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Background: Otitis media with effusion (OME) affects a significant proportion of

children with adenoid hypertrophy (AH) and can lead to developmental sequelae

when chronic. Current non-invasive screening modalities rely predominantly on

acoustic immittance measurements, which demonstrate variable diagnostic

performance. Given the urgent need for improved diagnostic methods and

extensive characterization of risk factors for OME in AH children, developing

diagnostic models represents an efficient strategy to enhance clinical

identification accuracy in practice.

Objective: This study aims to develop and validate an optimal machine learning

(ML)-based prediction model for OME in AH children by comparing multiple

algorithmic approaches, integrating clinical indicators with acoustic

measurements into a widely applicable diagnostic tool.

Methods: A retrospective analysis was conducted on 847 pediatric patients with

AH. Five ML algorithms were developed to identify OME using demographic,

clinical, laboratory, and acoustic immittance parameters. The dataset

underwent 7:3 stratified partitioning for training and testing cohorts. Within the

training cohort, models were initially optimized through randomized grid

search with 5-fold cross-validation, followed by comprehensive training with

optimized parameters. Model performance was evaluated in the testing cohort

using discrimination, calibration, clinical utility metrics, and confusion matrix-

derived statistics. The optimal ML model was subsequently analyzed through

SHapley Additive exPlanations (SHAP) methodology for interpretability, with

sequential ablation testing performed to identify critical predictive variables.

Results: Among 847 children with AH, 262 (30.9%) were diagnosed with OME.

The Random Forest (RF) model demonstrated superior performance with the

highest discrimination (area under the receiver operating characteristic

curve = 0.919), balanced calibration (Brier score = 0.102), and optimal clinical

utility across decision thresholds of 0.4–0.6. Confusion matrix analysis further

confirmed RF as the optimal model, achieving 0.875 accuracy and robust

inter-rater agreement (Cohen’s kappa coefficient = 0.696) in the testing

cohort. SHAP analysis identified the adenoid-to-nasopharyngeal ratio as the

predominant diagnostic indicator, followed by tympanometric type and history

of recurrent respiratory infections.
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Conclusion: An RF-based diagnostic model effectively identifies OME in AH

children by integrating anatomical, functional, and inflammatory parameters,

providing a clinically applicable tool for enhanced diagnostic accuracy and

evidence-based management decisions.

KEYWORDS

otitis media with effusion, adenoid hypertrophy, machine learning, random forest,

diagnostic accuracy, SHAP analysis

Introduction

Otitis media with effusion (OME) represents one of the most

common childhood conditions, with approximately 2.2 million

new cases diagnosed annually in the United States (1). While

most episodes resolve spontaneously within 3 months, about 25%

of cases persist for ≥3 months, classified as chronic OME (2). It

represents the leading cause of acquired hearing loss in pediatric

populations and may be associated with significant

developmental sequelae including speech delays, vestibular

disturbances, behavioral problems, and educational difficulties (3,

4). The etiology of OME is multifactorial, with adenoid

hypertrophy (AH) established as a primary contributor in young

children (5). AH mechanically obstructs the Eustachian tube,

creating negative middle ear pressure, and serves as a pathogen

reservoir, facilitating the retrograde migration of microorganisms

into the middle ear, disrupting mucosal function, and promoting

persistent effusion (6).

Despite the established relationship between AH and OME,

accurate identification of OME in AH children presents significant

challenges. Young children demonstrate limited ability to

recognize and articulate subtle hearing changes, complicating early

detection by caregivers. While tympanocentesis represents the

diagnostic gold standard, its invasive nature precludes widespread

implementation for screening purposes (7). Among non-invasive

alternatives, acoustic immittance measurement has gained

prominence due to its simplicity, brief administration time,

minimal cooperation requirements, and widespread availability

across healthcare settings (8). However, conventional

tympanometry demonstrates important limitations in diagnostic

reliability, with area under the receiver operating characteristic

curve (AUROC) values ranging from 0.68 to 0.93 in detecting

middle ear effusion (9–12). These diagnostic uncertainties

highlight the need for more accurate, child-appropriate diagnostic

methods to identify AH children at risk for developing OME.

While wideband acoustic immittance represents a promising

advancement in tympanometric assessment, its clinical

integration faces significant temporal constraints (13, 14). These

technologies remain in early validation phases, with widespread

implementation delayed by requirements for additional efficacy

studies, specialized equipment procurement, and healthcare

provider training. This implementation timeline creates an urgent

diagnostic gap for the substantial population of AH children who

require immediate, accurate assessment for OME during critical

developmental windows. In contrast, extensive research has

thoroughly characterized risk factors for OME development in

AH children, providing a robust knowledge foundation (15–17);

yet this evidence remains underutilized in clinical practice due to

the absence of validated predictive instruments. With the rapid

advancement of artificial intelligence, particularly machine

learning (ML) technologies, a timely solution emerges to bridge

this implementation gap (18, 19). ML algorithms can rapidly

process multidimensional clinical data, identifying complex

patterns and relationships between variables that conventional

statistical approaches may fail to capture (20–24). These

computational techniques enable efficient integration of readily

available clinical indicators into unified predictive frameworks

that can be rapidly deployed across all levels of healthcare facilities.

Therefore, this study aims to develop and validate an optimal

ML-based diagnostic model for OME in AH children by

comparing the performance of multiple algorithmic approaches.

By incorporating readily available clinical indicators with acoustic

immittance findings, we seek to create a practical, non-invasive

diagnostic tool implementable across various healthcare settings.

The resulting model will facilitate individualized risk

stratification, guiding appropriate clinical interventions while

minimizing unnecessary invasive procedures, ultimately

supporting evidence-based management decisions in this

vulnerable pediatric population.

Materials and methods

Study design

The study protocol received formal ethical approval from the

Ethics Committee of Ningbo Yinzhou No.2 Hospital (2025-014)

and adhered to all principles established in the Declaration of

Helsinki. Given the retrospective, observational design, the ethics

committee granted a waiver of individual informed consent.

Patient confidentiality was maintained through comprehensive

deidentification procedures, with systematic removal of all

personal identifiers from electronic health records prior to

analysis in accordance with institutional privacy standards.

Sample size determination followed established methodological

principles for predictive model development. Based on previous

studies and clinical experience (25), we estimated the prevalence of

OME among AH children at approximately 30%. Adhering to the

recommended minimum of 10 events per predictor variable to

minimize overfitting risk, and planning to evaluate up to 10

potential predictors (26), we calculated a required minimum

cohort of 333 patients. This sample size would yield approximately
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100 cases with confirmed OME, ensuring sufficient statistical power

for robust model development and internal validation.

Study population

Consecutive pediatric patients diagnosed with AH at our

institution were enrolled from January 2021 until 1,000 cases

were identified in January 2025. From this cohort, patients were

included in the study if they: (1) were aged 3–12 years; (2) had

complete clinical documentation; and (3) received confirmed AH

diagnosis. Exclusion criteria encompassed: (1) alternative causes

of hearing abnormalities, including cranial trauma, middle or

inner ear injury, or congenital hearing impairment; (2)

craniofacial anomalies attributable to other conditions such as

Down syndrome or congenital cleft palate; or (3) severe

underlying systemic disease. Bilateral acoustic immittance testing

and lateral nasopharyngeal radiography were performed on all

subjects. AH was diagnosed when the adenoid-to-nasopharyngeal

(A/N) ratio measured from lateral radiographs exceeded 0.70

(27–29), with this parameter also utilized to quantify

hypertrophy severity. OME diagnosis was established through a

two-step protocol involving bilateral acoustic immittance

measurement followed by otoendoscopic examination when

indicated. Tympanograms were categorized as normal (bilateral

Type A) or abnormal (Type B or C) (30). Patients exhibiting

abnormal tympanometric findings underwent confirmatory

otoendoscopic examination to exclude cerumen impaction and

confirm middle ear effusion; those with confirmed effusion were

classified as the AH +OME Group, while subjects with normal

tympanograms or those with abnormal tympanograms but no

effusion on otoendoscopy were designated as the AH Group.

Potential predictors

Multiple potential predictive variables were systematically

extracted from electronic medical records. Demographic and clinical

history data included age, gender, duration of AH-related

symptoms (including nasal obstruction, mouth breathing, and

snoring), and body mass index (BMI). Physical examination

findings incorporated tonsil size grading. Environmental and

comorbidity factors were documented, including passive smoke

exposure, chronic rhinosinusitis, allergic rhinitis, asthma, and

history of recurrent respiratory infections (defined as ≥6 episodes

within 12 months). Laboratory parameters included comprehensive

hematologic assessment comprising differential leukocyte

distribution (neutrophil, lymphocyte, monocyte, eosinophil, and

basophil percentages) and quantitative Total IgE measurements.

Data preprocessing and partitioning

The dataset underwent stratified partitioning to maintain

proportional representation of OME cases, with 70% allocated to

model training and 30% reserved for independent testing. This

stratification process preserved the outcome distribution across

subsets while ensuring statistical independence between cohorts.

Balanced distribution of patient characteristics between partitions

was confirmed using standardized mean differences, with values

below 0.1 considered indicative of adequate equilibrium. Feature

preprocessing employed an adaptive standardization protocol based

on distribution characteristics. Variables exhibiting approximately

normal distributions (skewness < 2, kurtosis < 7) underwent z-score

normalization to center at zero with unit standard deviation. For

non-normally distributed variables or those with substantial outliers

(>10%), robust scaling was implemented to achieve median

centering with interquartile range normalization, thereby

minimizing the influence of extreme values while preserving

relative relationships. Categorical variables received targeted

encoding: binary factors were processed through dichotomous

encoding (0/1), while ordinal variables underwent sequential

encoding to preserve their inherent hierarchical relationships.

Model training and hyperparameter tuning

Five ML algorithms were implemented for OME identification

in AH children. Logistic regression (LR) was selected for its

transparent coefficient interpretation and established clinical

utility; random forest (RF) and eXtreme Gradient Boosting

(XGBoost) were incorporated for their ability to model complex

non-linear relationships and quantify variable importance;

support vector machine (SVM) was included for its efficacy in

handling high-dimensional feature spaces; and K-nearest

neighbors (KNN) was employed to capture local patterns

through its instance-based learning approach. Algorithm-specific

hyperparameter optimization was executed through randomized

grid search with 5-fold cross-validation. The parameter space for

LR encompassed regularization strength and penalty type; RF

optimization targeted maximum tree depth, estimator count, and

minimum samples per leaf; XGBoost tuning addressed learning

rate, maximum depth, and estimator quantity; SVM optimization

included kernel selection, regularization parameter, and kernel

coefficient; and KNN parameter tuning focused on neighbor

count, distance metric, and weighting function. Each algorithm

underwent 100 iterations of systematic parameter exploration

using validation loss as the optimization metric to ensure

optimal model configuration. Final models were then trained on

the complete training dataset with these optimized parameters to

maximize statistical power and enhance generalizability.

Model performance evaluation

Comparative assessment of algorithm performance was executed

in the independent testing cohort using a multi-faceted evaluation

framework. Discriminative capacity was quantified through

AUROC analysis. Calibration curves and Brier scores (BS) were

employed to assess the correspondence between predicted

probabilities and observed outcomes, quantifying the models’

potential over- or under-estimation tendencies. Clinical utility was
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examined through decision curve analysis (DCA), which assessed net

benefit across a range of clinically relevant threshold probabilities

while accounting for intervention consequences. Threshold-

dependent performance was characterized using sensitivity,

specificity, positive predictive value (PPV), negative predictive value

(NPV), and overall accuracy at clinically determined decision

thresholds. Additionally, Cohen’s Kappa coefficients were calculated

to measure inter-rater reliability between predicted and observed

outcomes, providing a metric of agreement that accounts for

chance concordance in classification tasks. Based on this

comprehensive evaluation protocol, the algorithm demonstrating

optimal performance across multiple metrics was identified as the

preferred prediction model for clinical implementation.

Interpretability analysis

The mechanistic underpinnings of the optimal prediction model

were elucidated through comprehensive interpretability analysis

employing SHapley Additive exPlanations (SHAP) methodology.

SHAP values were calculated to quantify individual feature

contributions based on cooperative game theory principles (31).

Global feature importance was determined by computing mean

absolute SHAP values across the testing cohort, identifying the

relative contribution of each predictor to model discrimination.

SHAP summary bar plots were generated to visualize the relative

importance of features, while SHAP beeswarm plots were

constructed to illustrate both magnitude and directionality of

feature effects, characterizing their influence on OME probability.

To validate these findings, sequential feature ablation testing was

conducted by iteratively removing important variables and

quantifying performance changes through confusion matrix metrics,

thereby confirming the practical significance of identified predictors.

Statistical analysis

Statistical evaluations were conducted using methodologies

aligned with variable distribution characteristics. Descriptive

statistics were presented as frequencies with percentages for

categorical variables and as medians with interquartile ranges for

continuous variables given their predominantly non-normal

distributions. Between-group comparisons employed chi-square

or Fisher exact tests for categorical variables and Mann–Whitney

U tests for continuous measures. Statistical significance was

established at p < 0.05. All analyses were implemented in Python

(version 3.12.0) utilizing scikit-learn (version 1.4.0) for machine

learning operations and matplotlib (version 3.8.0) for visualization.

Results

Patient characteristics

Among the 1,000 AH children initially evaluated, 847 met

eligibility criteria after applying inclusion and exclusion

parameters (Figure 1). Within this cohort, 262 patients (30.9%)

were diagnosed with OME comorbid with AH, while 585

FIGURE 1

Patient recruitment and study flow diagram.
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children presented with isolated AH. Comparative analysis of

clinical characteristics between these groups revealed several

significant predictors associated with OME development, as

detailed in Table 1. Children in the AH +OME group exhibited

higher BMI and longer symptom duration compared to the AH

group. Advanced tonsillar hypertrophy was more prevalent

among OME patients, with Grade 3 tonsils being notably

overrepresented. Comorbid conditions were observed with

significantly greater frequency in the AH +OME group,

including allergic rhinitis, asthma, chronic rhinosinusitis, passive

smoke exposure, and recurrent respiratory infections. Laboratory

parameters revealed elevated monocyte and neutrophil

percentages, along with increased total IgE levels in the

AH +OME group. The A/N ratio was significantly higher in

AH +OME patients. Tympanometric findings differed markedly

between groups, with Type B tympanograms predominating in

the AH +OME group.

For model training and validation purposes, the study

population was stratified into training (n = 592) and testing

(n = 255) cohorts, with 183 (30.9%) and 79 (30.9%) OME cases

distributed proportionally between groups. No statistically

significant differences were observed between the training and

testing cohorts across all evaluated parameters (all p > 0.05), as

detailed in Supplementary Table S1.

Model training and optimization

Five distinct ML algorithms were implemented to identify

OME in AH patients: LR, RF, XGBoost, SVM, and KNN. The

optimization process was visualized in Supplementary Figure S1,

with training and validation loss trajectories indicating

appropriate model fitting and no significant overfitting across all

algorithms. The comprehensive hyperparameter configurations

determined through systematic cross-validation are detailed in

Supplementary Table S2. These optimized parameters were

subsequently employed for final model training on the complete

training dataset.

Model performance comparison

A comprehensive evaluation of the five ML models revealed

varying capabilities in OME risk stratification, as shown in

TABLE 1 Comparison of clinical characteristics between AH group and AH +OME group.

Variable AH group (n= 585) AH +OME group (n= 262) Statistic p-value

Age, years 5 (4, 8) 4 (4, 6) 0.252a 0.795

BMI, kg/m2 16.1 (12.3, 17.9) 17.2 (15.2, 18.9) 2.332a 0.015

Duration of AH-related symptoms, months 12 (5, 30) 15 (6, 25) 6.021a 0.003

Gender, n (%) Female 278 (47.5%) 114 (43.5%) 1.170b 0.279

Male 307 (52.5%) 148 (56.5%)

Tonsil size, n (%) Grade 0 45 (7.7%) 23 (8.8%) 19.590b 0.001

Grade 1 126 (21.5%) 37 (14.1%)

Grade 2 241 (41.2%) 87 (33.2%)

Grade 3 165 (28.2%) 111 (42.4%)

Grade 4 8 (1.4%) 4 (1.5%)

Allergic rhinitis, n (%) Yes 393 (67.2%) 198 (75.6%) 6.044b 0.014

No 192 (32.8%) 64 (24.4%)

Asthma, n (%) Yes 98 (16.8%) 67 (25.6%) 8.975b 0.003

No 487 (83.2%) 195 (74.4%)

Chronic rhinosinusitis, n (%) Yes 122 (20.9%) 82 (31.3%) 10.793b 0.001

No 463 (79.1%) 180 (68.7%)

Passive smoke exposure, n (%) Yes 155 (26.5%) 101 (38.6%) 12.467b <0.001

No 430 (73.5%) 161 (61.4%)

Recurrent respiratory infections, n (%) Yes 389 (66.5%) 196 (74.8%) 5.854b 0.016

No 196 (33.5%) 66 (25.2%)

Basophil, % 0.5 (0.2, 0.7) 0.5 (0.3, 0.8) 1.167a 0.219

Eosinophil, % 3.1 (2.0, 5.7) 3.0 (2.1, 5.6) 0.083a 0.934

Lymphocyte, % 45.4 (30.4, 55.5) 44.0 (29.4, 54.2) 1.228a 0.130

Monocyte, % 4.9 (3.9, 5.9) 5.2 (4.1, 6.2) 2.477a 0.013

Neutrophil, % 44.4 (35.6, 55.3) 46.8 (36.1, 56.8) 2.051a 0.040

Total IgE, IU/ml 55.5 (30.5, 96.1) 68.1 (37.6, 108.4) 2.672a 0.008

A/N ratio 0.79 (0.72, 0.87) 0.84 (0.76, 0.92) 17.033a <0.001

Tympanometric type, n (%) Type A 443 (75.7%) 31 (11.8%) 305.059b <0.001

Type B 76 (13.0%) 150 (57.3%)

Type C 66 (11.3%) 81 (30.9%)

Continuous variables are presented as median (interquartile range). AH, adenoid hypertrophy; OME, otitis media with effusion; BMI, body mass index; IgE, immunoglobulin E; A/N ratio,

adenoid-to-nasopharyngeal ratio; Type A, normal tympanogram; Type B, flat tympanogram; Type C, negative pressure tympanogram.
aFor Mann–Whitney U test.
bFor chi-square test.
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Figure 2, which illustrates model performance across three critical

dimensions: discrimination ability, calibration accuracy, and

clinical utility. In the testing cohort, ROC curve assessment

identified SVM, RF, and KNN as superior performers with

AUROC values exceeding 0.9. Calibration curve analysis

subsequently eliminated KNN due to substantial probability

underestimation, while RF and SVM maintained balanced

calibration profiles. DCA further differentiated between the

remaining contenders, with RF demonstrating superior net benefit

across the clinically relevant threshold probability range (0.4–0.6).

Confusion matrix analysis further validated these findings, as

demonstrated in Figure 3, with RF correctly identifying 58 OME

cases while misclassifying only 21 OME patients as non-OME, in

contrast to SVM’s performance of 55 correct and 24 misclassified

OME cases. Additionally, RF demonstrated enhanced specificity,

accurately classifying 165 non-OME cases with merely 11 false

positives, surpassing SVM’s 163 correct non-OME classifications

with 13 false positives. As summarized in Table 2, RF achieved

superior performance metrics across critical parameters,

including sensitivity (0.734), specificity (0.938), accuracy (0.875),

and Cohen’s kappa coefficient (0.696). Through this

comprehensive evaluation process, RF emerged as the optimal

algorithm for OME risk stratification in pediatric patients with AH.

Model interpretability and ablation analysis

SHAP analysis of the optimal RF model revealed the relative

influence of predictor variables on OME risk assessment. Feature

importance quantification (Figure 4A) identified A/N ratio as the

predominant predictor with substantially higher impact than

other variables, followed by tympanometric type and history of

FIGURE 2

Comprehensive model evaluation metrics. (A) ROC curves for all models with corresponding AUC values. (B) Calibration curves demonstrating the

relationship between predicted and observed probabilities across models. (C) DCA illustrating clinical net benefit across various threshold probabilities.
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recurrent respiratory infections. The top five factors also

included chronic rhinosinusitis and total IgE levels, reflecting

the multifactorial etiology of OME in AH children. The

SHAP summary plot (Figure 4B) demonstrated that elevated A/N

ratio strongly predicted OME occurrence, while abnormal

tympanometric findings (particularly Type B) exhibited

consistent association with positive classification.

Ablation experiments validated these contribution patterns,

with sequential elimination of features producing systematic

performance degradation proportional to SHAP-derived

importance rankings (Table 3). Removal of A/N ratio caused the

most substantial decline in sensitivity (from 0.734 to 0.519) while

preserving specificity, indicating its critical role in identifying

true OME cases. Similarly, eliminating tympanometric type

reduced sensitivity to 0.544, underscoring its complementary

diagnostic value. These findings demonstrate that structural

factors and functional measurements provide the foundation

for accurate OME prediction, while inflammatory and

immunological parameters contribute additional discriminative

value through interactions with primary predictors.

FIGURE 3

Comparative confusion matrices displaying classification performance of five ML algorithms in the testing cohort. (A) LR; (B) RF; (C) XGBoost; (D) SVM;

(E) KNN.

TABLE 2 Performance metrics of ML models in the testing cohort.

Model Sensitivity Specificity PPV NPV Accuracy Kappa

LR 0.696 (0.621–0.765) 0.909 (0.870–0.940) 0.775 (0.702–0.839) 0.870 (0.831–0.903) 0.843 (0.803–0.878) 0.623 (0.557–0.689)

SVM 0.696 (0.613–0.762) 0.926 (0.891–0.953) 0.809 (0.738–0.869) 0.872 (0.833–0.905) 0.855 (0.816–0.888) 0.647 (0.582–0.712)

RF 0.734 (0.662–0.798) 0.938 (0.905–0.963) 0.841 (0.775–0.896) 0.887 (0.850–0.918) 0.875 (0.838–0.906) 0.696 (0.634–0.758)

XGBoost 0.291 (0.230–0.360) 0.972 (0.946–0.988) 0.821 (0.715–0.900) 0.753 (0.708–0.795) 0.761 (0.716–0.803) 0.320 (0.241–0.399)

KNN 0.241 (0.185–0.305) 0.989 (0.970–0.997) 0.905 (0.780–0.972) 0.744 (0.699–0.786) 0.757 (0.712–0.799) 0.287 (0.211–0.363)

Values are shown as estimates with 95% confidence intervals. ML, machine learning; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector

machine; RF, random forest; XGBoost, eXtreme Gradient Boosting; KNN, K-nearest neighbors.
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Discussion

The diagnosis of OME in AH children remains challenging due

to limitations in existing screening modalities, particularly

conventional tympanometry which exhibits variable diagnostic

performance. In this study, a ML-based diagnostic tool was

developed and validated that integrates clinical, demographic,

and acoustic immittance parameters to enhance identification of

OME in AH children. The optimal RF model demonstrated

excellent discrimination, robust inter-rater agreement, and

superior clinical utility in the testing cohort. Unlike previous

studies that predominantly utilized LR for linear predictions, this

investigation conducted a comprehensive comparison of multiple

ML algorithms, enabling thorough examination of both linear

and non-linear associations between variables and clinical

outcomes. This model offers clinicians an interpretable diagnostic

instrument that effectively categorizes patients according to

anatomical, functional, and inflammatory parameters without

requiring specialized equipment or invasive procedures.

The diagnosis and management of OME in pediatric

populations constitute significant public health concerns with

substantial developmental consequences. Chronic OME,

commonly observed in children with AH, represents a primary

cause of acquired hearing impairment during critical

developmental periods (32). This auditory deficit often leads to

developmental complications including speech delay,

communication difficulties, behavioral abnormalities, and

educational challenges (33, 34). Untreated persistent OME may

evolve to more severe middle ear conditions, including adhesive

otitis media, tympanosclerosis, cholesterol granuloma, and

acquired primary cholesteatoma. OME identification in pediatric

AH patients presents considerable diagnostic difficulties, as

young children typically cannot adequately express subtle

auditory deficits due to limited metacognitive awareness and

FIGURE 4

SHAP analysis of the RF model. (A) Feature importance ranking based on mean absolute SHAP values. (B) SHAP summary plot illustrating feature effects

on model output.

TABLE 3 Ablation analysis results showing performance metrics with sequential feature removal from the RF model.

Ablated feature Sensitivity Specificity PPV NPV Accuracy Kappa

None (Baseline) 0.734 (0.662–0.798) 0.938 (0.905–0.963) 0.841 (0.775–0.896) 0.887 (0.850–0.918) 0.875 (0.838–0.906) 0.696 (0.634–0.758)

A/N ratio 0.519 (0.447–0.590) 0.938 (0.901–0.954) 0.788 (0.710–0.854) 0.813 (0.770–0.851) 0.808 (0.767–0.845) 0.504 (0.435–0.573)

Tympanometric type 0.544 (0.472–0.615) 0.943 (0.911–0.967) 0.811 (0.737–0.872) 0.822 (0.780–0.859) 0.820 (0.780–0.855) 0.536 (0.468–0.604)

Recurrent respiratory infections 0.570 (0.498–0.640) 0.949 (0.918–0.971) 0.833 (0.763–0.890) 0.831 (0.790–0.867) 0.831 (0.792–0.866) 0.568 (0.501–0.635)

Chronic rhinosinusitis 0.709 (0.637–0.774) 0.943 (0.911–0.967) 0.848 (0.782–0.902) 0.878 (0.840–0.910) 0.871 (0.833–0.903) 0.683 (0.620–0.746)

Total IgE 0.709 (0.624–0.767) 0.938 (0.905–0.963) 0.836 (0.769–0.891) 0.878 (0.840–0.910) 0.867 (0.829–0.900) 0.675 (0.612–0.738)

Passive smoke exposure 0.696 (0.624–0.762) 0.949 (0.918–0.971) 0.859 (0.795–0.910) 0.874 (0.836–0.906) 0.871 (0.830–0.907) 0.681 (0.618–0.744)

Values are shown as estimates with 95% confidence intervals. PPV, positive predictive value; A/N ratio, adenoid-to-nasopharyngeal ratio; IgE, immunoglobulin E.
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language capabilities (35). Parental detection of hearing

impairment often occurs only after significant auditory

deterioration or when attention deficits become evident in

educational environments (36). Tympanometric assessment,

although widely used as a non-invasive screening method,

exhibits notable diagnostic limitations (10, 37), demonstrated by

current findings wherein 11.8% of confirmed OME cases

presented with Type A tympanograms (conventionally

interpreted as normal), while 13.0% of children without OME

displayed Type B tympanograms (traditionally associated with

middle ear effusion). These diagnostic inconsistencies highlight

the need for improved diagnostic methodologies that overcome

the limitations of single-parameter assessment approaches.

In this investigation, the comparative analysis of five ML

algorithms identified RF as the optimal approach for OME

diagnosis in AH children, demonstrating superior performance

across multiple evaluation metrics. The RF model achieved

excellent discrimination, balanced calibration, and superior clinical

utility, significantly outperforming conventional LR approaches

(Figure 2). While LR exhibited acceptable diagnostic accuracy, its

inferior PPV highlighted the limitations of linear modeling in

capturing complex pathophysiological relationships. To our

knowledge, this study represents the first AI-based predictive

model for OME risk stratification in AH children. While previous

studies have identified individual risk factors using conventional

statistical methods (17, 38, 39), our RF model integrates multiple

variables to achieve superior predictive performance.

SHAP analysis provided crucial insights into the multifactorial

etiology of OME in this population, identifying A/N ratio and

tympanometric type as predominant diagnostic indicators. This

aligns with recent studies, which identified adenoid grade as a

primary risk factor (16, 17). The substantial contribution of these

parameters supports established pathophysiological mechanisms

whereby AH mechanically obstructs the Eustachian tube orifice,

creating negative middle ear pressure with subsequent effusion

formation (40, 41). Additionally, inflammatory parameters

including recurrent respiratory infections and chronic

rhinosinusitis emerged as significant contributors to diagnostic

accuracy, consistent with findings from Restuti et al. (38) and

previous investigations confirming that bacterial colonization may

exert greater influence on OME development than mechanical

obstruction alone, with inflammatory responses disrupting ciliary

transport and Eustachian tube function (42–44). Immunological

parameters (Total IgE) and environmental exposures (passive

smoke) demonstrated modest but clinically relevant contributions

to the diagnostic model, consistent with prior research indicating

tobacco smoke exposure adversely affects both innate and adaptive

immunity in children while directly impairing mucociliary

clearance through increased goblet cell proliferation and mucus

production (45, 46). Importantly, our integrated ML approach

enables simultaneous consideration of multiple interacting

variables, providing superior predictive performance compared to

traditional single-factor analyses while maintaining clinical

interpretability through SHAP methodology.

The developed ML-based diagnostic framework provides

clinicians with a practical decision support tool that integrates

routinely collected clinical parameters to improve OME

identification in children with AH. In clinical practice, physicians

can implement this model by entering standard patient data to

generate an OME probability score that enables risk stratification,

allowing clinicians to identify high-risk children who would benefit

from immediate confirmatory testing vs. low-risk cases suitable for

routine monitoring. For busy clinical practices, this tool offers

particular value in optimizing resource allocation by identifying

which patients require immediate specialist consultation vs. those

who can be safely monitored with standard care protocols. The

model can be easily implemented through simple electronic

interfaces without requiring additional equipment or specialized

training, making it accessible across diverse healthcare settings

from community clinics to academic medical centers. Furthermore,

the transparent nature of the model allows physicians to

understand which specific factors contribute most to OME risk in

individual patients, facilitating more informed discussions with

families about diagnostic recommendations and treatment plans

while improving overall diagnostic confidence in this challenging

pediatric population.

Despite the promising results, several methodological limitations

warrant consideration. The retrospective single-center design

imposed constraints on both generalizability and variable selection.

The analysis was restricted to routinely collected clinical parameters,

necessarily excluding potentially influential socioeconomic and

environmental determinants such as breastfeeding duration and

household allergen exposures. Similarly, we were unable to

incorporate potentially significant biochemical markers, particularly

vitamin D3 levels, despite emerging evidence supporting their

association with OME pathogenesis (47, 48). Furthermore, while

otoscopic examination represents a routine clinical assessment,

these findings were not incorporated due to the challenges in

pediatric patient cooperation and the inherent subjectivity in

interpretation across clinicians. Additionally, although our internal

validation demonstrated robust predictive metrics, the model lacks

external validation across diverse clinical settings, geographic

regions, and patient populations. This validation gap limits

immediate broad clinical implementation. Future research directions

should address these limitations through prospective multicenter

validation studies, incorporation of comprehensive variable panels

including standardized otoscopic findings, socioeconomic factors,

and relevant biomarkers, and evaluation of model performance

across seasonal variations and diverse clinical contexts. Such

refinements would strengthen diagnostic precision and facilitate

practical implementation of machine learning approaches in routine

pediatric otolaryngology practice.

In conclusion, an RF-based diagnostic model was established

that effectively identifies OME in children with AH through

integration of accessible clinical parameters. Comparative analysis

revealed RF superiority in capturing complex pathophysiological

relationships between variables and clinical outcomes. This

model addresses limitations in conventional tympanometric

assessment by reducing misclassifications, thereby providing a

reliable diagnostic instrument for clinical implementation. The

framework offers significant value in pediatric populations where

symptom reporting remains challenging and early detection
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prevents developmental sequelae. Through enhanced diagnostic

confidence and improved clinical decision-making, this approach

advances evidence-based management of OME in the pediatric

AH population.
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