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Background: Neonatal encephalopathy (NE) is a significant cause of

neurodevelopmental impairment, with therapeutic hypothermia (TH) being the

current standard of care for mitigating brain injury in affected neonates.

Despite advances, there is a critical need for early, reliable biomarkers that can

predict brain injury severity and long-term outcomes, particularly during the

72-h hypothermia window. This study explores the potential of digital

biomarkers derived from continuous bedside physiologic monitoring to

predict MRI-confirmed brain injury in neonates with NE.

Methods: We collected continuous physiologic data from 138 neonates

undergoing TH, including heart rate, systemic oxygen saturation (SpO₂),

cerebral oxygen saturation (rcSO₂), systolic and diastolic blood pressure, and

mean arterial pressure (MAP). Using a Long Short-Term Memory (LSTM) neural

network, we developed predictive models to classify neonates into no/mild or

moderate/severe brain injury groups based on MRI findings. Model

performance was evaluated at 24 and 48 h of data collection. An ablation

study was conducted to assess the relative importance of individual biomarkers.

Results: Seventy-three neonates (52.9%) were classified as having moderate/

severe injury, while 65 neonates (47.1%) had no/mild injury on MRI. The

predictive accuracy of the LSTM model improved significantly with extended

data duration, achieving an accuracy of 91.2% at 48 h compared to 84.6% at

24 h. The ablation study identified heart rate as the most significant biomarker,

whereas rcSO₂ trends showed potential but did not consistently contribute to

prediction accuracy in later models.

Conclusion: Our study highlights the potential of digital biomarkers in predicting

brain injury severity during the therapeutic hypothermia window. Machine

learning models, such as LSTM networks, offer an opportunity for real-time

prediction and risk stratification, ultimately enhancing clinical decision-making

and neuroprotective strategies in neonates with NE. Future studies will focus

on integrating real-time data capture and improving predictive accuracy.
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1 Introduction

The incidence of neonatal encephalopathy (NE) is 1.5% per live

birth in developed countries and varies between 2.3% and 26.5% in

developing regions (1). NE is a major contributor to

neurodevelopmental impairment (NDI) in children (2). The

standard management for NE includes systemic supportive care

and therapeutic hypothermia (TH), with total body hypothermia

(TBH) shown to benefit approximately 20% of neonates with

moderate to severe NE (3).

MRI with diffusion-weighted imaging (DWI) is the ideal

diagnostic modality for early detection of brain injury in

neonates with NE, with optimal imaging performed 4–5 days

after birth, immediately following rewarming (4). However,

logistical challenges often prevent MRI during the 72-h cooling

phase, prompting the need for alternative bedside biomarkers

that can predict both the extent of brain injury and long-term

outcomes at 18–24 months of age.

Biomarkers are defined by the FDA-Joint Council as a “Defined

characteristic that is measured as an indicator of normal biological

processes, pathogenic processes, or biological responses to an

exposure or intervention, including therapeutic interventions.

Biomarkers may include molecular, histologic, radiographic, or

physiologic characteristics” (5, 6). Potential sources of biomarkers

include biofluids (e.g., serum, plasma, urine, cerebrospinal fluid),

neuroimaging modalities like magnetic resonance spectroscopy

(MRS), and digital biomarkers derived from physiologic

monitoring such as amplitude-integrated EEG (aEEG), vital

signs, and cerebral oximetry (7). Although biofluid biomarkers—

such as neuroproteins, microRNAs (miRNAs), exosomes, and

inflammatory cytokines—have received considerable attention,

digital biomarkers remain relatively underexplored in predicting

neonatal brain injury during hypothermia therapy (8, 9).

Advanced machine learning techniques, including random

forests and deep learning, have been utilized to analyze EEG data

for early seizure detection and to assess the severity of NE (10).

When integrated with MRI-derived radiomic features, these

approaches can accurately predict neurodevelopmental outcomes

at 18 months, offering valuable insights for prognosis and

guiding potential interventions (11).To date, most published

trials on the use of machine learning (ML) in neonatal

encephalopathy (NE) have not adequately addressed key

structural issues related to design, data processing, applicable

models, and validation and evaluation standards (12). Mooney

et al. utilized the random forest machine learning algorithm and

five-fold cross-validation to predict NE in a prospective cohort of

infants with perinatal asphyxia, using maternal and delivery

details along with the infant’s condition at birth (13). Tian et al.

developed and validated an intelligent NE identification model,

called the deep learning clinical-radiomics nomogram (DLCRN),

based on conventional structural MRI and clinical characteristics

(14). Their study concluded that their model could expedite early

mild HIE screening, improve the consistency of NE diagnosis,

and guide timely clinical management. Lew et al. created a deep

learning algorithm to predict 2-year neurodevelopmental

outcomes in neonates with NE using MRI and basic clinical data

such as sex and gestational age at birth (15). Their model

focused on employing deep learning analysis of neonatal brain

MRI to predict 2-year neurodevelopmental outcomes. None of

the aforementioned studies or others were designed to utilize

hemodynamic data recorded within the first 24–48 h and link

these data to neonatal outcomes using an AI approach.

Given the large volume of data generated by bedside

physiologic monitoring, artificial intelligence (AI) has emerged as

a powerful tool in advancing clinical care by enabling the

efficient analysis of complex datasets (16). The integration of

electronic medical records (EMRs) has facilitated the

development of extensive patient databases, including continuous

clinical variables, which accelerates the application of AI in

medical research and practice. Consequently, predictive models

leveraging AI have been developed to enhance clinical decision-

making (17). Among the most informative predictors are

continuous cardiorespiratory variables, which are routinely

monitored in intensive care settings (18). Fluctuations in these

vital signs have been shown to reflect the severity of clinical

insults (19).

This study aims to utilize digital biomarkers derived from

bedside physiologic data collected during the 72-h period of

therapeutic hypothermia (TH) to develop a predictive model for

identifying neonates with brain injury. Specifically, we seek to

stratify neonates into two categories—none to mild or moderate

to severe brain injury—based on MRI findings. Continuous

bedside clinical data, including heart rate, blood pressure,

cerebral oxygen saturation, and systemic oxygen saturation, were

extracted from the electronic medical records. We hypothesize

that AI-based learning algorithms will accurately classify

neonates into the appropriate injury group based on these

parameters. The ultimate goal is to develop a model that can

detect hypoxic-ischemic brain injury in real time using bedside

clinical data, equipping clinicians with objective information to

enhance decision-making during the 72-h TH period.

2 Methods

2.1 Patient populations

2.1.1 NE subjects
This study was approved by the University of Florida

Institutional Review Board, and informed consent was obtained

from the parents of all neonates eligible for TH within 72 h of

birth for inclusion in the Florida Neonatal Neurologic Network

registry, as previously reported (3, 20). Eligibility criteria for the

hypothermia protocol included a gestational age of 35 weeks or

greater, birth weight of at least 1.8 kg, and initiation of therapy

within 6 h of birth. Enrolled neonates exhibited signs of

encephalopathy, defined by either seizures or abnormalities in

three out of six categories on the modified Sarnat exam: level of

consciousness, spontaneous activity, posture, tone, primitive

reflexes (suck and Moro reflexes), and autonomic system findings

(pupil reactivity, heart rate, and respirations). Evidence of

hypoxic–ischemic injury was determined by one of the following:
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(1) a pH≤ 7.0 and/or base deficit <16 mmol/L, (2) a pH between

7.01 and 7.15 and/or base deficit between 10 and 15.9 mmol/L,

or (3) the absence of blood gas results but a report of an acute

perinatal event, such as cord prolapse, heart rate decelerations, or

uterine rupture. Therapeutic hypothermia was administered using

the CritiCoolTM blanket device (Mennen Medical Corp.,

Feasterville-Trevose, PA). Neonates were excluded from the

analysis if cerebral oximetry was not performed or if the data

were unavailable for review.

2.2 Integrated data repository retrieval

To facilitate comprehensive data collection and analysis for all

enrolled infants, we utilized the Integrated Data Repository (IDR)

in collaboration with the University of Florida Clinical and

Translational Science Institute (UF CTSI). The IDR aggregates

clinical data from the electronic health record (EHR),

incorporating both structured data (e.g., demographics, clinical

variables, laboratory results) and unstructured data (e.g., clinical

notes, bedside physiologic monitoring). All retrieved data

underwent systematic cleaning and preprocessing using R Studio

to ensure data integrity and consistency prior to analysis. This

thorough data management process allowed the integration of

the physiologic variables into machine learning models, creating

a complete and accurate physiologic profile for each infant.

In addition to continuous monitoring with the cardiorespiratory

physiologic monitor, regional cerebral oxygenation was measured

using INVOSTM (Medtronic, formerly Covidien, Minneapolis,

MN) Cerebral/Somatic Oximetry Infant-Neonatal Sensors. These

sensors utilize near-infrared spectroscopy (NIRS) to monitor

regional mixed venous-arterial saturations. Sensors were placed on

either the left or right side of the neonate’s forehead, and data

were continuously collected throughout the hypothermia phase,

during the rewarming period, and immediately post-rewarming.

This comprehensive monitoring approach provided a detailed

dataset for analysis, capturing both systemic and cerebral

physiologic parameters.

2.3 MRI scoring

MRI were performed at either 3–5 (n = 18) days of age

following rewarming or 7–12 days of age (n = 7, not stable for

imaging at 3–5 days of age). One subject had an MRI performed

at day 1 of life and another subject at day 20. Neonates were

imaged on a Siemens Magnetom Verio 3 T scanner (Siemens,

Malvern, PA) at UF Health Gainesville. A single blinded

subspecialty board-certified neuroradiologists with over 10 years

of experience in neonatal imaging interpreted all the MRI images

using the Weeke scoring system (21). The Weeke scoring system

evaluates brain injury across three regions: deep grey matter,

white matter/cortex, and the cerebellum, with an additional

subscore assessing the presence of intraventricular hemorrhage

(IVH), subdural hemorrhage (SDH), and cerebral sinovenous

thrombosis (CSVT). Each anatomical region is systematically

scored based on the extent and distribution of injury. The deep

grey matter subscore, with a maximum of 23 points, assesses the

thalamus, basal ganglia, posterior limb of the internal capsule

(PLIC), brainstem, perirolandic cortex, and hippocampus. Injury

in these areas is scored as 0 (no injury), 1 (focal injury affecting

<50%), or 2 (extensive injury affecting ≥50%). Additionally,

injuries are noted as either unilateral (score of 1) or bilateral

(score of 2). The white matter/cortex subscore, with a maximum

of 21 points, evaluates damage to the cerebral cortex, cerebral

white matter, optic radiations, corpus callosum, punctate white

matter lesions (PWML), and parenchymal hemorrhage. Injury is

scored as 0 (no injury), 1 (focal injury involving one lobe), or 2

(extensive injury affecting multiple lobes). The cerebellum

subscore, with a maximum of 8 points, examines lesions or

hemorrhages within the cerebellum. A score of 0 is given for no

injury, 1 for focal lesions smaller than 0.5 cm, and 2 for

extensive lesions larger than 0.5 cm or multiple lesions. In

addition to these anatomical regions, the Weeke score

incorporates an “Additional” subscore assessing the presence of

IVH, SDH, and CSVT. For each of these conditions, the scoring

is binary: 0 for absence and 1 for presence, contributing to a

maximum additional score of 3. The total score is calculated by

summing the scores from the grey matter, white matter/cortex,

cerebellum, and additional categories, with a maximum score of

55. If 1H-MRS data are available, abnormalities in the basal

ganglia and thalamus, such as reduced N-acetyl aspartate (NAA)

or elevated lactate peaks, are incorporated into the grey matter

subscore, increasing the total score to a maximum of 57.

2.4 Data pre-processing

The dataset consisted of physiological biomarkers from 138

subjects monitored over 72 h during therapeutic hypothermia.

The recorded biomarkers included heart rate (HR), systemic

oxygen saturation (SpO₂), cerebral oximetry (rcSO2), arterial

systolic blood pressure (ArtSBP), arterial diastolic blood pressure

(ArtDBP), and mean arterial pressure (MAP). Some

measurements were missing throughout the data collection

process. To address these gaps, missing values were imputed

using the average of the five nearest neighboring timestamps.

Each biomarker feature was standardized using Z-score

normalization, transforming the data into a standard normal

distribution with a mean of zero and a standard deviation of one.

Our dataset had small, randomly distributed gaps due to the

retrospective nature of this study and the inclusion of out-born

infants, which resulted in occasional missing measurements.

Most abnormal physiological events were concentrated early in

the monitoring period, whereas the majority of the data reflected

stable physiological patterns. We specifically chose the five-

nearest-neighbor averaging imputation method due to the

following advantages: (1) Local Adaptability: Unlike simpler

methods such as forward-fill or global linear interpolation,

averaging the five closest temporal neighbors (including

timestamps before and after a missing point) preserves local

temporal context and prevents oversmoothing; (2) Outlier
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Resilience: Utilizing multiple neighboring points reduces the

likelihood of propagating single-point measurement errors or

outliers, a risk inherent in methods like forward-fill; (3) Trend

Preservation: Local averaging is capable of accurately capturing

subtle, short-term trends and variations in the signal,

maintaining physiological realism more effectively than linear

interpolation, especially when abrupt physiological changes occur.

We carefully considered alternative methods, including

multiple imputation (MI), model-based imputation techniques

(such as mixed-effects models), random forest-based approaches,

and deep learning methods and evaluated the pros and cons.

Multiple Imputation and Model-based Approaches: Methods like

multivariate linear mixed-effects models are robust for multilevel

or longitudinal data, leveraging hierarchical structures to mitigate

bias. However, these methods require assumptions about data

distributions and sufficient variability in hierarchical structures,

which may not align well with our minute-level physiological

data. Random Forest Imputation: Although flexible and capable

of capturing nonlinear relationships, random forest-based

methods may introduce biases when handling skewed

physiological variables or complex interactions inherent to

clinical biomarkers. Deep Learning Methods: These models excel

with extensive datasets, where substantial training data are

available. Given our limited dataset size and small gap intervals,

deep learning models are not feasible, as they typically require

large training samples and may not reliably capture the short-

duration gaps accurately.

After evaluating these methods’ strengths and limitations

relative to our dataset’s characteristics and clinical context, we

concluded that the five-nearest-neighbor averaging approach is

most suitable for accurately and reliably filling small gaps in our

time-sensitive physiological data (22).

2.5 AI analysis

We built a Long-Short Term Memory (LSTM) model to predict

no-to-mild vs. moderate-to-severe brain injury on MRI, based on

the time sequence biomarker features. LSTM is a specialized type

of recurrent neural network (RNN) designed to overcome the

limitations of classic RNNs, particularly the vanishing gradient

problem, by preserving information over long temporal spans

through its gated memory cell architecture. In this study, we

chose LSTM over the alternative architectures such as Gated

Recurrent Unit (GRU) due to its enhanced ability to capture

long-range temporal dependencies, which are essential for early

diagnosis. Although GRU offers faster training and a simpler

structure, LSTM provides finer control over memory retention—

critical in our application, where diagnostic accuracy depends on

the length of observation (e.g., 24 h vs. 48 h) (23).

There are three major components in the LSTM model: (1) the

forget gate (Ft) which will decide whether we should keep the

information from the previous timestamp or forget it. Then, a

sigmoid function is applied over it. That will make ft a number

between 0 and 1; (2) the input gate (It) which will decide which

of the values from the inputs is to be used to change the

memory. The sigmoid function determines whether or not to

allow 0 or 1 values through. In addition, using the tanh function,

you can assign weights to the data, determining their importance

on a scale of −1 to 1, and 3) the output gate (Ot) which will

generate final output based on the input and memory of the

block. When the sigmoid function is used, it determines whether

the 0 or 1 value should be allowed through. Given h hidden

units, and the batch size is n, and the dimension of inputs is d.

We will introduce the function of each gate in the following:

Ft ¼ s(XtWxf þHt�1Whf þ bf )

It ¼ s(XtWxi þ Ht�1Whi þ bi)

Ot ¼ s(XtWxo þHt�1Who þ bo)

Where,

Xt [ R
n�d : input to the current timestamp t.

Wxf , Wxi, Wxo [ R
d�h : weight associated with the input.

Ht�1 [ R
n�h : the hidden state of the previous timestamp

t � 1.

Whf , Whi, Who [ R
h�h: the weight matrix associated with

hidden state.

bf , bi, bo [ R
1�h: the bias.

The LSTM model consists of a single LSTM layer with 64

hidden units for temporal feature extraction, followed by fully

connected layers serving as the classifier. Given the limited

cohort size relative to the model complexity and training

duration, there is an inherent risk of overfitting, where the model

may memorize training data instead of learning generalizable

patterns. To mitigate this, we employed several overfitting

prevention strategies. First, we reduced model complexity by

using only one LSTM layer in feature extraction layer. Second,

we introduced L2 regularization (weight decay = 1e-2) in the

optimizer to penalize large weights. Third, we incorporated early

stopping via validation monitoring with patience of 10 epochs.

We split the dataset into training, validation, and test sets with a

70%/15%/15% stratified sampling strategy within each class,

ensuring balanced representation across sets. Given that the

duration of the time-series input plays a critical role in

diagnostic performance, we further explored the trade-off

between input length and predictive accuracy. Specifically, we

compiled two datasets using 24-h and 48-h observation windows,

and trained LSTM models on each to compare performance.

Models were trained for up to 1,500 epochs using stochastic

gradient descent (SGD) with a learning rate of 0.01 and

momentum of 0.8. Each setup was trained 10 times and the

average accuracy and standard deviation on the test were

reported to ensure a robust evaluation. The implementation was

developed in PyTorch and executed on a system running Ubuntu

22.04 with an NVIDIA RTX 4080 GPU.
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3 Results

3.1 Patient demographics and study profile

A total of 138 subjects were included in this cohort analysis

(39% outborn). Seventy-three neonates (52.9%) exhibited

moderate to severe injury on MRI, while 65 neonates (47.1%)

had no or mild injury. Both groups were similar in several key

characteristics. The majority of neonates were male (60% in the

moderate/severe group vs. 54% in the no/mild group).

Gestational age was comparable between the groups (38.2 ± 2

weeks for both), as was birth weight (3,212 ± 740 g for the

moderate/severe group vs. 3,219 ± 752 g for the no/mild group).

Additionally, the incidence of cesarean delivery was similar (56%

in the moderate/severe group vs. 65% in the no/mild group), as

were umbilical cord gas pH and base deficit values.

Notably, a sentinel event was reported in 43% of the neonates

in the no/mild group compared to 33% in the moderate/severe

group. One-, five-, and ten-minute Apgar scores did not differ

significantly between the groups. However, neonates in the

moderate/severe group had a higher incidence of seizures (49%

vs. 14%) and a greater proportion with Sarnat scores of III on

the initial neurologic examination (37% vs. 8%) compared to

those in the no/mild group (p < 0.05). For a detailed description

of the neonatal characteristics, please refer to Table 1.

Neonates in the moderate/severe group required respiratory

support during hypothermia in 96% of cases, including

mechanical ventilation in 84% and CPAP in 11%. In comparison,

85% of neonates in the no/mild group required respiratory

support, with 68% receiving mechanical ventilation and 8% on

CPAP (p < 0.05). Similarly, neonates in the moderate/severe

group required ionotropic support during hypothermia in 60% of

cases, compared to 34% in the no/mild group (p < 0.05).

The median time to MRI was 4 days (IQR: 4–6) for the

moderate/severe group and 4 days (IQR: 4–6) for the no/mild

group. The median length of hospital stay was 15 days for both

groups, with an IQR of 10–27 days for the moderate/severe

group and 9–32 days for the no/mild group (Table 1).

3.2 Machine learning

3.2.1 MRI injury score cutoff for no/mild and
moderate/severe injury

We analyzed the distribution of MRI scores across all patients,

as shown in Figure 1. The majority had an MRI score of 0, while

the remaining patients had scores ranging from 1 to 33. Based

on these scores, we categorized patients into two groups: (a) no/

mild injury (score ≤1) and (b) moderate/severe injury (score >1).

The cutoff of 1 is used to distinguish between normal and

abnormal findings: a score of 0 is considered normal, while a

score of 1 or higher indicates the presence of abnormality. This

threshold is set because even a single point on the Weeke scale

reflects a mild detectable injury, which may be clinically

significant, where subtle changes are important for prognosis and

treatment decisions (24). The high inter-rater reliability

(kappa = 0.9) supports the consistency of this scoring method

(21). Using this classification, our cohort was approximately

evenly divided between normal and abnormal findings.

3.2.2 Analysis of physiologic biomarkers and the
impact of data duration on prediction accuracy

Six physiologic biomarkers were utilized to train the predictive

model: [A] Arterial Line Systolic Blood Pressure (SBP), [B] Arterial

Line Diastolic Blood Pressure (DBP), [C] Arterial Line Mean

Arterial Pressure (MAP), [D] heart rate, [E] SpO2 and [F] rcSO₂

(cerebral oximetry).Patients were categorized into two groups

based on MRI findings: “no/mild” and “moderate/severe” brain

injury. To visually assess the distribution of these biomarkers

over time, histograms were generated for each group with 95%

confidence interval as shown in Figure 2.

Graphical analysis revealed substantial overlap across all

measured parameters, with only minor differences between the

two groups, except for rcSO₂, which exhibited the clearest

distinction between the “no/mild” and “moderate/severe” injury

TABLE 1 The demographical and clinical characteristics of NE neonates
(n = 138).

Infant characteristics
at enrollment

NE (n = 65) NE (n= 73)

No/mild
injury on MRI

Moderate/severe
injury on MRI

Sex (%)

Female 46 40

Male 54 60

Gestational age in weeks

(mean ± SD)

38 ± 2 38 ± 2

Birth weight in grams

(mean ± SD)

3,219 ± 752 3,212 ± 740

Apgar score at 1 min

(mean ± SD)

2 ± 2 2 ± 2

Apgar score at 5 min

(mean ± SD)

4 ± 2 4 ± 2

Apgar score at 10 min

(mean ± SD)

5 ± 3 5 ± 3

Sentinel event n (%) 28 (43%) 24 (33%)

C- section delivery n (%) 42 (65%) 41 (56%)

*Respiratory support n (%) 55 (85%) 70 (96%)

*Ventilator n (%) 44 (68%) 61 (84%)

CPAP n (%) 5 (8%) 8 (11%)

*Room Air n (%) 10 (15%) 3 (4%)

*Inototropic support n (%) 22 (34%) 44 (60%)

*History of seizures n (%) 9 (14%) 36 (49%)

SARNAT score II n (%) 31 (48%) 25 (34%)

*SARNAT score III n (%) 5 (8%) 27 (37%)

Umbilical cord arterial pH

(mean ± SD)

6.96 ± 0.18 6.96 ± 0.18

Umbilical cord arterial deficit

(mean ± SD)

−15 ± 6 −16 ± 6

Initial pH (mean ± SD) 7.11 ± 0.17 7.11 ± 0.17

Initial base deficit (mean ± SD) −15 ± 6 −16 ± 6

Initial lactate (mean ± SD) 10 ± 5 11 ± 5

Time to MRI (median [IQR]) 4 [4–6] 4 [4–6]

Length of stay (median [IQR]) 15 [10–27] 15 [9–32]

NE, neonatal encephalopathy; SD, standard deviation; IQR, interquartile range * p < 0.05.
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groups. This suggests that cerebral oximetry may serve as a

particularly valuable biomarker in differentiating injury severity.

3.2.3 Impact of data collection duration on

predictive performance
The duration of physiologic biomarker collection is a critical

factor influencing the model’s predictive accuracy. A longer

monitoring period allows the model to capture more complex

temporal relationships and evolving physiological patterns,

thereby enhancing its predictive capability. To evaluate the effect

of duration, we trained the model using two distinct time frames:

1. First 24 h post-birth—Model trained using all six

physiologic biomarkers.

2. First 48 h post-birth—Model trained using all six

physiologic biomarkers.

Each model configuration was trained 10 times, with the average

accuracy and standard deviation recorded in Table 2. The results

demonstrated a significant improvement in predictive accuracy

with a longer monitoring period. The 48-h dataset yielded an

average test accuracy of 91.2%, compared to 84.6% for the 24-h

dataset. This finding highlights the importance of prolonged

physiologic data collection in optimizing model performance,

reinforcing the need for extended monitoring in neonates at risk

for brain injury.

3.2.4 Evaluation of physiologic biomarkers in

predicting MRI-detected brain injury: an ablation
study

To assess the relative importance of each physiologic biomarker

in predicting MRI-confirmed brain injury, we conducted an

ablation study. In this analysis, we systematically removed

individual physiologic biomarkers from the predictive model

while maintaining a consistent model architecture, parameter

settings, and dataset. This approach enabled us to quantify the

contribution of each biomarker to the overall predictive

performance.

Six different physiologic biomarker combinations were

evaluated:

1. Exclusion of Arterial Line Systolic BP—Model trained with

Arterial Line Diastolic BP, Arterial Line Mean Arterial

Pressure (MAP), heart rate, SpO₂, and rcSO₂ (cerebral

oximetry).

2. Exclusion of Arterial Line Diastolic BP—Model trained with

Arterial Line Systolic BP, Arterial Line MAP, heart rate,

SpO₂, and rcSO₂.

3. Exclusion of Arterial Line MAP—Model trained with Arterial

Line Systolic BP, Arterial Line Diastolic BP, Heart rate, SpO₂,

and rcSO₂.

4. Exclusion of Heart rate—Model trained with Arterial Line

Systolic BP, Arterial Line Diastolic BP, Arterial Line MAP,

SpO₂, and rcSO₂.

5. Exclusion of SpO₂—Model trained with Arterial Line Systolic

BP, Arterial Line Diastolic BP, Arterial Line MAP, Heart rate,

and rcSO₂.

6. Exclusion of rcSO₂—Model trained with Arterial Line Systolic

BP, Arterial Line Diastolic BP, Arterial Line MAP, Heart rate,

and SpO₂.

Each model configuration was trained 10 times with random

initialization to ensure robustness, and the average accuracy

along with standard deviation on the test set was recorded

(Table 3). The baseline model, which incorporated all biomarkers

over the first 48 h of data, served as a reference for comparison.

Our findings demonstrate a notable decline in predictive

accuracy when specific biomarkers were excluded, reinforcing

their importance in model performance. Notably, the absence of

Heart rate resulted in the most pronounced reduction in

FIGURE 1

The distribution of MRI scores for all patients.
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accuracy, identifying it as the most critical biomarker in predicting

MRI-detected brain injury. The remaining biomarkers-Arterial

Line Systolic BP, Arterial Line Diastolic BP, SpO₂, and rcSO₂-

demonstrated comparable effects on predictive performance,

suggesting a similar level of importance in the model’s decision-

making process. These results underscore the varying degrees of

influence that individual biomarkers exert on model performance

and highlight the necessity of multimodal physiologic monitoring

for optimizing early detection of brain injury in neonates.

To further evaluate the contribution of individual biomarkers

to model performance, a candlestick graph was generated

(Figure 3). The x-axis represents the biomarker excluded from

the training dataset. The candle bodies illustrate the

mean ± standard deviation of prediction accuracy across multiple

training iterations, reflecting the consistency of the model’s

performance. The vertical wicks indicate the range between

minimum and maximum prediction accuracies, with the upper

limit representing the best potential performance for each feature

set. The baseline model, trained with all biomarkers from the

first 48 h of data, served as the reference for comparison. Our

analysis revealed a decline in prediction accuracy when specific

biomarkers were excluded, underscoring their importance in

model performance. For instance, the absence of heart rate

resulted in the most substantial accuracy drop, identifying it as

the most critical biomarker. Conversely, excluding Arterial Line

BP MAP had minimal impact, suggesting it is the least critical

biomarker. Additionally, Arterial Line Systolic BP and Arterial

Line Diastolic BP appeared to provide overlapping information

with Arterial Line BP MAP. The remaining biomarkers—Arterial

Line Systolic BP, Arterial Line Diastolic BP, SpO2, and rcSO2
—

demonstrated relatively similar effects on the model’s

performance, indicating comparable importance. Overall, this

analysis highlights the varying contributions of individual

biomarkers to the model’s predictive capability.

FIGURE 2

A bootstrap resampling approach was applied to each biomarker

within the no/mild injury and moderate/severe injury groups. For

each group, data points were resampled 1,000 times to generate

bootstrap distributions. Average histograms were computed across

the resampled datasets, and 95% confidence intervals were

calculated and plotted for each bin. This method enhances

visualization of distributional differences between groups and

illustrates the uncertainty associated with the estimated frequency

of each biomarker. Panels represent (A) arterial line mean blood

pressure (mmHg), (B) arterial line systolic blood pressure (mmHg),

(C) arterial line diastolic blood pressure (mmHg), (D) heart rate

(BPM), (E) systemic oxygen saturation (SpO₂)(%), and (F) regional

cerebral oxygenation (rcSO₂)(%).

TABLE 2 Comparison of the model performance on test set with duration
of 24 h and 48 h.

Duration Accuracy on test set

24 h 84.6% ± 3.2%

48 h 91.2% ± 3.2%

TABLE 3 The average and standard deviation of accuracy on test set for
different combinations of biomarkers.

Biomarker Mean (Std)
no/mild
group

Mean (Std)
moderate/severe

group

p-value

rSO2 76 ± 11 77 ± 15 0.99

SpO2 97 ± 8 96 ± 8 0.11

Heart rate 102 ± 20 109 ± 20 0.77

Systolic blood

Pressure

66 ± 12 62 ± 13 0.003

Diastolic blood

Pressure

43 ± 9 41 ± 10 0.96

Mean blood

Pressure

53 ± 10 51 ± 11 0.93

Biomarker comparison table for Figure 2.
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4 Discussion

In this study, we evaluated six physiological biomarkers and

their predictive capability for MRI-detected brain injury using

machine learning. Our findings demonstrate that machine

learning models can accurately classify MRI injury status at both

24 and 48 h of age based on physiological data, underscoring

their potential for early identification of neonatal brain injury.

The incorporation of physiological biomarkers offers an

objective, quantifiable approach that minimizes interobserver

variability and potential bias associated with traditional clinical

assessments such as the Sarnat examination and Apgar scores.

Machine learning is increasingly being applied to neonates with

Neonatal encephalopathy (NE)) to develop predictive models by

analyzing clinical variables. Prior studies have leveraged machine

learning to assess the ability of clinical factors to predict

neurodevelopmental outcomes, as measured by the Bayley Scales of

Infant Development at one year of age or later (25). In these models,

key clinical predictors identified at the time of admission included

HIE severity, epinephrine administration in the delivery room,

respiratory support, and an initial fraction of inspired oxygen (FiO₂)

of 0.21. Additional variables associated with neurodevelopmental

outcomes during the hospital course included the severity of EEG

abnormalities, the use of steroids for blood pressure management,

and the presence of significant brain injury on MRI (25). Machine

learning, particularly the random forest algorithm, has also been

utilized to improve NE risk prediction by analyzing 72 h of routinely

collected clinical data (13). This approach streamlined decision-

making for therapeutic interventions by reducing the number of

clinical predictors from 154 to 10–12 key variables (13). Our study

differs from previously published reports in that it did not

incorporate clinical variables but instead focused solely on bedside

physiological data as predictive biomarkers. This distinction

highlights the potential for real-time, unbiased physiologic

monitoring to inform early prognostication in neonates with NE.

Our ablation study identified heart rate as a key physiological

variable in our predictive model. Several studies, including our

own, have demonstrated the ability of heart rate variability (HRV)

to predict MRI-detected brain injury and neurodevelopmental

outcomes (26–29). Although speculative, our findings may reflect

alterations in sympathetic-parasympathetic tone following hypoxic-

ischemic (HI) injury, potentially influencing resting heart rate.

However, further research is needed to validate this proposed

mechanism. Additionally, the higher use of inotropes in the

FIGURE 3

Candlestick graph illustrating the variability and range across multiple experiments. The vertical wicks represent the minimum and maximum observed

values, while the bodies show the mean ± standard deviation, offering insights into the consistency of results.
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moderate/severe group may have also impacted heart rate. Initial

visual data suggested that cerebral regional oxygen saturation

(rcSO₂) might serve as an important discriminative variable, a

hypothesis supported by early iterations of our model. However,

our ablation study did not confirm its significance in the final

model. Interestingly, previous studies examining regional saturation

trends have shown that machine learning models incorporating

these trends were associated with MRI outcomes, whereas models

utilizing mean absolute values of rcSO₂ were not (30). We

hypothesize that the reason our ablation study did not confirm the

significance of rcSO2 in the final model is due to rcSO2 often

being influenced by systemic factors(carbon dioxide levels,

hypotension, pressors, and sedation), timing of injury in infants

with no sentinel event recorded, as well as the effects of

therapeutic hypothermia on cerebral metabolism and blood flow,

which exhibit high inter-individual variability (31).

Several potential limitations exist in our study. First, the data were

retrospective and reliant on documentation in the medical record,

which may introduce variability and potential inaccuracies.

Additionally, data granularity varied among subjects, with higher-

acuity patients having more frequent and prolonged vital sign

recordings compared to lower-acuity patients. Missing data were

also a challenge, particularly for out born neonates, as physiologic

data collection did not begin until the time of admission to UF

Health. To address these limitations, future studies will incorporate

a real-time data capture device capable of recording bedside

physiological data every 30 s. This approach will enhance data

consistency and resolution, reducing reliance on manually recorded

values. Furthermore, implementing this portable device during

neonatal transport will allow for continuous physiologic monitoring,

mitigating data loss in transferred patients and improving the

accuracy of predictive modeling. Finally, the generalizability of the

model to other institutions with different patient populations,

monitoring equipment, or clinical practices would require further

validation in multicenter studies.

Our study, along with existing literature, highlights the potential

of machine learning (ML) in leveraging physiologic variables, EEG

findings, and clinical parameters to enhance the management of

hypoxic-ischemic encephalopathy (HIE). By providing clinicians

with data-driven, actionable insights, ML-based models facilitate

earlier intervention, individualized risk stratification, and

optimization of neuroprotective strategies. The integration of ML

into neonatal care has the potential to transform clinical decision-

making, ultimately improving outcomes for neonates with HIE.
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