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Background: The integration of artificial intelligence (AI) into early childhood 

health management has expanded rapidly, with applications spanning the 

fetal, neonatal, and pediatric periods. While numerous studies report 

promising results, a comprehensive synthesis of AI’s performance, 

methodological quality, and translational readiness in child health is needed.

Objectives: This systematic review aims to evaluate the current landscape of AI 

applications in fetal and pediatric care, assess their diagnostic accuracy and 

clinical utility, and identify key barriers to real-world implementation.

Methods: A systematic literature search was conducted in PubMed, Scopus, and 

Web of Science for studies published between January 2021 and March 2025. 

Eligible studies involved AI-driven models for diagnosis, prediction, or 

decision support in individuals aged 0–18 years. Study selection followed the 

PRISMA 2020 guidelines. Data were extracted on application domain, AI 

methodology, performance metrics, validation strategy, and clinical 

integration level.

Results: From 4,938 screened records, 133 studies were included. AI models 

demonstrated high performance in prenatal anomaly detection (mean AUC: 

0.91–0.95), neonatal intensive care (e.g., sepsis prediction with sensitivity up 

to 89%), and pediatric genetic diagnosis (accuracy: 85%–93% using facial 

analysis). Deep learning enhanced consistency in fetal echocardiography and 

ultrasound interpretation. However, 76% of studies used single-center 

retrospective data, and only 21% reported external validation. Performance 

dropped by 15%–20% in cross-institutional settings. Fewer than 5% of models 

have been integrated into routine clinical workflows, with limited reporting on 

data privacy, algorithmic bias, and clinician trust.
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Conclusion: AI holds transformative potential across the pediatric continuum of 

care—from fetal screening to chronic disease management. However, most 

applications remain in the research phase, constrained by data heterogeneity, 

lack of prospective validation, and insufficient regulatory alignment. To advance 

clinical adoption, future efforts should focus on multicenter collaboration, 

standardized data sharing frameworks, explainable AI, and pediatric-specific 

regulatory pathways. This review provides a roadmap for clinicians, researchers, 

and policymakers to guide the responsible translation of AI in child health.

KEYWORDS
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1 Introduction

Child health represents a cornerstone of global public health, 

with long-term implications for national human capital 

development and societal well-being. However, pediatric 

healthcare systems worldwide continue to face significant 

challenges. Approximately 2.3 million neonates die within the 

first month of life each year, the majority due to preterm birth 

complications, congenital anomalies, and perinatal conditions— 

many of which are preventable or treatable with timely 

intervention (1). Furthermore, the prevalence of chronic 

pediatric conditions such as congenital heart disease, 

neurodevelopmental disorders, and inborn errors of metabolism 

is rising, leading to prolonged functional impairment in affected 

individuals and imposing substantial economic and psychosocial 

burdens on families and healthcare systems. These disparities 

are exacerbated in resource-limited settings, where shortages of 

specialized pediatric personnel, inadequate diagnostic tools, and 

delays in early intervention contribute to persistent inequities in 

health outcomes. Consequently, enhancing the capacity for early 

detection, precise diagnosis, and individualized management of 

pediatric diseases has become a critical unmet need in global 

child health.

Recent advances in artificial intelligence (AI) have opened 

unprecedented opportunities to address these challenges (2). 

Machine learning (ML) techniques—including deep learning, 

natural language processing, and computer vision—have 

demonstrated exceptional performance in medical image 

analysis, physiological signal monitoring, genomic interpretation, 

and clinical decision support (3). In prenatal care, AI 

applications have enabled automated measurement of fetal 

biometric parameters, detection of fetal growth restriction 

(FGR), prediction of preterm birth, and high-accuracy 

diagnostic support across imaging modalities such as fetal 

ultrasound, Magnetic Resonance Imaging (MRI), and fetal 

electrocardiography. In postnatal pediatric care, AI models have 

been developed to analyze neonatal electroencephalography for 

seizure prediction, assess jaundice severity using smartphone- 

captured images, support staging of chronic kidney disease, and 

improve diagnostic accuracy for rare genetic disorders through 

facial phenotyping (e.g., Face2Gene) (4). These developments 

suggest that AI has the potential to shift clinical paradigms from 

passive documentation to proactive risk prediction and 

intelligent decision-making, thereby enhancing both the 

accessibility and precision of pediatric healthcare.

Despite this promise, the clinical translation of AI in fetal and 

pediatric care remains in its early stages and is hindered by 

multiple challenges. First, most existing models are trained on 

small, single-center datasets, lacking external validation and 

robust assessment of generalizability, resulting in a persistent 

“lab-to-clinic gap”. Second, pediatric data are inherently 

heterogeneous, developmentally dynamic, and highly sensitive, 

while high-quality, large-scale, and expertly annotated datasets 

specific to pediatric populations remain scarce—limiting model 

robustness and broad applicability. Third, the majority of 

current AI systems operate as “black boxes” with limited 

interpretability (Explainable AI, XAI), which undermines 

clinician trust and hinders clinical adoption. Additionally, 

pathways for clinical integration, ethical guidelines, regulatory 

frameworks, and cost-effectiveness evaluations for AI tools 

remain poorly defined, impeding their scalable deployment in 

real-world settings.

Given this context, a systematic evaluation of the current state 

of AI applications across the fetal-to-pediatric health continuum— 

assessing their evidence base, technological maturity, and 

translational potential—is both timely and essential. Recent 

research and empirical evidence on the implementation of AI in 

key domains—including fetal monitoring, neonatal intensive 

care, chronic disease prediction, and genetic disorder diagnosis 

—are synthesized. Technological bottlenecks and research gaps 

are identified, and future directions such as multimodal data 

integration, causal inference modeling, federated learning, and 

enhanced model interpretability are discussed. Table 1

summarizes the applications of AI across developmental stages, 

providing an overview of current use cases and clinical domains.

2 Methods

2.1 Literature search strategy

Systematic literature searches were conducted in PubMed, 

Scopus, Web of Science, and IEEE Xplore to identify studies 

published between January 1, 2021, and March 15, 2025. 
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The search strategy combined controlled vocabulary terms (e.g., 

MeSH terms in PubMed) with free-text keywords, adapted to 

the syntax of each database. Key concepts included artificial 

intelligence (e.g., “Artificial Intelligence”, “Machine Learning”, 

“Deep Learning”, “Neural Networks”) and pediatric populations 

(e.g., “Pediatrics”, “Neonatology”, “Fetus”, “Newborn Infant”, 

“Child Development”). Truncation symbols (*) were used to 

capture word variants (e.g., pediatr*, neonat*). Searches were 

limited to title and abstract fields where applicable.

In addition to electronic database searches, conference 

proceedings (via IEEE Xplore and ACM Digital Library) and 

preprint servers (arXiv and bioRxiv) were screened to capture 

emerging research. (Note: arXiv and bioRxiv are open-access 

preprint repositories for preliminary scientific reports prior to 

peer review.) The full PubMed search strategy is provided in 

Appendix 1. Study identification and screening were performed 

independently, with discrepancies resolved through consensus or 

arbitration by a third party.

2.2 Research questions

The review addresses the following research questions (RQs), 

formulated using the Population, Intervention, Comparator, 

Outcome, and Study Design (PICOS) framework:(RQ1) the 

applications of AI/ML in prenatal and perinatal care among 

pregnant women and fetuses, compared with standard care 

without AI support, examining the development and application 

of AI/ML models across any study design; (RQ2) the 

applications of AI/ML in neonatology among newborns and 

neonates, relative to standard care, focusing on diagnostic 

accuracy and clinical outcomes in prospective or retrospective 

cohort, cross-sectional, case–control, or randomised controlled 

trial (RCT) designs; (RQ3) the applications of AI/ML in 

paediatric disease management among children aged 0–18 years, 

against standard care, with outcomes of diagnostic accuracy and 

clinical effectiveness within the same study designs; (RQ4) the 

utilisation of AI/ML-based intelligent diagnostic technologies in 

paediatric populations (0–18 years), compared with conventional 

care, assessing diagnostic accuracy and clinical outcomes in 

prospective or retrospective cohort, cross-sectional, case–control, 

or RCT designs; (RQ5) the deployment of AI/ML-supported 

patient education and clinical decision support systems among 

patients, families, and healthcare providers, vs. standard care, 

evaluating knowledge retention and clinical utility within 

prospective or retrospective cohort, cross-sectional, case–control, 

or RCT designs; and (RQ6) the challenges and future directions 

for AI/ML in paediatric care, targeting healthcare providers and 

policymakers, contrasting current practices with proposed 

strategies to enhance implementation success and future 

potential, and including any study design reporting 

methodological or clinical limitations.

2.3 Inclusion and exclusion criteria

Peer-reviewed studies published in English between January 

2021 and March 2025 were included if they reported diagnostic 

accuracy (e.g., sensitivity, specificity, area under the curve 

[AUC]) or clinical outcomes (e.g., mortality, morbidity, resource 

utilization) and employed prospective or retrospective cohort, 

cross-sectional, case–control, or randomized controlled trial 

(RCT) designs. Non-clinical studies, animal experiments, and 

studies based on unpublished or inaccessible data were excluded.

2.4 Study selection process

The study selection process followed the PRISMA 2020 

guidelines and is summarized in Figure 1. An initial search 

yielded 4,938 records from electronic databases; no additional 

records were identified through other sources. After removal of 

TABLE 1 AI applications in each stage.

Developmental 
Stage

Application Area Specific Application References

Fetal Period  Fetal Prenatal screening for congenital abnormalities, optimization of prenatal diagnostic procedures (5–7)

Fetal Disease Diagnosis Improvement of fetal ultrasound image quality, detection of spina bifida, prenatal diagnosis of 

congenital heart disease

(8–12)

Fetal Echocardiography Assistance in fetal growth monitoring, optimization of fetal ultrasound examinations (13–18)

Neonatal Period Neonatal Intensive Care Multidimensional data analysis for early diagnosis, prediction and monitoring of neonatal 

diseases

(19–30)

Pediatric Period Pediatric Clinical 

Practice

Disease diagnosis and prediction, screening and management of chronic diseases, optimization 

of surgical treatment

(31–48)

Genetic Disease 

Diagnosis

AI-based genetic diagnostic programs, analysis of facial features, ocular structures, and skeletal 

imaging for genetic syndromes

(47, 49–72)

1. Fetal Period: 1.1 Fetal Medicine: AI technologies have significantly improved the accuracy of screening for congenital abnormalities and optimized prenatal diagnostic procedures.1.2 Fetal 

Disease Diagnosis: AI algorithms optimize ultrasound image quality, increase the detection rate of spina bifida, and achieve high accuracy in the prenatal diagnosis of congenital heart disease. 

1.3 Fetal Echocardiography: AI assists in fetal growth monitoring and optimizes fetal ultrasound examinations, addressing issues such as high fetal activity and interobserver 

variability. 2. Neonatal Period: Neonatal Intensive Care: AI relies on big data analysis and machine learning algorithms to optimize early diagnosis and personalized treatment. 

Applications include sepsis risk prediction, mortality prediction, and monitoring of neonatal diseases. 3. Pediatric Period: 31 Pediatric Clinical Practice: AI is used in disease diagnosis 

and prediction, screening and management of chronic diseases, and optimization of surgical treatment. Applications include pediatric oncology, chronic disease management, and 

surgical navigation. 3.2 Genetic Disease Diagnosis: AI-based genetic diagnostic programs integrate clinical phenotype and genotype data to assist in the rapid identification of 

pathogenic mutations. Tools like Face2Gene, Eye2Gene, and Bone2Gene are used for the diagnosis of genetic syndromes.
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1,506 duplicates and exclusion of zero records Magged as ineligible 

by automated screening tools, 3,432 unique records remained for 

title and abstract screening. Of these, 2,785 were excluded as 

irrelevant, leaving 647 for full-text assessment. All 647 full-text 

articles were retrieved and evaluated against predefined 

inclusion criteria. A total of 514 studies were excluded: 210 were 

non-clinical, 158 involved animal experiments, and 166 were 

based on unpublished or inaccessible data. Ultimately, 133 

studies met all inclusion criteria and were included in the final 

qualitative synthesis.

2.5 Quality assessment of included studies

A standardized quality assessment framework was applied to 

evaluate scientific validity and methodological rigor. The 

framework assessed study design, sample size, validation 

methods, performance metrics, and stage of clinical translation. 

Study designs were classified as prospective, retrospective, or 

multicenter, with multicenter prospective studies considered 

more robust. Sample sizes were categorized as large (≥1,000), 

medium (300–999), or small (<300). Validation methods were 

distinguished between internal and external validation, with 

greater weight assigned to studies using independent external 

datasets. All included studies reported at least one quantitative 

performance indicator, such as area under the receiver operating 

characteristic curve (AUC), sensitivity, or specificity. Studies 

were classified by stage of clinical translation: laboratory 

development, pilot application, or clinical implementation, with 

those demonstrating real-world deployment considered to have 

higher practical relevance.

The methodological quality of all 133 included studies was 

assessed using a five-domain framework outlined in Table 2. 

Studies were evaluated according to study design, sample size, 

FIGURE 1 

PRISMA flowchart of the included studies.
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validation strategy, reporting of performance metrics, and level of 

clinical translation, and assigned an overall quality rating: Grade A 

(≥12 points with external validation), Grade B (8–11 points), or 

Grade C (≤7 points).Of the 133 studies, 24 (18.0%) received 

Grade A, 71 (53.4%) Grade B, and 38 (28.6%) Grade C. High- 

quality examples include Pierucci et al. (4), Chen et al. (10), and 

Mallineni et al. (19) (all Grade A), while Alqahtani et al. (39) 

received Grade B. The predominance of single-center datasets 

and limited external validation highlights the need for more 

multicenter, prospectively validated pediatric AI research.

2.6 Data extraction and categorization

Data extraction was conducted independently by two 

reviewers, with discrepancies resolved through consensus or 

third-party arbitration. Extracted data were categorized 

according to application domain. Methodological quality was 

assessed based on study design, sample size, validation 

approach, performance indicators, and translational stage. The 

level of evidence for each study was classified to reMect the 

reliability of findings and potential for real-world applicability. 

This approach supported reproducibility and transparency 

in synthesis.

3 Applications of artificial intelligence 
in prenatal and perinatal care

The integration of AI into prenatal and perinatal care has been 

associated with advances in risk prediction, imaging 

interpretation, and decision support. Evidence from recent 

studies can be organized into four thematic domains: (1) 

prediction of adverse pregnancy outcomes, (2) automation and 

standardization of ultrasound interpretation, (3) advanced 

imaging analysis in fetal MRI and echocardiography, and (4) 

augmentation of clinical expertise and reduction of diagnostic 

disparities. This framework reMects functional patterns in AI 

application and supports a structured synthesis of technological 

impact—highlighting roles in early detection, diagnostic 

consistency, and potential improvements in access to expert- 

level assessment. These applications address the first research 

question regarding the development and application of AI/ML 

models in prenatal and perinatal care.

3.1 Prediction of adverse pregnancy 
outcomes

Early identification of high-risk pregnancies is critical for 

timely intervention. AI models integrating multimodal data have 

demonstrated performance in predicting FGR and preterm birth. 

An AI system incorporating hemodynamic features for placental 

function assessment achieved a sensitivity of 89% for FGR 

detection, with clinical alerts generated 2–3 weeks earlier than 

conventional methods in one study (5). A support vector 

machine (SVM) model combining maternal physiological 

parameters and fetal monitoring data reported 91% accuracy 

and an AUC of 0.89 in predicting preterm birth (6). 

Multiparameter models analyzing fetal heart rate variability and 

uterine contraction frequency have identified preterm labor risk 

up to 48 h in advance (7). These findings suggest potential for 

earlier clinical actions, including corticosteroid administration or 

transfer to tertiary centers, although prospective validation in 

diverse populations remains limited.

3.2 Automation and standardization of 
ultrasound interpretation

Ultrasound remains the primary modality for fetal assessment, 

though diagnostic reliability may be affected by image noise, 

artifacts, and interobserver variability. AI algorithms have been 

applied to enhance image quality and automate biometric 

analysis. Deep learning techniques have reduced noise and 

artifacts, increasing the reported detection rate of spina bifida 

from 82%–94% in retrospective evaluations (8, 9). In fetal 

biometry, AI has improved measurement precision and reduced 

operator dependence (10). Deep learning models analyzing fetal 

ultrasound images achieved a classification accuracy of 97.2% in 

the prenatal detection of congenital heart disease, with lower 

error rates compared to manual measurements in controlled 

settings (11). Convolutional neural networks (CNNs) classified 

fetal renal pelvis dilation with 94% accuracy (95% CI: 93%– 

95%), and 51% of cases were correctly graded, indicating 

potential utility in borderline findings (18). These approaches 

may contribute to greater consistency in diagnostic workMows, 

particularly in complex or equivocal cases.

3.3 Advanced imaging analysis in fetal MRI 
and echocardiography

Beyond standard ultrasound, AI has been applied to enhance 

the utility of fetal MRI and echocardiography. In fetal MRI, AI 

algorithms have enabled organ segmentation, optimization of 

imaging sequences, and diagnostic support. Organ segmentation 

models achieved a Dice coefficient of 0.92 in identifying 

anatomical structures, suggesting improved efficiency in image 

interpretation (12). In fetal echocardiography, AI has supported 

image processing, biometric measurement, and anomaly 

TABLE 2 QA quality-assessment criteria and evidence grading.

Domain Criteria (from Section 
2.4)

Weight Grade

Study design Multicentre prospective 3 A

Sample size ≥1,000 3 A

Validation method External independent dataset 3 A

Performance 

metrics

≥3 metrics (AUC, sensitivity, 

specificity, etc.)

3 A

Clinical translation Clinical deployment 3 A

Overall evidence grade A: total ≥ 12 points and external validation present B: 8–11 points C: 

≤7 points.

Wang et al.                                                                                                                                                               10.3389/fped.2025.1613150 

Frontiers in Pediatrics 05 frontiersin.org



detection, facilitating earlier identification of structural cardiac 

defects (13). Longitudinal monitoring of fetal growth through 

serial ultrasound analysis has also been demonstrated (14), with 

AI compensating for challenges such as fetal motion and 

maternal body habitus (15). In neuroanatomy, AI-based 

methods have enabled detailed assessment of brain development 

and detection of subtle abnormalities that may correlate with 

neurodevelopmental trajectories (16). Non-invasive fetal 

electrocardiography (fECG) integrated with AI improved the 

AUC of cardiac screening from 0.748 (resident)–0.890 

(researcher) and 0.975 (expert), indicating performance gains 

across experience levels (17). The use of explainable AI (XAI) in 

cardiac screening, achieving an AUC of 0.975, may support 

transparency in decision-making (17).

3.4 Augmentation of clinical expertise and 
reduction of diagnostic disparities

AI-based systems have shown potential to improve diagnostic 

consistency in settings with limited access to specialized 

personnel. In low-resource environments, automatic fetal 

ultrasound screening systems increased the reported detection 

rate of congenital heart disease from 60%–89%, suggesting a 

narrowing of diagnostic performance gaps between high- and 

low-resource settings (73, 74). By standardizing image 

acquisition, view recognition, and anomaly detection, AI may 

assist clinicians across experience levels in achieving higher 

diagnostic accuracy. This domain highlights AI not only as a 

technical tool but as a potential contributor to more equitable 

access to prenatal screening across diverse populations, though 

real-world implementation evidence remains limited.

In summary, AI applications in prenatal and perinatal care 

span predictive modeling, imaging standardization, advanced 

diagnostics, and clinical support. From early risk prediction to 

image enhancement, advanced imaging analysis, and efforts to 

reduce diagnostic disparities, these technologies align with key 

clinical needs. While most models remain in the validation 

phase and face challenges in generalizability, regulatory 

approval, and integration into clinical workMows, the collective 

evidence indicates a trajectory toward earlier detection, reduced 

variability, and broader access to standardized fetal assessment. 

These developments suggest that AI is evolving from a 

supplementary tool to a potentially integral component of 

modern prenatal care systems.

4 Applications of artificial intelligence 
in neonatology

This section answers RQ2 by integrating evidence within four 

complementary functions: (1) real-time physiological monitoring 

and early warning, (2) neurodevelopmental surveillance and 

brain-injury prediction, (3) automated imaging interpretation, 

and (4) clinical decision support. These themes collectively 

illustrate the technical breadth of AI methodologies and their 

alignment with core neonatal care priorities—reducing 

diagnostic delays, minimising inter-observer variability, and 

enabling timely, individualised management for high- 

risk newborns.

4.1 Real-Time physiological monitoring and 
early warning

Detecting early signs of clinical deterioration in unstable 

neonates remains a critical challenge. Traditional monitoring 

systems generate frequent false alarms, contributing to alert 

fatigue among clinical staff. In contrast, AI models have been 

applied to high-frequency time-series data from electronic health 

records (EHRs) and bedside monitors to identify pre- 

symptomatic physiological patterns. Machine learning 

algorithms integrating heart rate variability, respiratory 

dynamics, and laboratory trends have demonstrated the ability 

to predict neonatal sepsis 6–12 h before clinical onset, with 

reported AUC values ranging from 0.85–0.93 in retrospective 

studies (18, 19). Predictive models for bronchopulmonary 

dysplasia (BPD) have utilized antenatal, postnatal, and 

ventilatory data to stratify risk, potentially guiding early 

pulmonary protective strategies (20, 21). These findings suggest 

that AI-based monitoring systems may support a shift toward 

earlier clinical recognition, although prospective validation in 

diverse Neonatal Intensive Care Unit (NICU) settings is 

still limited.

4.2 Neurodevelopmental surveillance and 
brain injury prediction

Timely identification of hypoxic-ischemic encephalopathy 

(HIE), seizures, and long-term neurodevelopmental 

impairment is essential for neuroprotective interventions. 

Given the limited availability of pediatric neurophysiologists, 

AI-based analysis of electroencephalography (EEG) — 

including amplitude-integrated EEG (aEEG) and raw EEG — 

has been explored as a scalable solution for continuous 

neurological monitoring. Deep learning models have achieved 

sensitivities exceeding 90% and specificities above 85% in 

automated seizure detection in preterm and term infants, 

enabling continuous monitoring even in resource-constrained 

environments (22, 23). Beyond seizure detection, AI 

frameworks such as dynamic functional connectome learning 

(DFC-Igloo) have been used to extract predictive biomarkers 

from resting-state functional Magnetic Resonance Imaging 

(fMRI), with reported correlations to motor and cognitive 

outcomes in preterm infants (24). Additionally, AI-powered 

cranial ultrasound analysis has enabled automated detection of 

intraventricular hemorrhage (IVH) and quantification of brain 

volume, providing objective and reproducible metrics for use 

in neuroprotection trials (25, 26). These approaches may 

contribute to more standardized and data-informed 

neurodevelopmental assessments.
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4.3 Automated imaging interpretation

AI has been applied to standardize and accelerate diagnostic 

imaging in neonatal radiology and echocardiography. CNNs 

have been used for automated segmentation of cardiac 

structures, measurement of ventricular function, and detection 

of congenital heart defects in fetal and neonatal 

echocardiograms, with reported reductions in inter-observer 

variability (27, 28). In radiology, AI models have assisted in the 

interpretation of chest x-rays for conditions such as respiratory 

distress syndrome and pneumothorax, improving diagnostic 

speed and consistency (29). Computer vision algorithms have 

also been applied to video laryngoscopy, enabling real-time 

detection of glottic opening during intubation, which may 

support procedural accuracy (30). Furthermore, smartphone- 

based AI applications (e.g., BiliSG) have enabled non-invasive 

jaundice screening through digital color analysis, facilitating 

remote monitoring and reducing unnecessary blood sampling 

(31). These tools may extend diagnostic capabilities beyond 

tertiary centers, with potential implications for equitable access 

to neonatal care.

4.4 Clinical decision support

AI has increasingly been integrated into systems designed to 

support clinical decision-making and operational efficiency. AI- 

driven clinical decision support systems (CDSS) have been 

developed to integrate multimodal data for real-time 

optimization of ventilation settings, nutritional delivery, and 

antibiotic stewardship (75, 76). Predictive analytics have also 

been applied to discharge planning, identifying infants at 

elevated risk for readmission or developmental delay, thereby 

enabling targeted follow-up (77). At the systems level, AI 

models have been used to support NICU bed management, 

staffing forecasts, and patient Mow optimization, with 

preliminary reports indicating improved resource utilization 

without compromising patient safety (78).

Synthesis across these four thematic areas indicates that AI 

applications in neonatology are evolving toward more data- 

driven, proactive, and individualized approaches to newborn 

care. The thematic clustering reMects a progression from 

diagnostic assistance (imaging, EEG) to risk prediction (sepsis, 

Bronchopulmonary Dysplasia (BPD), neurodevelopment) and 

intervention support (ventilation, intubation, nutrition). These 

developments align with the central aims of this review: AI- 

based tools have demonstrated high diagnostic accuracy 

(AUC > 0.85 in multiple studies), shown potential to reduce 

time-to-treatment and morbidity in observational settings, and 

exhibited increasing translational maturity. However, the 

majority of models remain in pilot or laboratory stages, with 

limited external validation. Key challenges include algorithmic 

bias, lack of interoperability with existing EHR systems, and 

insufficient evidence from multicenter prospective trials. 

Despite these limitations, the cumulative evidence suggests that 

AI may play an increasingly integral role in neonatal care, 

provided that future research prioritizes external validation, 

regulatory compliance, and equitable deployment across 

diverse healthcare settings.

5 Applications of artificial intelligence 
in pediatric disease management

This section responds to RQ3 by integrating evidence across 

two clinically focused domains: (1) the diagnosis and 

management of common paediatric diseases and (2) the 

diagnosis of genetic disorders. Within these domains, AI/ML 

applications consistently enhance diagnostic accuracy, refine risk 

stratification, and streamline clinical workMows—exemplified by 

earlier detection of congenital heart defects, improved prediction 

of sepsis onset, and accelerated identification of pathogenic 

variants—thereby enabling more individualised and timely care 

for children aged 0–18 years.

5.1 Diagnosis and management of common 
pediatric diseases

In pediatric oncology, ML models have been used to analyze 

high-dimensional clinical and biological data, identifying 

patterns associated with disease subtypes and treatment 

response. These models have demonstrated improved diagnostic 

precision and risk stratification in several pediatric cancers, 

supporting more individualized therapeutic approaches (79).

For the prediction of sepsis in children beyond the neonatal 

period, AI-driven models—primarily logistic regression and 

ensemble methods—have been applied to dynamic vital sign 

data, including heart rate variability and respiratory entropy. In 

a retrospective cohort study, such models predicted sepsis onset 

6–8 h in advance with a reported sensitivity of 89% and 

specificity of 76% (31), suggesting potential for earlier clinical 

recognition, though prospective validation in real-world settings 

remains limited.

In pediatric malnutrition, ML algorithms have been developed 

to analyze multifactorial risk factors, including abnormal weight- 

for-age trajectories, to support early risk stratification. When 

integrated into web-based platforms, these models have enabled 

scalable screening tools for deployment in primary care and 

community health settings (32). Additionally, computer vision- 

based systems for infant posture tracking have been used to 

monitor subtle motor changes in real time, with one study 

reporting an accuracy exceeding 85% in detecting early signs of 

neurological impairment (33). These tools may enhance 

surveillance and support timely developmental interventions.

AI has also contributed to advances in the diagnosis of 

pediatric heart disease. Deep learning models trained on large 

ECG datasets have demonstrated the ability to detect early 

signs of congenital heart defects, such as atrial septal defects. 

In one validation study, the model increased diagnostic 

accuracy by 15% compared to conventional interpretation and 

reduced reported misdiagnosis rates to below 3% (34, 35). 
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Furthermore, natural language processing (NLP) techniques have 

been applied to structured and unstructured echocardiographic 

reports to develop predictive models for spontaneous closure 

of perimembranous ventricular septal defects (PMVSD). One 

such model achieved an AUC of 0.92—18% higher than 

traditional parameter-based approaches—indicating improved 

predictive performance (36, 37). These findings suggest 

potential for earlier diagnosis and more personalized follow- 

up planning.

In the management of chronic pediatric conditions, AI-based 

tools have shown promise. Automated image analysis systems for 

pediatric diabetic retinopathy (DR) have been evaluated in clinical 

settings, demonstrating high sensitivity and specificity, with 

reported benefits in reducing clinician workload and improving 

access to screening in underserved populations (38). AI models 

have also been applied to assess environmental health risks in 

children. By integrating respiratory rate, environmental exposure 

data (e.g., PM2.5 concentration), and medication records, one 

predictive model achieved a reported accuracy of 91% in 

forecasting asthma exacerbations. In a pilot community health 

program, implementation of this model was associated with a 

31% reduction in emergency department visits among asthmatic 

children, although the causal contribution of the AI component 

remains to be fully disentangled (39, 40).

In autism spectrum disorder (ASD) screening, AI-powered 

video analysis tools have been developed to detect behavioral 

markers—including facial expressions, eye contact, and limb 

movements—during brief (10-minute) interaction sessions. In a 

validation study of 1,200 children aged 2–5 years, the tool 

achieved a sensitivity of 94% and specificity of 89%, representing 

improvements of 20% and 30%, respectively, over the Modified 

Checklist for Autism in Toddlers (M-CHAT) (41). Another 

study reported that remote video-based behavioral analysis, 

combined with explainable AI (XAI) techniques, achieved a 

screening accuracy of 92% in infants as young as 18 months 

(42, 43). These approaches may support earlier identification, 

particularly in resource-limited settings.

In pediatric surgery, AI applications have been explored across 

preoperative planning, intraoperative guidance, and postoperative 

assessment. For laparoscopic cholecystectomy (LC), an AI system 

trained on liver CT imaging data has been used to identify fibrotic 

tissue and assist in surgical planning. In a clinical evaluation of 50 

cases, the use of this system was associated with a reduction in 

biliary duct injury (BDI) rates from 8%–1.5%, and a decrease in 

planning time from 15–2 min, potentially reducing the need for 

intraoperative biopsies (44). In Hirschsprung’s disease, an 

AI-assisted frozen section analysis system using transfer learning 

achieved a reported accuracy of 98.7% in ganglion cell detection 

(45). For retroperitoneal neuroblastoma, an AI-based 3D 

reconstruction model reduced surgical planning time by 40% in 

a single-center study (46).

Moreover, AI has shown strong performance in image-based 

differentiation of pediatric solid tumors. Multimodal image 

fusion techniques based on convolutional neural networks 

(CNNs) have demonstrated a sensitivity of 95% and specificity 

of 89% in distinguishing tumor types in retrospective analyses, 

highlighting the potential of AI in radiological and pathological 

interpretation (47).

5.2 Diagnosis of genetic diseases

AI has revolutionized the diagnosis of pediatric genetic 

diseases by enabling more accurate and efficient integration of 

phenotypic and genotypic data. Through advanced algorithms 

for phenotype-genotype association analysis and multimodal 

data fusion, AI tools are significantly reducing diagnostic delays 

and improving diagnostic yield in rare and complex 

genetic conditions.

AI-powered diagnostic platforms such as Dx29 integrate 

clinical phenotypes with genomic data to assist clinicians in 

rapidly identifying pathogenic variants in pediatric genetic 

disorders, including neurodevelopmental disorders and hearing 

impairments (48, 49). These systems streamline the diagnostic 

workMow by prioritizing candidate genes and reducing reliance 

on manual data interpretation. Similarly, AI tools like Franklin© 

AI reanalyze clinical genetic testing data to refine variant 

classification, thereby increasing diagnostic accuracy (50). In one 

large-scale study analyzing five years of pediatric genetic testing 

data, AI reanalysis identified 3,031 previously missed pathogenic 

variants, demonstrating substantial added value over conventional 

interpretation methods (51, 52).

AI is also being applied to congenital surgical conditions with 

genetic underpinnings. By analyzing genomic data, AI models can 

identify key disease-associated gene variants—such as those linked 

to Hirschsprung’s disease or congenital diaphragmatic hernia— 

providing critical support for early diagnosis and surgical 

planning (53). Furthermore, AI-based risk prediction models 

integrate genetic and environmental factors to estimate the 

likelihood of pediatric-onset genetic disorders, such as 

hereditary cancer syndromes and neurodegenerative diseases, 

enabling earlier surveillance and intervention (54).

A major advancement in AI-assisted genetic diagnosis is the 

integration of electronic health records (EHRs), medical 

imaging, and genomic sequencing to support the identification 

of genetic syndromes. Deep learning algorithms can detect 

subtle morphological patterns in facial, ocular, and skeletal 

imaging, transforming phenotypic analysis into a quantitative, 

data-driven process (54–58). For example, Face2Gene—a widely 

used AI-based phenotypic analysis tool—analyzes facial 

photographs to generate a ranked list of up to 30 candidate 

syndromes, significantly accelerating the diagnostic process for 

rare diseases (59). It has demonstrated high performance in 

identifying conditions such as mucolipidosis type II (60) and 

has been validated in clinical settings in South Korea, showing 

strong diagnostic expansion potential (61). Studies confirm that 

Face2Gene’s predictions for KBG syndrome and Kabuki 

syndrome are highly concordant with whole-exome sequencing 

results (62, 63). The tool also shows robust performance in 

diagnosing rare conditions such as Thrombocytopenia-Absent 

Radius (TAR) syndrome and Sotos syndrome, demonstrating its 

utility across diverse phenotypic spectra.
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Beyond facial analysis, AI is being used to interpret ocular and 

skeletal imaging. Eye2Gene analyzes retinal and ocular images to 

detect features associated with inherited retinal diseases (IRD), 

improving variant interpretation and diagnostic confidence (64). 

Bone2Gene focuses on skeletal radiographs, using x-rays or 

computed tomography (CT) scans to identify dysmorphic 

features linked to genetic skeletal disorders, particularly those 

involving pathogenic variants in ANKRD11, and provides 

critical diagnostic clues in cases of skeletal dysplasia.

In genomic variant interpretation, AI systems are enhancing 

both speed and precision. The VAREANT platform improves 

variant detection and classification through three core modules: 

preprocessing, variant annotation, and AI/ML-driven data 

integration (65). The ClinGen Sequence Variant Interpretation 

(SVI) Working Group has endorsed the use of AI-based 

prediction tools in clinical variant classification, issuing updated 

guidelines to standardize their application (66). Deep learning 

models such as the Nucleic Transformer and Nucleotide 

Transformer have achieved state-of-the-art performance in DNA 

sequence classification and phenotype prediction (67–69). These 

pre-trained models are increasingly used to interpret non-coding 

region variants, a historically challenging area in clinical 

genomics (70).

To maximize accuracy, the integration of multiple AI models is 

recommended (71), and platforms like VarGuideAtlas are being 

developed to harmonize variant interpretation guidelines and 

support consensus-based classification (72). Such integrative 

approaches not only improve diagnostic sensitivity but also 

promote standardization across laboratories and healthcare systems.

In summary, AI technologies are transforming the landscape 

of pediatric genetic disease diagnosis. By leveraging facial, 

ocular, and skeletal imaging, as well as advanced genomic 

analysis, AI tools are shortening diagnostic odysseys, increasing 

diagnostic yield, and enabling earlier, more precise 

interventions. These advancements are laying the foundation for 

a new era of data-driven, personalized pediatric genetics.

6 Applications of intelligent diagnostic 
technologies

This section responds to RQ4 by evaluating AI/ML-based 

diagnostic technologies that enhance accuracy and clinical utility 

across pediatric medical imaging, pathology, and multi-omics 

analysis. These tools support automated image interpretation, 

anomaly detection, and integrated diagnostic reasoning, 

contributing to faster, more reliable, and standardized diagnostic 

processes in pediatric healthcare.

The increasing use of medical imaging in pediatric care has 

driven the integration of deep learning technologies across 

multiple modalities. AI-driven tools are now being applied to 

tasks including image classification, segmentation, prediction, 

and synthesis, with reported improvements in diagnostic 

consistency and workMow efficiency (47).

In ultrasound imaging, deep learning algorithms have 

demonstrated high performance in image quality assessment. 

One model achieved a reported recognition rate of 98.8% for 

normal pediatric sonographic images in a retrospective 

validation study, potentially reducing operator-dependent 

variability and enhancing reproducibility (20, 80). In radiology, 

AI-based bone age estimation from panoramic x-rays has 

shown a mean error of ±0.8 years—approximately half the 

error of traditional Greulich-Pyle method (±1.5 years)— 

supporting applications in growth assessment and orthodontic 

planning (81). A retrospective analysis of 3,000 pediatric dental 

radiographs found that an AI system for caries detection 

achieved 92% accuracy and 89% sensitivity, outperforming the 

average 78% accuracy of visual inspection by radiologists (37). 

More advanced architectures, such as the BAE-ViT visual 

transformer model, further improve performance by 

integrating clinical metadata (e.g., sex) with imaging data, 

representing a promising direction for multimodal diagnostic 

integration (82).

AI is also being explored in hybrid and cross-modality 

imaging. The generation of synthetic CT (sCT) from MRI data, 

when combined with PET, has been shown to reduce ionizing 

radiation exposure while maintaining diagnostic fidelity— 

offering a safer alternative for pediatric oncology and 

neuroimaging applications (83). In MRI, deep learning enables 

high-quality reconstruction from undersampled k-space data, 

potentially mitigating long-standing trade-offs between scan 

duration, spatial resolution, and signal-to-noise ratio (84). When 

integrated with quantitative MRI techniques, AI models can 

efficiently generate multi-contrast images, accelerating diagnosis 

in neurological disorders and supporting precision imaging 

workMows (85).

Beyond conventional imaging, emerging computational 

frameworks such as digital twins (DT) are being investigated for 

personalized pediatric care. By integrating physiological data, 

imaging phenotypes, and environmental factors, DT models aim 

to simulate disease progression and optimize treatment 

strategies. In pediatric neuro-oncology, the fusion of MRI with 

explainable AI (XAI) has enabled the development of adaptive 

clinical decision support systems that may improve both 

diagnostic interpretation and prognostic modeling (86, 87). 

Similarly, in chronic kidney disease (CKD), machine learning 

models leveraging multi-omics data have shown potential for 

early detection and risk stratification, potentially reducing 

unnecessary interventions (24).

AI is also accelerating biomarker discovery and enabling 

deeper biological insights. For example, AI-driven analysis of 

urinary proteomics and epigenetic profiles has identified non- 

invasive biomarker signatures for bladder cancer, suggesting 

potential to reduce reliance on invasive procedures (88). 

In hereditary kidney disease, integration of single-cell RNA 

sequencing with AI has elucidated molecular mechanisms of 

tubular injury in coenzyme Q10 deficiency nephropathy, 

revealing candidate therapeutic targets (89). In neuroblastoma, 

spatial transcriptomics combined with AI has identified a 

senescent-associated cancer-associated fibroblast (senes-CAF) 

subpopulation, offering new insights into tumor microenvironment 

modulation (90).
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7 Applications in patient education 
and clinical decision support systems

This section responds to RQ5 by synthesizing AI/ML 

applications designed to improve knowledge delivery and 

clinical decision-making for patients, families, and healthcare 

providers. Through personalized education platforms and real- 

time decision support tools, AI helps bridge information gaps, 

enhance care coordination, and promote safer, more informed 

clinical practices.

In patient and medical education, AI-powered systems are 

being used to translate complex medical information into 

accessible formats. Text-to-video (T2V) generation models can 

produce dynamic visualizations of disease mechanisms or 

surgical procedures, facilitating both patient communication and 

medical training. In one reported application, such models 

reduced the production time of instructional videos—such as 

those demonstrating proper asthma inhaler technique—from 

8 h–30 min, significantly improving content creation efficiency 

(91). Natural language processing (NLP)-based systems have also 

been developed to generate personalized health education 

materials tailored to a child’s age, literacy level, and clinical 

context. In a pilot study involving families of pediatric kidney 

transplant recipients, the use of an AI-generated education tool 

was associated with a 35% improvement in caregiver knowledge 

retention, suggesting potential to enhance engagement and 

adherence (92). AI is also being explored in professional 

training; surveys of dental students’ attitudes toward AI provide 

early insights for integrating intelligent technologies into clinical 

curricula (93).

In clinical operations and decision support, AI-driven 

systems have shown utility in high-acuity settings. Emergency 

department clinical decision support systems (ED-CDSSs) 

incorporating AI have been deployed for early sepsis detection 

and trauma severity grading. In a multicenter evaluation, such 

systems were associated with a 28% reduction in time to 

diagnosis, though challenges remain in processing 

unstructured clinical notes, with current models capable of 

analyzing only 32% of non-standardized text inputs— 

highlighting the need for more robust NLP integration (94). 

Augmented reality (AR)-assisted navigation systems have 

improved procedural accuracy in pediatric lumbar puncture, 

increasing first-attempt success rates from 68%–91% in a 

single-center study by providing real-time anatomical 

guidance (29).

Beyond bedside care, AI is being applied to hospital 

operations. One children’s hospital implemented an AI-powered 

surgical scheduling system that analyzes historical procedure 

durations, resource utilization, and emergency priorities. This 

system increased operating room utilization from 68%–85%, 

reduced average patient wait times by 2.3 days, and was 

estimated to generate annual cost savings of $1.2 million (95). 

Such applications illustrate the potential of AI to enhance not 

only clinical outcomes but also healthcare efficiency and 

patient satisfaction.

8 Challenges and future development 
directions

This section responds to RQ6 by examining the 

methodological, technical, and translational barriers that 

hinder the clinical integration of AI/ML in pediatric 

healthcare. Key challenges include data heterogeneity, limited 

external validation, regulatory uncertainty, and poor 

alignment with clinical workMows. Addressing these 

barriers requires multicenter collaboration, standardized data 

practices, and human-centered design to enable equitable and 

sustainable implementation.

Despite the transformative potential of AI in pediatric 

healthcare, its translation from research to clinical practice faces 

multifaceted challenges that span ethical, methodological, and 

technological domains. At the ethical forefront, the use of 

children’s sensitive health data raises urgent concerns regarding 

privacy, informed consent, and algorithmic equity. Only 19% of 

AI studies in pediatrics explicitly describe data anonymization 

procedures, and standardized protocols for obtaining meaningful 

consent—particularly from minors and their guardians—remain 

underdeveloped, increasing the risk of re-identification and 

misuse (96). Compounding this, training datasets often reMect 

racial, socioeconomic, and geographic biases, which can lead to 

degraded model performance in underrepresented populations, 

especially in low-income and resource-limited settings (87, 97). 

Without deliberate efforts to ensure representativeness and 

accessibility, AI risks exacerbating existing health disparities 

rather than mitigating them.

Methodologically, the field is hindered by significant 

heterogeneity in data and analytical approaches. A large 

proportion of studies rely on single-center, retrospective 

datasets, which are vulnerable to selection bias and lack external 

validation, limiting the generalizability of findings. Cross- 

institutional variations in data collection—such as imaging 

protocols, electronic health record (EHR) structures, and clinical 

workMows—can reduce model performance by 15%–20%, 

underscoring the critical need for standardized data curation 

and annotation frameworks (47, 98). Furthermore, the high cost 

of expert labeling and the scarcity of large, annotated pediatric 

datasets constrain the development of robust models, 

particularly for rare diseases. This is compounded by 

inconsistent model evaluation practices: while some studies 

report high accuracy, many fail to provide essential metrics such 

as sensitivity, specificity, or confidence intervals, making it 

difficult to compare performance across models or assess real- 

world utility.

The clinical adoption of AI is further impeded by the “black 

box” nature of many systems. Despite the introduction of 

visualization techniques to enhance interpretability, clinicians 

remain hesitant to trust AI-generated decisions without 

transparent, clinically meaningful explanations. Regulatory 

agencies increasingly demand rigorous documentation of model 

logic, uncertainty, and failure modes (99–101), highlighting the 

need for explainable AI (XAI) frameworks that align with 
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clinical reasoning. For instance, deep learning models demonstrate 

high accuracy in detecting congenital heart disease from fetal 

ultrasound images but demand large datasets and substantial 

computational resources, whereas machine learning models offer 

faster inference and are better suited for real-time applications 

like neonatal sepsis prediction—yet without standardized 

benchmarks, such trade-offs remain poorly quantified.

Looking ahead, the future of pediatric AI lies in the integration 

of emerging technologies that enable more personalized, 

responsive, and secure care. Multimodal large language models 

(LLMs) hold promise for extracting and synthesizing complex 

information from unstructured EHRs, while digital twin 

technology could simulate individualized treatment responses by 

integrating longitudinal clinical, imaging, and genomic data. 

Edge computing devices offer the potential for real-time AI 

inference at the bedside—critical in neonatal and emergency 

settings—reducing latency and enhancing data privacy. 

Meanwhile, blockchain-based systems may provide a secure and 

auditable infrastructure for cross-institutional data sharing, 

fostering collaboration without compromising patient 

confidentiality (22, 47). However, the realization of this vision 

requires more than technological innovation; it demands 

systemic alignment through multicenter collaborations, 

standardized validation protocols, regulatory clarity, and human- 

centered design. Only by addressing these interconnected 

challenges can AI evolve from a collection of isolated tools into a 

trusted, equitable, and integral component of pediatric healthcare.

9 Practical implications for 
stakeholders

The findings of this review carry concrete and actionable 

implications for key stakeholders in pediatric healthcare, 

including clinicians, hospital administrators, policymakers, and 

technology developers. For clinicians, our synthesis highlights 

the growing maturity of AI tools in high-impact areas such as 

fetal anomaly detection, neonatal intensive care, and rare disease 

diagnosis—domains where early intervention is critical and 

human expertise is often stretched thin. Rather than viewing AI 

as a replacement, clinicians should position it as a cognitive 

augmentation tool that enhances diagnostic accuracy, reduces 

workload, and supports shared decision-making with families. 

However, this requires ongoing education in AI literacy, 

including understanding model limitations, interpreting 

uncertainty, and recognizing potential biases.

For hospital systems and healthcare administrators, the 

evidence underscores the need to invest in foundational 

infrastructure: standardized data pipelines, interoperable EHR 

systems, and secure computing environments (e.g., edge or 

federated learning platforms). The performance drop of 15%–20% 

when models are deployed across institutions is not merely a 

technical issue—it translates into real-world diagnostic delays and 

missed cases. Proactive investment in data harmonization and 

multicenter validation frameworks can mitigate this risk and 

accelerate the safe integration of AI into clinical workMows.

At the policy and regulatory level, our analysis reveals a critical 

gap: the absence of pediatric-specific AI governance standards. 

Unlike adult populations, children undergo rapid physiological 

and cognitive development, rendering adult-trained models 

potentially unsafe or inaccurate. Regulators must therefore 

establish developmental-stage-aware evaluation criteria, mandate 

transparency in training data demographics, and enforce strict 

privacy safeguards for lifelong pediatric data. Initiatives such as 

the FDA’s Safer Technologies Program (STeP) offer a promising 

pathway, but they must be explicitly adapted for pediatric 

use cases.

Finally, for AI developers and researchers, this review calls for 

a paradigm shift—from building isolated “hero models” to 

designing clinically integrated, user-centered systems. Future 

efforts should prioritize external validation, real-world usability 

testing, and collaboration with frontline pediatric teams. The 

integration of multimodal LLMs, digital twins, and blockchain- 

based data sharing is not merely technological innovation; it is a 

systems-level opportunity to build proactive, personalized, and 

equitable child health ecosystems.

By aligning these stakeholder actions with the evidence 

synthesized in this review, the pediatric community can move 

beyond pilot studies and fragmented tools toward a future where 

AI is not an exception, but an expected, trusted, and life- 

enhancing component of routine care. The urgency is clear: 

every day of delay means missed opportunities for earlier 

diagnosis, more precise treatment, and better outcomes for the 

world’s most vulnerable patients—children.

10 Conclusion

AI is profoundly reshaping the paradigm of pediatric 

medical practice. From real-time life monitoring in neonatal 

intensive care units (NICUs) to intelligent navigation in 

complex surgical procedures, from early warnings of fetal 

diseases to precise screening of pediatric diseases, the 

widespread application of AI technologies in the pediatric 

field demonstrates strong clinical potential. AI technologies 

not only improve the accuracy of diagnosis and treatment but 

also optimize the allocation and utilization of medical 

resources. However, continuous technological innovation 

needs to be synchronized with the standardization of 

methodologies, the improvement of ethical frameworks, and 

the construction of interdisciplinary collaboration systems. 

Future research should focus on standardized validation 

methods and multicenter studies to ensure the robustness and 

universality of AI applications. At the same time, addressing 

ethical and privacy issues is crucial for the widespread 

adoption of AI in pediatric healthcare. Looking ahead to the 

next 5–10 years, with the continuous expansion of pediatric- 

specific datasets and the application of cutting-edge 

technologies such as causal inference, innovations and 

breakthroughs in the pediatric field will bring new hope to 

the cause of children’s health. The future development of AI 

technologies in the pediatric field is expected to further 
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development of AI technologies in the pediatric field, which can 

provide more precise and efficient support for the health and 

well-being of children. These directions not only fully 

demonstrate the multi-level application potential of AI 

technologies from basic research to clinical implementation 

but also point the way for the future development of 

pediatric healthcare.
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