic overlap between VACTERL syndrome

and other syndromes and the highly heterogeneous nature of the
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etiology of VACTERL syndrome, when a differential diagnosis

cannot be made on the basis of symptoms and imaging alone,

molecular testing may be considered to help differentiate

VACTERL syndrome from other syndromes and identify the

causative genes, preventing misdiagnosis from affecting the

prediction of developmental outcomes and the risk of recurrence.

Currently, molecular tests include microarray, karyotype, trio

Exome Sequencing, microarray analyses, single-gene testing,

specific gene testing, targeted testing, exome sequencing, genome

sequencing, and pathway burden test. sequencing, genome

sequencing, pathway burden test, and other methods. Prenatally,

karyotyping may be considered, which is a useful and relatively

inexpensive test for identifying aneuploidies, large, cytogenetically

detectable copy number variations, and chromosomal

rearrangements that may contribute to the malformations seen in

VACTERL associations, in addition to copy number analysis with

microarrays, which can also help in the detection of VACTERL;

postpartum, a thorough clinical examination is first performed to

determine the number and type of congenital malformations,

and a comprehensive collection of medical history, family history

and imaging data. After the above examination, if the associated

disease can be clearly identified, then appropriate molecular

testing (Pursue appropriate testing) can be carried out; if the

diagnosis can not be clearly identified, microarray analysis can be

prioritized, which can reveal potentially pathogenic

malformations that can be revealed in a small number of

individuals, but a large number of individuals (7).

It is worth noting that molecular genetic analyses aimed at

identifying monogenic etiologies may have low diagnostic rates,

with monogenic disorders diagnosed in only 5% (5/96) of cases

in Jasmina Ćomić’s study, which may be due to the fact that

VACTERL associations are multifactorial in nature. Exome

sequencing is valuable in individuals with atypical features to

help identify potential underlying syndromes similar to

VACTERL features (104). Exome sequencing is valuable in

individuals with atypical features to help identify potential

syndromes that resemble VACTERL features (104). However,

when a patient has symptoms that closely match those of

VACTERL, a better diagnosis can be made based on clinical

symptoms and imaging tests. The importance of molecular

testing is to prevent misdiagnosis and provide assistance in

family counseling.

4.3 Fetal autopsy

The importance of fetal autopsy has also attracted our

attention. Fetal autopsy helps to correctly diagnose and narrow

down the investigation of specific etiologies of congenital

anomalies and fetal birth defects through systematic anatomical,

histological, and genetic multidimensional analyses, clarifying the

combined characteristics of the child’s multi-systemic

malformations, ruling out confusing disease matches, and

compensating for ultrasound’s diagnostic limitations (105). It is

crucial in confirming prenatal diagnosis, recognizing other

malformations, and providing potential etiologies that can direct

parental attention to the risk of recurrence (23, 106). It can also

identify unexpected congenital anomalies or causes of recurrent

miscarriages and stillbirths, helping to search for possible

environmental or maternal factors influencing the fetus (107).

However, due to cultural, emotional, and other challenges, the

use of fetal autopsy is currently low. Fetal autopsies have

provided important information for the study of VACTERL

syndromes and have promoted further research into the clinical

manifestations and pathogenesis of VACTERL syndromes (23).

Although VACTERL is most often diagnosed in infancy, it is

worth noting that VACTERL syndrome may also be diagnosed in

adulthood (108).

There is currently an issue that deserves our attention: many

clinicians have a poor understanding of the range of

malformations covered by VACTERL. Some conditions, which do

not fall under the category of related malformations, are

diagnosed as such. For example, anencephaly and spina bifida

are misdiagnosed as V, but they are negatively correlated with

VACTERL. Ulnar longitudinal deficiency are rare and their

association with VACTERL has not been established, yet they are

misdiagnosed as L (26, 109). Some patients with pVACTERL are

misdiagnosed as VACTERL (21). These misdiagnoses may lead

to a misassessment of the prognosis of patients, so doctors need

to deepen their understanding of VACTERL. However, it is also

important to recognize that more cases may further expand the

scope of VACTERL, which requires further research.

4.4 Differential diagnosis

The symptoms of VACTERL are numerous and similar to

those of many other diseases; therefore, differential diagnosis is

necessary to avoid misdiagnosis.

To better differentiate VACTERL from other diseases, we

compared the similarities and differences between VACTERL and

other neonatal malformations in terms of major and secondary

symptoms, causative genes, and mode of inheritance (Table 1).

5 Treatment and prognosis

VACTERL treatment is broadly categorized into prenatal and

postnatal approaches. During the embryonic stage, prenatal

diagnosis can identify fetuses with VACTERL, allowing for

appropriate genetic counseling and management. Postnatal

treatment typically involves surgical correction of specific

congenital malformations, with the surgical sequence determined

by clinical manifestations, prioritizing life-threatening

malformations during the neonatal period (13).

Surgical correction also requires supportive treatments such as

infection prevention, nutritional support, and stabilization of the

internal environment to ensure the safety of the newborn. In

certain organ malformations, thoracoscopic surgery may be used

as an alternative to traditional open-surgical treatment. For

example, thoracoscopic surgery for congenital esophageal atresia

offers advantages such as clear visualization, safety, minimal
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TABLE 1 Differential diagnosis.

Disease Similarity Difference Causative
gene

Mode of
inheritance

Major
symptom

Secondary
symptom

Major symptom Secondary symptoma

Townes-Brocks

syndrome (120,

121)

A L C R 1. Typical thumb malformations

without hypoplasia of the radius

2. Dysplastic ears

1. Hearing impairment

2. Foot malformations

Sall1 Autosomal dominant

Baller-Gerold

syndrome (122)

L C 1. Coronal craniosynostosis

2. Growth restriction

3. Poikiloderma

1. Intellectual deficiency

2. Imperforate or anterior

displacement of the anus

3. Cancer risk

Recql4 Autosomal recessive

CHARGE

syndrome (123)

TE C R V L 1. Cranial nerve dysfunction

2. Choanal atresia/stenosis

3. Ocular coloboma

4. Ear malformations

5. Cleft lip and/or palate

6. Endocrine abnormality

7. Developmental delay/

intellectual disability

8. Brain anomaly

9. Seizures

1. Gastrointestinal problems

2. Immunodeficiency

3. Neuromuscular problems

4. Dental problems

Chd7 Autosomal dominant

Mayer-

Rokitansky-

Küster-Hauser

(MRKH)

syndrome (124,

125)

V R A C L Genital anomalies (Müllerian duct

agenesis, absence of the cranial two-

thirds of the vagina, and hypoplasia

of the uterus)

1. Hearing impairment

2. Occipital encephalocele

3. Cerebral cysts

4. Cerebellar hypoplasia

5. Seizures

6. Abnormal lobation of

the lungs

7. Diaphragmatic agenesis

8. Short stature

Possibly related to

Greb1l, Lhx1,

Hnf1b, Tbx6, and

Wnt9b

This syndrome occurs

sporadically or as an

autosomal dominant

trait

Goldenhar

syndrome

(126–128)

V A C R L 1. Facial asymmetry

2. Ocular and

auricular malformations

1. CNS malformations

2. Reproductive

system anomalies

3. Respiratory abnormalities

–
b This syndrome occurs

sporadically or as an

autosomal dominant

trait

McKusick-

Kaufman

syndrome (129)

A C R 1. Hydrometrocolpos (HMC) in

females and genital

malformations in males

2. Postaxial polydactyly (PAP)

1. Hirschsprung disease

2. Anteriorly placed anus

Mkks Autosomal recessive

Currarino

syndrome (130,

131)

V Ac R Presacral mass 1. Müllerian duct anomalies

2. Developmental delay

Mnx1 Autosomal dominant

Holt-Oram

syndrome (132)

C L R Cardiac conduction disease 1. Craniofacial abnormality

2. Auditory or ocular

system abnormalities

Tbx5 Autosomal dominant

Caudal

regression

syndrome

(133–135)

VA R L C Central nervous system

abnormalities

1. Neurogenic bladder

2. Dysmorphic facial

3. Bowel incontinence

Multigenic model

Cdx1

Cdx2

Cyp26a1

Mbtps1

Plzf

Sptbn5

Morn1

Znf330

Cltcl1

Pdzd227

Vangl1d

Autosomal dominant

(Vangl1)

Fanconi anemia

(136)

R L V A C TE 1. Short stature

2. Abnormal skin pigmentation

3. Microcephaly

4. Ophthalmic anomalies

1. Endocrine disorders

2. Hearing loss

3. Central nervous

system abnormalities

4. Developmental delay and/

or intellectual disability

5. Bone marrow failure

At least 23 genes

have been identified

as being associated

with Fanconi

anemia

Autosomal recessive,

autosomal dominant

(RAD51-related FA),

and X-linked

(FANCB-related FA)

aThe major and secondary symptoms here are the primary and secondary symptoms of the diseases listed in the table.
bThe causative gene has not been identified, but related chromosomal abnormalities (mosaic and/or partial trisomies) and copy number variations may contribute to the development of the disease.
cThe A of Currarino syndrome is similar to but different from VACTERL. Currarino syndrome does not present as anal atresia, and it is an anorectal malformation (usually presenting as

chronic constipation).
dThe listed genes may be pathogenic for caudal regression syndrome but have not been identified. Vangl1 has been shown to be the causative gene for the disease in OMIM, which follows

autosomal dominant inheritance.
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invasiveness, rapid recovery, and fewer complications, significantly

alleviating the symptoms of VACTERL association in affected

children (16, 110). Thoracoscopic surgery results in ventilation

time, decreased hospitalization, higher anastomotic stenosis, and

lower need for long-term tube feeding (111). After esophageal

atresia surgery, complications such as anastomotic stricture and

tracheoesophageal fistula are common, often requiring secondary

corrective surgery (112). Therefore, early surgical intervention is

essential. Delaying surgery risks life-threatening complications,

such as tracheal obstruction, which can be fatal. It is important

to note that when TEF with anal atresia is present, it is

important to ensure that the patient is ventilated autonomously,

thus avoiding air entry into the atretic gastrointestinal tract in

the presence of mechanical ventilation and reducing the risk of

aspiration of gastric contents through the fistula (13). Takayuki

Masuko mentioned a method for better treatment of persistent

cloaca in patients with VACTERL, i.e., intestinal decompression

using a continuous transanal drainage system instead of a

colostomy without the need for a temporary enterostomy. This

avoids the disruption that a colostomy may cause to subsequent

procedures such as gastrostomy for esophageal atresia, direct

intracardiac surgery requiring an incision near the colostomy, or

spinal surgery requiring a prone position postoperatively. Moreover,

this approach permits radical repair, which reduces total anesthetic

exposure and decreases the risk of surgical site infection, with

some improvement in abdominal aesthetics (113). For patients with

VACTERL-H, a new treatment option, endoscopic

ventriculocystostomy plus Magendie foraminoplasty and plexectomy

combined with craniovertebral shunt placement, has recently been

proposed by some clinicians, and this approach may improve

survival and quality of life in patients with VACTERL-H (25).

Anesthesia in children with VACTERL also requires attention;

patients with VACTERL are at elevated risk for anesthesia, such as

TE which can complicate airway management and preoperative

aspiration, cardiac malformations that can affect hemodynamic

stability, renal anomalies that may cause abnormalities in

pharmacokinetics and pharmacodynamics, and vertebral

malformations that may cause difficulty in surgical positioning.

The technique used during anesthesia may be an ultrasound-

guided caudal block, which has been shown in some studies to

improve the probability of a successful first puncture, and real-

time ultrasound monitoring of local anesthetic spread also

permits visual confirmation of correct placement. The use of

ketamine and dexmedetomidine for sedation and analgesia has

proven to be beneficial as it allows for balanced and titratable

levels of sedation while maintaining voluntary ventilation. It also

provides effective sedation and hemodynamic stability. The risk

of respiratory depression and airway complications is minimized

by avoiding volatile drugs and opioids (13). Complication rates

and mortality in VACTERL patients depend on a variety of

factors related to the patient’s condition, associated anomalies,

surgical technique, and other factors.

Post-surgical care should focus on airway management, gastric

tube support, feeding and nutrition management, oral

rehabilitation exercises, and maintaining airway patency and

assisted ventilation, with emphasis on deoxygenation training.

Patients with VACTERL may continue to have many sequelae

after cure (112), some of which are present throughout life or

manifest in adulthood (4). V may cause back pain, A is

associated with constipation, gastrointestinal obstruction,

adhesions, and hemorrhage, C may develop exercise intolerance,

TE is associated with dysphagia, poor esophageal motility,

asthma, and regurgitation, which may be associated with poor

esophageal motility, in addition to choking, tracheal tenderness,

and reactive airway disease, R may be associated with kidney

stones, pyelonephritis, and recurrent urinary tract infections, and

L may present with wrist pain, among others (4, 114). Patients

who have had TE may be frequently hospitalized in childhood

due to lung infections or stuck food pushes. They take more

time than their peers to complete a meal (affecting work-school

life) and always have to consider the type of food they eat (115).

Also, in addition to the possible negative effects of anesthesia

exposure on brain development, frequent hospital admissions can

have negative effects such as anxiety, and quality of life (116).

Sometimes some patients do not develop other symptoms

associated with VACTERL until adulthood. The inconvenience of

daily life and physical pain may seriously affect patients’ quality

of life and mental health. Therefore, comprehensive attention

should be given to both the physical and psychological well-

being of the patient. In addition to physical therapy,

psychological counseling and humane care should be prioritized.

Studies have shown that preschool children aged 5–7 years with

VACTERL often experience attention deficits, including

concentration difficulties, distractibility, attention-shifting

problems, and difficulty sustaining attention, as well as

hyperactivity or impulsivity. This may lead to abnormal eating

habits and low interest in food (114). These, combined with

possible food mass obstruction and intestinal dyskinesia, make

feeding patients with VACTERL potentially more complex (115).

Some studies have shown no cognitive impairment in patients

with VACTERL (114). However, more recent studies have shown

that patients with VACTERL are at higher risk for attention

deficit hyperactivity disorder (ADHD), autism spectrum disorder

(ASD), and intellectual disability (ID) (117). People with

VACTERL are also more likely to be depressed (5). This needs to

be emphasized by family members, caregivers and followers.

In addition to the physical and mental health of the patient, the

mental health of the patient’s family should also be emphasized,

with parents struggling between the roles of parent and caregiver

as they must administer medication, tube feedings, or parenteral

feedings to their children (118). Sixty percent of parents of

children with TE exhibit fear of choking (115), and parents of

children with TE are more likely to be depressed than normal

families (5).

Most patients do not like to be treated as patients because of

poor health, but would like to be provided with a medical ID in

case of emergency (118). Also hospitals where parents can stay

with them around the clock, and family-centered care seem to be

beneficial for the prognosis of VACTERL patients (118). Long-

term multidisciplinary follow-up is essential, and patients and

families will also need support for functional and psychosocial

changes during adolescence, puberty, and young adulthood (119).
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6 Summary

The VACTERL association is a rare congenital multiple

malformation with an incompletely understood pathogenic

mechanism. This review has discussed the clinical manifestations,

pathogenesis, differential diagnosis, treatment, and prognosis of

VACTERL. Given the diverse presentation of VACTERL and its

similarity to many other diseases, it is crucial to strengthen the

differential diagnosis to avoid misdiagnosis. The treatment of this

condition is symptomatic and should be tailored to individual

manifestations. Due to limited understanding and research on

VACTERL, current treatment approaches are often insufficient,

and the overall level of medical care requires improvement.
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