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Background: Biliary atresia (BA) is a severe pediatric liver disease. However, the

role of epigenetic factors in its pathogenesis remains poorly understood. This

study aimed to identify key genes associated with BA and epigenetic factors,

as well as to explore potential therapeutic drugs, thereby offering new insights

into the treatment of this condition.

Methods: Transcriptomic datasets (training set GSE122340 and validation set

GSE46960) were analyzed. The training set was used to identify differentially

expressed genes (DEGs) between BA and normal samples. Candidate genes

were selected by intersecting the DEGs with epigenetic factor-related genes.

A protein-protein interaction (PPI) network was constructed, and key genes

displaying consistent expression patterns across both datasets were identified.

Localization, correlation, and Gene Set Enrichment Analysis (GSEA) of these

key genes were performed. A molecular regulatory network was constructed,

and drug predictions, along with molecular docking simulations, were

conducted for the key genes. Experimental validation of the bioinformatics

findings was carried out.

Results: A total of 3,462 DEGs were identified, from which 62 candidate genes

were selected. Five key genes (AURKA, BUB1, CDK1, RAD51, TOP2A) were

highlighted, all of which exhibited strong positive correlations and were linked

to essential pathways, including the cell cycle. Thirteen potential drugs were

identified, with three pairs showing strong binding affinities. RT-qPCR

validation confirmed that, except for CDK1, AURKA, BUB1, RAD51, and TOP2A

exhibited consistent trends with the bioinformatics analysis, and were

significantly upregulated in the BA group.

Conclusion: This study successfully identified key genes (AURKA, BUB1, CDK1,

RAD51, TOP2A) and potential therapeutic drugs for BA, providing critical

insights into its pathogenesis and offering potential avenues for novel

treatment strategies.
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1 Introduction

Biliary atresia (BA) is a severe neonatal cholangiopathy

characterized by progressive inflammation and fibrosis of both

intrahepatic and extrahepatic bile ducts (1). If left untreated, it

can lead to bile duct obstruction, liver cirrhosis, and ultimately

liver failure (2). Early diagnosis and prompt surgical

intervention, particularly the Kasai portoenterostomy, are critical

for improving outcomes in infants with BA (3, 4). Despite

surgical treatment, BA remains the leading cause of end-stage

liver disease and the primary indication for pediatric liver

transplantation (1, 3, 5). While substantial research has been

conducted, the etiology of BA remains poorly understood, with

genetic variants, environmental factors, toxins, viral infections,

and immune dysfunction all thought to contribute to its

pathogenesis (6–8). Thus, further investigation into the disease

mechanisms and potential therapeutic targets for BA is crucial to

improving patient outcomes.

Epigenetics refers to heritable changes in gene function that do

not involve alterations in the DNA sequence, thereby influencing

phenotype (9). Epigenetic mechanisms, including DNA

methylation, histone modifications, and chromatin remodeling,

play critical roles in regulating gene expression and are

implicated in the development of various liver diseases (10–12).

Epigenetic factors serve as key regulators of gene expression,

bridging genetic and environmental influences (13). Although

several studies have examined genetic alterations in BA, the

findings remain inconclusive, highlighting the need to explore

non-coding and epigenetic factors that may contribute to disease

onset (6). Notably, the interaction between genetic and epigenetic

predispositions, combined with environmental exposures during

pregnancy, may act as triggers for BA (8, 10). Approximately

20% of BA cases are associated with embryonic development,

with epigenetic factors playing a pivotal role in disease

pathogenesis (14). Epigenetic mechanisms may lead to abnormal

expression of proliferation-related genes in BA; however, there is

currently no research exploring the specific molecular

mechanisms involved. Therefore, further identification of key

genes associated with these epigenetic mechanisms is crucial for

understanding the specific mechanisms linking BA.

Although research on BA has advanced, the specific epigenetic

modifications and their functional implications remain poorly

understood. To address this, the present study leverages

transcriptomic data from public BA databases to identify key

genes associated with epigenetic factors through protein-protein

interaction (PPI) analysis. Various bioinformatics techniques will

be employed to identify biological pathways related to these key

genes. Additionally, molecular regulatory networks will be

constructed, and potential therapeutic drugs will be predicted,

providing theoretical support for BA treatment. To validate the

bioinformatics findings, RT-qPCR experiments will be conducted

to assess the mRNA expression levels of key genes, confirming

their alignment with computational analyses. These results will

offer a deeper understanding of the molecular mechanisms

linking BA with epigenetic factors and may contribute to the

development of new therapeutic approaches.

2 Methods

2.1 Data collection

Two datasets, GSE122340 and GSE46960, were retrieved from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

GSE122340 served as the training set, comprising 171 liver tissue

samples from patients with BA and 7 liver tissue samples from

normal children (NM) (15, 16), with sequencing performed on

the GPL16791 platform. GSE46960 was used as the validation

set, containing 64 BA liver tissue samples and 7 NM liver tissue

samples. Fourteen infants with intrahepatic cholestasis due to

other causes and 10 normal adult liver tissue samples were

excluded (17). The sequencing platform for GSE46960 was

GPL6244. A total of 720 epigenetic factor-related genes (EFGRs)

were obtained from the Epifactors database (http://epifactors.

autosome.ru/) (18) (Supplementary Table S1).

2.2 Analysis of differentially expressed
genes (DEGs)

The gene expression matrix from the training set GSE122340 was

analyzed using the “DESeq2” (v 1.40.2) (19) to identify DEGs between

the BA and NM groups, setting the thresholds as adj. P-value < 0.05

and |log2FC| > 1, and corrected the p-values using the Benjamini-

Hochberg (BH) method. The “ggplot2” (v 3.5.1) (20) package was

used to generate the volcano plot for visualizing DEGs, while the

“ComplexHeatmap” (v 2.16.0) (21) package was utilized to create a

heatmap of the top 10 most significantly up- and down-regulated

DEGs. Next, the intersection of the DEGs and EFGRs was

determined using “ggvenn” (v 0.1.9) (22) to identify candidate genes.

2.3 Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses of the candidate genes were

performed using “clusterProfiler” (v 4.15.0) (19), with a

significance threshold of P < 0.05, to explore the biological

functions and pathways associated with these genes.

2.4 PPI network construction

To examine the interaction relationships between proteins

encoded by the candidate genes, the STRING database (http://

www/string-db.org/) was used to construct a PPI network, with

species set to “Homo sapiens” and an interaction score threshold of

≥0.4. Discrete nodes were excluded from the analysis. Cytoscape

software (v 3.10.3) (23) was then employed to visualize the PPI

network. Highly connected regions within the network are likely to

play a critical role in biological regulation. Gene screening from the

PPI network was further refined by evaluating the importance of

each node using three different algorithms (MCC, MNC, Degree)

via the Cytohubba plugin in Cytoscape. The top 9 genes with the

highest scores in each algorithm were selected. The intersection of
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genes from the three algorithms was identified using “ggvenn” (v 0.1.

9) (22), and these genes were classified as core genes. Finally, the

expression levels of the core genes in the training set GSE122340

and validation set GSE46960 were analyzed using the Wilcoxon

rank-sum test. Genes were considered key when their expression

patterns in the training set were consistent with those in the

validation set, and when significant differences (P < 0.05) between

the BA and NM groups were observed.

2.5 Localization analysis

Gene localization plays a pivotal role in understanding the

structure, function, and interactions of genes. To determine the

chromosomal locations of the key genes, their distribution across

chromosomes was visualized using the “RCircos” (v 1.2.2) (24)

package. To explore the functions of the key genes, their DNA

sequences were initially retrieved from the Gene database

(https://www.ncbi.nlm.nih.gov/gene/). Subsequently, the

subcellular localization of the key genes was predicted using the

mRNALocater database (http://bio-bigdata.cn/mRNALocater/).

The tissue/organ-specific expression patterns of these genes were

analyzed using the BioGPS database (http://biogps.org/), with the

following screening criteria: (1) Transcripts of key genes linked

to a specific organ system should have expression levels greater

than ten times the median value; (2) The expression level of key

genes in the second-most abundant tissue should be less than

one-third of the highest expression value. Genes meeting these

criteria were considered to exhibit tissue/organ specificity.

2.6 Exploration of correlation analysis and
network construction

To assess the functional similarities among the key genes in

BA, a Friends analysis was conducted. This method compares the

similarities between genes or gene sets based on functional

information. The “GOSemSim” (v 2.33.0) (25) package was used

to calculate functional similarity scores, and the results were

visualized. To further explore the correlations between key genes

in BA, the Spearman correlation coefficient was calculated across

all samples in the training set GSE122340 using the “Hmisc”

(v 5.1-3) (26) package (|cor| > 0.3, P < 0.05). The correlation

heatmap was drawn using the “corrplot” (v 0.95) (27) package

for visualization. Additionally, the GeneMANIA database

(https://genemania.org/) was employed to predict genes related to

the functions of the key genes and the biological processes they

are involved in. The interaction network between the key genes

and the predicted genes was also visualized to uncover additional

genes and functions associated with the key genes.

2.7 Gene set enrichment analysis (GSEA)

To investigate the biological pathways associated with the key

genes in BA, the KEGG gene set “c2.cp.kegg.v7.4.symbols.gm”

was retrieved from the MSigDB as a reference gene set. The

Spearman correlation coefficients between the key genes and

other genes in the GSE122340 training set samples were

calculated using the “psych” (v 2.1.6) (28) package, and the genes

were ranked in descending order based on these coefficients.

GSEA was performed (P < 0.05) using the “clusterProfiler”

(v 4.15.0) (19) package, with the top 5 most significant pathways

being presented based on the P-values.

2.8 Construction of molecular regulatory
network

To explore the regulatory effects on key genes, transcription

factors (TFs) interacting with the key genes were predicted using

CHIPBase (https://rnasysu.com/chipbase3/), and the TF-gene

interactions were sorted based on the number of supporting

samples. Additionally, miRNAs interacting with the key genes

were predicted using the starBase database (http://starbase.sysu.

edu.cn). Finally, the regulatory networks of the top 10 pairs of

“TF-key gene” and “miRNA-key gene” interactions for each key

gene were visualized using Cytoscape software (v 3.10.3) (23).

2.9 Drug prediction and molecular docking

To explore potential drugs for the treatment of BA, the DGIdb

database (http://dgidb.org/) was used for drug retrieval. This

process identified drugs or molecular compounds potentially

associated with the key genes, ultimately pinpointing drugs that

might target these genes. For each key gene, the top 10 “drug-

key gene” interactions were visualized using Cytoscape software

(v 3.10.3) (23). The drugs with the highest Interaction Scores in

the DGIdb database (http://dgidb.org/) for each key gene were

designated as potential therapeutic agents.

To further elucidate the interaction mechanism between the

potential drugs and key genes, the 3D structures of proteins

corresponding to the key genes were obtained from the RCSB

Protein Data Bank, while the 3D molecular structures of the

active ingredients of the potential drugs were retrieved from the

PubChem database (https://pubchem.ncbi.nlm.nih.gov/).

Molecular docking was performed using the CB-DOCK2 website,

with binding ability indicated by binding energy. A binding

energy of less than or equal to −5.0 kcal·mol–1 suggested an

extremely strong binding affinity between the drug and key gene.

2.10 Experimental validation

To validate the differences in key gene expression levels, RT-

qPCR experiments were conducted. The liver tissue samples used

in the experiments were collected from Kunming Children’s

Hospital, including 5 patients with BA and 5 healthy controls.

The study was approved by the Ethics Committee of Kunming

Children’s Hospital (2025-05-052-K01) and strictly followed the

ethical guidelines of the Declaration of Helsinki. Informed
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consent was obtained from all participants. Total mRNA was

extracted using the TRIzol (Vazyme, Nanjing, China) method,

and the concentration was measured to ensure an A260/280 ratio

between 1.8 and 2.0. A total of 2 µg RNA was reverse transcribed

according to the instructions of the HP All-in-one qRT Master

Mix II RT203 Ver.1 kit (YunGen Biotechnology, Kunming,

China). SYBR Green-based RT-qPCR was subsequently

performed using the Hifair® Ⅲ 1st Strand cDNA Synthesis

SuperMix for qPCR kit. The relevant primer sequences are

shown in Table 1, and GAPDH was used as the internal control

gene for data normalization. The 2–△△CT method was used to

calculate gene expression levels of the key genes (29).

2.11 Statistical analysis

Bioinformatics analyses were performed using the

R programming language (v 4.3.3). Gene expression bar charts

were created with GraphPad Prism 10, and the t-test was used to

compute P-values. A P-value less than 0.05 was considered

statistically significant (****: P < 0.0001; ***: P < 0.001; **:

P < 0.01; *: P < 0.05; ns: P > 0.05).

3 Results

3.1 Screening and enrichment analysis of
candidate genes

The DEGs between the BA and NM groups in the training set

GSE122340 were identified using the criteria of adj. P-value <0.05

and |log2FC| > 1. A total of 3,462 DEGs were detected, with 2,464

genes upregulated and 998 genes downregulated in the BA group

compared to the NM group (Figures 1A,B, Supplementary

Table S2). To identify genes related to epigenetic factors in BA,

the intersection of the 3,462 DEGs and 720 epigenetic factor-

related genes (EFRGs) was analyzed, resulting in 62 candidate

genes (Figure 1C).

Next, GO and KEGG analyses were performed on the 62

candidate genes to gain insight into their biological functions

(P < 0.05). GO analysis revealed 349 biological functions. Of

these, 269 terms were in the biological process category,

primarily enriched in histone modification, cytidine catabolic

process, and cytidine deamination. Thirty-three terms were in

the cellular component category, with enrichment in

chromosomal regions such as the centromeric region, condensed

chromosome, germ cell nucleus, and male germ cell nucleus. The

remaining 47 terms fell under molecular functions, with

significant enrichment in cytidine deaminase activity, histone

binding, deaminase activity, and hydrolase activity acting on

carbon-nitrogen bonds in cyclic amidines (Figures 1D,E,

Supplementary Table S3).

The KEGG pathway analysis identified the top 10 enriched

pathways, including the cell cycle, homologous recombination,

lysine degradation, FoxO signaling pathway, and primary

immunodeficiency pathways (Figures 1F,G, Supplementary Table S4).

Epigenetics involves the regulation of gene expression through

mechanisms like DNA methylation and histone modification,

which do not alter the underlying DNA sequence. In the GO

enrichment analysis, terms related to histone modification and

histone binding directly linked to epigenetic regulation were

identified. Histone modification, as a key form of epigenetic

regulation, can alter chromatin structure and function, ultimately

influencing gene expression. Additionally, the viral life cycle

(HIV-1) pathway, associated with viral RNA replication, was

found to be enriched. Given that viral infections might trigger

immune responses leading to biliary epithelial cell damage and

subsequently BA, these findings suggest that viral factors may

contribute to the onset and progression of BA (30).

3.2 Screening of key genes

To identify the key genes, a PPI network was constructed to

visualize the interactions among proteins encoded by the

candidate genes. Isolated genes without interactions were

removed, while genes with interactions were retained

(Figure 2A). The importance of each gene was assessed using

three different algorithms: MCC, MNC, and Degree. The top 9

genes with the highest scores in each algorithm were selected

(Figures 2B–D). By intersecting the 9 genes identified by each

algorithm, 8 core genes were obtained: TOP2A, CDK1, AURKB,

BUB1, BRCA1, RAD51, AURKA, and UHRF1 (Figure 2E).

The expression levels of these 8 core genes were further

analyzed. As presented in Figures 2F,G, AURKA, BUB1, CDK1,

RAD51, and TOP2A were significantly upregulated in the BA

group in both the training set (GSE122340) and the validation

set (GSE46960) (P < 0.05). These 5 genes were designated as key

genes for further analysis.

3.3 Analysis of key genes localization and
tissue specificity

To investigate the localization and tissue specificity of these key

genes, chromosome localization, subcellular localization, and tissue

specificity were examined. As depicted in Figure 3A, the AURKA

TABLE 1 Primer sequences for key genes.

Primer Sequence

AURKA F TTCCTCCGTCCCTGAGTGT

AURKA R GGTCCATGATGCCTCTAGC

BUB1 F TGCAGAGCTACAAGGGCAAT

BUB1 R CCCAGGCAATGTACAGAGGG

CDK1 F CGTAGCTGGGCTCTGATTGG

CDK1 R CAAACTCACCGCGCTAAAGG

RAD51 F CATCGCCCATGCATCAACAA

RAD51 R TGGCATCTCCCACTCCATCT

TOP2A F CAAGAATCGCCGCAAAAGGA

TOP2A R AGCCACAGCTGAGTCAAAGT

H-GAPDH F ATGGGCAGCCGTTAGGAAAG

H-GAPDH R AGGAAAAGCATCACCCGGAG
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FIGURE 1

Screening and enrichment analysis of candidate genes. (A) Volcano plot displaying the DEGs between the BA group and the NM group. Red plots

represent upregulated genes, while blue plots indicate downregulated genes. (B) Heatmap showing the DEGs between the BA group and the NM

group, where red represents high expression and green represents low expression. (C) Venn diagram illustrating the 62 candidate genes identified.

(D) GO enrichment analysis of candidate genes. In the bubble chart, bubble size represents the number of genes, and color reflects the P-value.

(E) Top 10 biological functions identified by GO. (F,G) KEGG pathway analysis of candidate genes. Top 10 pathways enriched by KEGG. The top 10

pathways enriched by KEGG. DEGs, Differentially expressed genes; BA, biliary atresia; NM, normal; GO, gene ontology; KEGG; kyoto encyclopedia

of genes and genomes.
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gene was located on chromosome 20, BUB1 on chromosome 2,

CDK1 on chromosome 10, RAD51 on chromosome 15, and

TOP2A on chromosome 17. As depicted in Figure 3B, AURKA,

BUB1, and CDK1 were predominantly localized in the nucleus,

while RAD51 and TOP2A were primarily found in the

cytoplasm. As presented in Figure 3C, BUB1 exhibited tissue

specificity in human lymphocytes (721 B lymphoblasts), while

the other four key genes did not show clear tissue/organ

specificity (Supplementary Figure S1).

3.4 Correlation analysis among key genes

To explore the relationships among the key genes, a Friends

analysis was conducted, which showed that CDK1 exhibited the

strongest correlation with the other key genes at the gene function

level (Figure 4A). Subsequently, the correlations among the key

genes were analyzed using Spearman’s correlation (|cor| > 0.3,

P < 0.05), revealing highly significant positive correlations

(P < 0.001) among the five key genes. The strongest correlation was

FIGURE 2

Screening of key genes. (A) PPI network of candidate genes. Each label represents a protein, and each line indicates an interaction between proteins.

(B–D) Top 9 genes with the highest scores identified by three different algorithms: MCC, MNC, and Degree. (E) Identification of 8 core genes. (F,G) Key

genes are significantly upregulated in both the BA group of the training set and the validation set. BA, biliary atresia; NM, normal; PPI, protein-protein

interaction; MCC, maximal clique centrality; MNC, maximum neighborhood component. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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observed between BUB1 and TOP2A, with a correlation coefficient of

0.92 (Figure 4B). Further exploration of genes associated with the key

genes and their functions was conducted using the GeneMANIA

database. Figure 4C illustrates a network in which the five key

genes form the inner circle, while 20 other genes related to their

functions are positioned in the outer circle. These genes interact

with one another through seven distinct interaction types and are

involved in five key biological processes: mitotic nuclear division,

regulation of nuclear division, chromosome separation, mitotic cell

cycle checkpoint, and cell cycle checkpoint. Epigenetic factors such

as DNA methylation and histone modification may regulate the

expression of these genes, influencing the cell cycle and division

processes, which could impair normal bile duct development and

increase the risk of BA development.

3.5 GSEA

To investigate the biological pathways involving the key genes in

BA, GSEA was conducted, with results presented in Figure 5. Both

the Cell Cycle and DNA Replication pathways exhibited significant

positive correlations with the five key genes, suggesting that these

pathways may have been aberrantly activated during the

progression of BA. This activation likely resulted from the

synergistic effects of the key genes, disrupting the normal

development of biliary epithelial cells. Furthermore, epigenetic

modifications of these key genes could have further exacerbated BA

development by regulating the cell cycle and DNA replication

processes. The P53 Signaling Pathway showed a significant positive

correlation with CDK1 and TOP2A, while Primary

Immunodeficiency was positively correlated with RAD51.

Additionally, Ascorbate and Aldarate Metabolism was negatively

correlated with RAD51. These findings imply that in BA,

epigenetic regulation of these correlations may influence biliary

epithelial cell proliferation, immune responses, and metabolic

processes, potentially contributing to the disease’s onset

and progression.

3.6 Construction of the molecular
regulatory network of key genes

To examine the regulatory impact of TFs on key genes,

predictions were made using the CHIPBase database. As

presented in Figure 6A, CEBPB regulates TOP2A, RAD51, and

AURKA; NRF1 regulates RAD51, CDK1, and BUB1; and ELF1

regulates AURKA, RAD51, and CDK1.

Similarly, the regulatory influence of miRNAs on key genes was

assessed using the starBase database. As presented in Figure 6B,

hsa-miR-98-5p may regulate both TOP2A and AURKA.

FIGURE 3

Localization and tissue specificity of key genes (AURKA, BUB1, CDK1, RAD51, and TOP2A). (A) Chromosomal localization of the key genes. (B)

Subcellular localization of the key genes. (C) BUB1 exhibits tissue specificity in human lymphocytes (721 B lymphoblasts).
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3.7 Drug prediction and molecular docking
analysis of key genes

To identify potential drugs for the treatment of BA, drug

prediction targeting the five key genes was performed using the

DGIdb database. Figure 7A presents the top 10 drug-key gene

interaction pairs. The top 3 potential drugs for each key gene,

based on the highest Interaction Scores, were selected. For

AURKA, the potential drugs were MK-5108 (Interaction

Score = 1.80), PF-03814735 (Interaction Score = 1.35), and

Alisertib Sodium (Interaction Score = 0.9). For BUB1, the

potential drugs were GaTx2 (Interaction Score = 6.53),

Lubiprostone (Interaction Score = 3.26), and Diphenylamine-

2-carboxylic acid (Interaction Score = 2.17). For CDK1, the

potential drugs were Aruncin B (Interaction Score = 2.08),

Protuboxepin A (Interaction Score = 1.04), and Dinaciclib

(Interaction Score = 0.43). For RAD51, Amuvatinib (Interaction

Score = 14.91) was identified as the potential drug. For TOP2A,

the potential drugs were Amonafide (Interaction Score = 1.56),

ALDOXORUBICIN (Interaction Score = 1.34), and

CHEMBL596082 (Interaction Score = 0.89).

Molecular docking simulations were then performed for

the 13 potential drugs and their corresponding key genes.

Due to the excessive number of atoms and the complexity of

their structures, two drugs, ALDOXORUBICIN and GaTx2,

could not have their 3D molecular structures generated. As

shown in Figure 7B, the strongest binding effects were

observed between Amuvatinib and RAD51 (−9.9 kcal·mol–1),

Protuboxepin A and CDK1 (−9.7 kcal·mol–1), and

Diphenylamine-2-carboxylic acid and BUB1 (−8.5 kcal·mol–1),

suggesting that these three drugs may have significant

therapeutic potential for BA.

FIGURE 4

Correlation analysis among key genes (AURKA, BUB1, CDK1, RAD51, and TOP2A). (A) Friends analysis indicating that CDK1 exhibits the strongest

correlation with the other key genes at the functional level. (B) Correlation analysis revealing that BUB1 and TOP2A have the highest correlation,

with a coefficient of 0.92. (C) Interaction network of key genes and their predicted associated genes. The inner circle consists of the five key

genes, while the outer circle contains 20 other genes related to the functions of the key genes.
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3.8 Validation by RT-qPCR experiment

To validate the consistency of key gene expression levels

between clinical tissue samples and bioinformatics results,

RT-qPCR experiments were conducted. As presented in

Figure 8, compared to the control group, the expression levels

of AURKA, BUB1, CDK1, RAD51, and TOP2A were

significantly upregulated in the BA group (P < 0.01), consistent

with the bioinformatics analysis. However, no significant

difference was observed in the expression of CDK1 (P > 0.05),

FIGURE 5

GSEA of the key genes. Both the Cell Cycle and DNA replication pathways were significantly positively correlated with the five key genes. (A) AURKA. (B)

BUB1. (C) CDK1. The P53 Signaling Pathway showed a significant positive correlation with CDK1. (D) RAD51. Primary Immunodeficiency exhibited a

significant positive correlation with RAD51. (E) TOP2A. The P53 Signaling Pathway demonstrated a significant positive correlation with TOP2A.

GSEA, gene set enrichment analysis.
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which might be attributed to sample heterogeneity and small

sample size.

4 Discussion

BA is not a singular disease with a single cause, but rather a

phenotype resulting from multiple pathogenic factors and

mechanisms (31). Increasing evidence suggests that patients with

BA exhibit a genetic predisposition to heightened biliary injury

and pathological repair (1). Recent studies have identified various

genetic loci and potential epigenetic factors that may contribute

to its pathogenesis, highlighting the complexity of the disease (6).

The inconsistent presentation of BA in twins, particularly

monozygotic twins, underscores the significant role of epigenetic

FIGURE 6

Construction of the molecular regulatory network of key genes. (A) TOP2A, RAD51, and AURKA are regulated by CEBPB; RAD51, CDK1, and BUB1 are

regulated by NRF1; and AURKA, RAD51, and CDK1 are regulated by ELF1. (B) TOP2A and AURKA are regulated by hsa-miR-98-5p.
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FIGURE 7

Drug prediction and molecular docking analysis of key genes. (A) Top 10 pairs of drug-key gene interactions. (B) Molecular docking and score of key

genes and potential drugs.
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factors in its development (32). This study identified five key genes

—AURKA, BUB1, CDK1, RAD51, and TOP2A—that are linked to

epigenetic factors in BA through comprehensive bioinformatics

analyses. The functions of these genes were explored using GESA

and molecular regulatory networks. Additionally, thirteen

potential therapeutic drugs were screened through drug

prediction, identifying the strongest binding interactions. Finally,

the expression of these key genes was experimentally validated,

offering new perspectives for the research and treatment of BA.

AURKA (Aurora Kinase A) is a protein kinase critical for cell

mitosis, regulating various aspects of cell division, including

centrosome maturation and spindle assembly (33, 34).

Dysregulated expression or activity of AURKA is strongly

associated with the development of various cancers (35, 36).

AURKA is also significantly involved in epigenetic regulation and

liver diseases. In cholangiocarcinoma, the TF FOSL1 modulates

AURKA expression, influencing cell proliferation and tumor

growth (37). Furthermore, AURKA is implicated in cell cycle

regulation and epigenetic modifications (38), illustrating the

complex regulatory roles of AURKA in liver disease development

(39). The upregulation of AURKA can drive the abnormal

proliferation of biliary epithelial cells, potentially disrupting bile

duct development and function (40). Consequently, AURKA

represents a promising target for therapeutic intervention, as

modulating its activity could restore normal cell cycle regulation

and mitigate the pathological processes underlying BA.

BUB1 (Budding uninhibited by benzimidazoles 1) is integral in

monitoring the connection between spindle microtubules and

chromosome kinetochores during mitosis (41, 42). Elevated

BUB1 levels may serve as a compensatory response to errors in

cell division or genomic instability (43). Previous studies have

linked high BUB1 expression to aneuploidy (44), a condition that

exacerbates the development of various diseases, including

human sarcoma (45). Additionally, BUB1 expression in human

lymphocytes suggests its involvement in immune responses (46),

which may play a significant role in BA, where immune-

mediated damage to biliary epithelial cells contributes to disease

progression (47). Targeting BUB1 could provide therapeutic

benefits by addressing both cell cycle dysregulation and immune-

related factors in BA.

CDK1 (Cyclin-dependent kinase 1) is a key regulatory factor in

the cell cycle (48), closely related to the transition of cells from the

G2 phase to the M phase (49). Dysregulation of CDK1 may lead to

uncontrolled cell proliferation (50), which subsequently impairs

normal cell differentiation and function. Elevated levels of CDK1

typically indicate abnormal activation of cell cycle regulatory

pathways (51). This study found that CDK1 is significantly

upregulated in BA liver tissue through transcriptome analysis,

suggesting that it may accelerate disease progression by driving

cholangiocyte cell cycle dysregulation. Notably, CDK1 is also

involved in multiple signaling pathways related to epigenetic

regulation, including pathways such as the Wnt/β-catenin

signaling cascades. Its activity may be influenced by epigenetic

modifications, such as histone acetylation and methylation (52),

which further affect gene expression and cell function. However,

RT-qPCR results showed no significant differences in CDK1

expression between BA and control samples. This discrepancy

may be due to heterogeneity among RT-qPCR samples, including

differences in sample source and quality. Additionally, the small

sample size may have limited the detection of significant

differences. Therefore, future research should explore the

molecular interaction mechanisms between CDK1 and epigenetic

factors in BA to better understand the epigenetic mechanisms

underlying cell cycle dysre.

RAD51, a recombinase essential for homologous

recombination, is a core factor in the homologous recombination

repair of DNA. It is highly expressed in rapidly proliferating

tissues such as the testes, involved in germ cell development, and

the colon, responsible for intestinal epithelial renewal, consistent

with its role in maintaining genomic stability. RAD51 plays a key

role in repairing DNA double-strand breaks and maintaining

genomic stability (53, 54). Notably, RAD51 can also influence

the activity of DNA methyltransferase DNMT1 by regulating the

ubiquitin ligase UHRF1 through two distinct mechanisms,

FIGURE 8

Expression levels of AURKA, BUB1, CDK1, RAD51, and TOP2A in the BA group and the control group. (A) AURKA. (B) BUB1. (C) CDK1. (D) RAD51.

(E) TOP2A. BA, biliary atresia. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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thereby participating in the maintenance of genomic DNA

methylation (55). Moreover, in cancer cell lines, RAD51 is

associated with the regulation of the autophagy pathway and

works together with E-box proteins such as USF1, USF2, and

MITF to regulate the expression of autophagy-related genes (56).

Autophagy itself is crucial in cellular stress responses and cell

death processes (57). In this study, the upregulation of RAD51 in

BA suggests that it may indirectly affect the differentiation or

function of cholangiocytes by influencing DNA damage repair,

modulating the autophagy pathway, and maintaining DNA

methylation. Therefore, further research on the specific role of

RAD51 in BA will help reveal the molecular mechanisms of this

disease and provide a theoretical basis for developing new

prevention and treatment strategies.

TOP2A is highly expressed in 721_B lymphoblasts (leukemia

cells) and in the testis. It encodes DNA topoisomerase IIα, which

is essential for DNA replication and chromosome segregation.

Although its overexpression is associated with poor prognosis in

various cancers (58–61), the expression of TOP2A is tightly

regulated by epigenetic mechanisms, particularly DNA

methylation (62). High methylation of its promoter typically

suppresses its expression, while low methylation promotes its

expression. We found that TOP2A is upregulated in BA,

suggesting that there is likely low methylation of the promoter.

This finding is consistent with previous observations that low

DNA methylation in zebrafish plays a key role in biliary defects

(63, 64). Therefore, this epigenetic dysregulation disrupts the

tissue-specific expression of TOP2A, leading to its aberrant

activation in cholangiocytes and resulting in genomic instability

and abnormal cell proliferation in BA cholangiocytes.

GSEA analysis indicates that the pathogenesis of BA is closely

linked to the abnormal activation of the cell cycle and DNA

replication pathways. Abnormal regulation of the cell cycle

pathway strongly correlates with the five key genes, including

CDK1, suggesting that these genes work synergistically to

promote cell cycle dysregulation. Dysregulation of cell cycle

control has been shown to cause excessive proliferation or

prevent differentiation in cholangiocytes, leading to disruption

of the normal bile duct structure (65). As a key regulator of the

cell cycle, CDK1 overexpression accelerates the G2/M phase

transition by phosphorylating downstream target proteins, such

as retinoblastoma (Rb) protein, which drives uncontrolled

cholangiocyte proliferation (66). Moreover, epigenetic

modifications, including long non-coding RNAs, may

exacerbate cell cycle dysregulation by modulating CDK1

expression (67). This abnormal proliferative state contributes to

bile duct fibrosis, which is consistent with the progressive bile

duct injury and liver fibrosis seen in patients with BA (65). The

significant activation of the DNA replication pathway suggests

DNA replication stress and cholangiocyte damage, pointing to

potential genomic instability in BA. DNA replication stress can

result in replication fork stalling and DNA double-strand breaks

(68). This activates the ATR/CHK1 signaling pathway, which

may induce apoptosis or cellular senescence (69). The positive

correlation between RAD51 and primary immunodeficiency

observed in this study may reflect a compensatory enhancement

of DNA repair mechanisms in response to sustained replication

stress. However, when DNA repair capacity is overwhelmed,

accumulated DNA damage may trigger apoptosis through the

p53 pathway (70). The negative correlation between the

ascorbic acid metabolism pathway and RAD51 suggests that

oxidative stress may exacerbate DNA damage. An imbalance in

ascorbic acid, a key antioxidant, could reduce cellular defenses

against oxidative injury (71). The interaction between these

pathways and disease progression indicates that abnormalities

in the cell cycle and DNA replication create a vicious cycle.

Specifically, an accelerated cell cycle increases the demand for

DNA replication, resulting in replication stress (72), while DNA

damage can suppress the cell cycle through CDK inhibitors like

p21 (73). This imbalance likely explains the simultaneous

occurrence of abnormal proliferation and increased apoptosis in

cholangiocytes in BA (74). Furthermore, epigenetic

modifications, such as irregularities in DNA methyltransferases,

may amplify the pathological effects of these pathways by

regulating multiple key genes at once (75). In summary, the

results from GSEA emphasize the critical role of the cell cycle

and DNA replication pathways in the pathogenesis of BA.

Disruptions in these pathways may drive dysregulated

cholangiocyte proliferation, genomic instability, and metabolic

disorders through an epigenetic regulatory network, ultimately

leading to the progressive destruction of the bile ducts.

The constructed molecular regulatory network reveals that TFs

like CEBPB and miRNAs such as hsa-miR-98-5p regulate key

genes. CEBPB is a multifunctional TF involved in regulating

inflammation, cell growth, and differentiation (76). CEBPB may

serve as a critical link between inflammatory responses and

abnormal cell proliferation (76). The presented study identified

CEBPB as a regulator of RAD51 and AURKA, suggesting its

involvement in the pathological processes of BA by influencing

cell proliferation and genomic stability. miR-98-5p inhibits

hepatic stellate cell (HSC) activation by directly targeting key

factors in the TGF-β signaling pathway, thereby slowing liver

fibrosis progression (77). In the present study, hsa-miR-98-5p

targeted both TOP2A and AURKA, indicating its potential to

protect against BA by inhibiting fibrosis and maintaining

genomic stability. However, further experiments are needed to

validate the specific regulatory mechanisms of TFs like CEBPB

and miRNAs such as hsa-miR-98-5p in the context of BA.

Identifying therapeutic drugs that target key genes associated

with BA marks a significant advancement in developing effective

treatment strategies. Among the predicted drugs interacting with

key genes, Amuvatinib stands out for its strong binding affinity

to RAD51, with a docking score of −9.9 kcal/mol. Amuvatinib

selectively inhibits receptor tyrosine kinases and has been

primarily studied for its efficacy against various cancers, where

it impedes tumor growth and induces cancer cell apoptosis

(78). Studies suggest that Amuvatinib can reduce tumor cell

drug resistance by inhibiting RAD51 protein expression (79,

80). Although the role of RAD51 in BA remains unexplored, it

may contribute to cholangiocyte function by regulating DNA

repair. Additionally, Protuboxepin A, which targets CDK1,

exhibits a docking score of −9.7 kcal/mol. CDK1 is a key
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regulator of the cell cycle, and its dysfunction is associated with

various cancers (81). Protuboxepin A binds directly to α,β-

tubulin, stabilizing tubulin polymerization and disrupting

microtubule dynamics. This disruption leads to chromosome

misalignment and metaphase arrest, ultimately causing

apoptosis in cancer cells (81). While the mechanisms of action

of Protuboxepin A and CDK1 in BA have not been reported,

Protuboxepin A presents a theoretical foundation for potential

therapeutic intervention. These findings are crucial not only

for identifying individual drug-gene interactions but also for

exploring the possibility of combination therapies that target

multiple pathways in BA’s pathogenesis. However, the

aforementioned drugs are currently in the experimental

research stage as anticancer agents, and there is still a lack of

clinical data supporting their safety, optimal dosage, and

potential toxicity in the pediatric population, especially in BA

infants. In light of this, future research should prioritize

conducting in vivo experiments using a BA mouse model

induced by rhesus monkey rotavirus. These studies should

systematically evaluate the efficacy and safety of the drugs,

while optimizing dosing strategies based on the

pharmacokinetic characteristics of neonates.

However, this study has several limitations. First, the analysis

results depend on data quality, algorithm accuracy, and

methodological assumptions. These factors may lead to data

noise and difficulties in interpretation due to algorithm

complexity; they can also cause issues such as false positives and

false negatives. Moreover, the imbalance between the samples of

the disease group and the control group may increase the risk of

false positives and false negatives. Additionally, although

validation was performed through RT-qPCR, the small sample

size and differences in experimental methods limited the

statistical power to significantly detect the expression pattern of

CDK1. To address these issues, future plans include expanding

the sample sizes of both the disease group and the control group,

as well as optimizing the sample selection strategy to improve

the stability and reliability of the research findings. At the same

time, we plan to further validate the research findings through

experimental techniques such as immunohistochemistry and

Western blot. These will be combined with animal models and

functional experiments like overexpression and deletion to

enhance the credibility of the research conclusions.

5 Conclusion

This study identified five key genes (AURKA, BUB1, CDK1,

RAD51, TOP2A) related to epigenetic regulation in BA through

transcriptomic analysis, whose abnormal expression may

promote the progression of BA by interfering with the cell cycle

and DNA repair pathways. These genes may serve as potential

therapeutic targets for BA, and small molecule inhibitors or

antibody drugs targeting them could be developed in the future,

which could be further explored for their therapeutic potential.

Additionally, this study discovered potential drugs such as

Amuvatinib and Protuboxepin A, which may exert therapeutic

effects by targeting key genes, providing new hope for the

treatment of BA. Future research will focus on investigating the

specific regulatory mechanisms of epigenetic modifications (such

as DNA hypomethylation) on key genes in animal models, and

further experiments will validate the feasibility of these genes as

therapeutic targets.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/Supplementary

Material.

Ethics statement

The studies involving humans were approved by The Ethics

Committee of Kunming Children’s Hospital, Kunming, China.

The studies were conducted in accordance with the local

legislation and institutional requirements. Written informed

consent for participation in this study was provided by the

participants’ legal guardians/next of kin.

Author contributions

ZN: Conceptualization, Methodology, Writing – review &

editing, Data curation, Writing – original draft, Software, Formal

analysis, Visualization. HY: Formal analysis, Visualization,

Writing – original draft, Methodology, Software, Data curation,

Investigation. LC: Data curation, Methodology, Formal analysis,

Writing – original draft, Investigation. HX: Writing – original

draft, Conceptualization, Data curation, Investigation. BH:

Supervision, Investigation, Writing – review & editing.

CL: Investigation, Conceptualization, Writing – original draft.

XX: Investigation, Writing – original draft, Data curation. QB:

Resources, Funding acquisition, Project administration,

Supervision, Conceptualization, Validation, Writing – review

& editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This work was

supported by the Scientific Research Fund Project of the Yunnan

Provincial Department of Education (2024J0381).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Na et al. 10.3389/fped.2025.1624671

Frontiers in Pediatrics 14 frontiersin.org

https://doi.org/10.3389/fped.2025.1624671
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fped.2025.

1624671/full#supplementary-material

References

1. Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH, Doo E, et al. Biliary
atresia: clinical and research challenges for the twenty-first century. Hepatology.
(2018) 68:1163–73. doi: 10.1002/hep.29905

2. Malik A, Thanekar U, Mourya R, Shivakumar P. Recent developments in etiology
and disease modeling of biliary atresia: a narrative review. Dig Med Res. (2020) 3:59.
doi: 10.21037/dmr-20-97

3. Asai A, Miethke A, Bezerra JA. Pathogenesis of biliary atresia: defining biology to
understand clinical phenotypes. Nat Rev Gastroenterol Hepatol. (2015) 12:342–52.
doi: 10.1038/nrgastro.2015.74

4. Madadi-Sanjani O, Froemmel S, Falk CS, Vieten G, Petersen C, Kuebler JF, et al.
Growth factors assessed during Kasai procedure in liver and Serum are not predictive
for the postoperative liver deterioration in infants with biliary atresia. J Clin Med.
(2021) 10:1978. doi: 10.3390/jcm10091978

5. Lin Q, Tam PK, Tang CS. Genetics of biliary atresia: approaches, pathological
insights and challenges. Semin Pediatr Surg. (2024) 33:151477. doi: 10.1016/j.
sempedsurg.2025.151477

6. Girard M, Panasyuk G. Genetics in biliary atresia. Curr Opin Gastroenterol. (2019)
35:73–81. doi: 10.1097/MOG.0000000000000509

7. Miller PN, Baskaran S, Nijagal A. Immunology of biliary atresia. Semin Pediatr
Surg. (2024) 33:151474. doi: 10.1016/j.sempedsurg.2025.151474

8. Quelhas P, Cerski C, Dos Santos JL. Update on etiology and pathogenesis of biliary
atresia. Curr Pediatr Rev. (2022) 19:48–67. doi: 10.2174/1573396318666220510130259

9. Bogan SN, Yi SV. Potential role of DNA methylation as a driver of plastic
responses to the environment across cells, organisms, and populations. Genome Biol
Evol. (2024) 16:evae022. doi: 10.1093/gbe/evae022

10. Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental
health. Front Med. (2024) 18:571–96. doi: 10.1007/s11684-023-1038-2

11. Sun L, Yue Z, Wang L. Research on the function of epigenetic regulation in the
inflammation of non-alcoholic fatty liver disease. Life Med. (2024) 3:lnae030. doi: 10.
1093/lifemedi/lnae030

12. Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ.
Post-translational modifications of histone and non-histone proteins in epigenetic
regulation and translational applications in alcohol-associated liver disease:
challenges and research opportunities. Pharmacol Ther. (2023) 251:108547. doi: 10.
1016/j.pharmthera.2023.108547

13. Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet.
(2010) 70:87–99. doi: 10.1016/B978-0-12-380866-0.60004-6

14. Ortiz-Perez A, Donnelly B, Temple H, Tiao G, Bansal R, Mohanty SK. Innate
immunity and pathogenesis of biliary atresia. Front Immunol. (2020) 11:329.
doi: 10.3389/fimmu.2020.00329

15. Luo Z, Shivakumar P, Mourya R, Gutta S, Bezerra JA. Gene expression
signatures associated with survival times of pediatric patients with biliary atresia
identify potential therapeutic agents. Gastroenterology. (2019) 157:1138–1152.e14.
doi: 10.1053/j.gastro.2019.06.017

16. Yang L, Shivakumar P, Kinder J, Way SS, Donnelly B, Mourya R, et al.
Regulation of bile duct epithelial injury by hepatic CD71+ erythroid cells. JCI
Insight. (2020) 5:e135751. doi: 10.1172/jci.insight.135751

17. Bessho K, Mourya R, Shivakumar P, Walters S, Magee JC, Rao M, et al. Gene
expression signature for biliary atresia and a role for interleukin-8 in pathogenesis
of experimental disease. Hepatology. (2014) 60:211–23. doi: 10.1002/hep.27045

18. Cheng MW, Mitra M, Coller HA. Pan-cancer landscape of epigenetic factor
expression predicts tumor outcome. Commun Biol. (2023) 6:1138. doi: 10.1038/
s42003-023-05459-w

19. Suo Z, Yang J, Zhou B, Qu Y, Xu W, Li M, et al. Whole-transcriptome
sequencing identifies neuroinflammation, metabolism and blood-brain barrier

related processes in the hippocampus of aged mice during perioperative period.
CNS Neurosci Ther. (2022) 28:1576–95. doi: 10.1111/cns.13901

20. Wang J, Wu N, Feng X, Liang Y, Huang M, Li W, et al. PROS1 Shapes the
immune-suppressive tumor microenvironment and predicts poor prognosis in
glioma. Front Immunol. (2023) 13:1052692. doi: 10.3389/fimmu.2022.1052692

21. Gu Z. Complex heatmap visualization. Imeta. (2022) 1:e43. doi: 10.1002/imt2.43

22. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw. (2010) 33:1–22.

23. Wu Y, Fang Y, Li Y, Au R, Cheng C, Li W, et al. A network pharmacology
approach and experimental validation to investigate the anticancer mechanism of
Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through
induction of apoptosis via JNK/p38 MAPK signaling pathway. J Ethnopharmacol.
(2024) 31:117323. doi: 10.1016/j.jep.2023.117323

24. Liu Y, Zhao Y, Zhang S, Rong S, He S, Hua L, et al. Developing a prognosis and
chemotherapy evaluating model for colon adenocarcinoma based on mitotic
catastrophe-related genes. Sci Rep. (2024) 14:1655. doi: 10.1038/s41598-024-51918-7

25. Yang L, Yu X, Liu M, Cao Y. A comprehensive analysis of biomarkers associated
with synovitis and chondrocyte apoptosis in osteoarthritis. Front Immunol. (2023)
14:1149686. doi: 10.3389/fimmu.2023.1149686

26. Tao P, Chen X, Xu L, Chen J, Nie Q, Xu M, et al. LIMD2 Is the signature of cell
aging-immune/inflammation in acute myocardial infarction. Curr Med Chem. (2024)
31:2400–13. doi: 10.2174/0109298673274563231031044134

27. Zhang X, Chao P, Zhang L, Xu L, Cui X, Wang S, et al. Single-cell RNA and
transcriptome sequencing profiles identify immune-associated key genes in the
development of diabetic kidney disease. Front Immunol. (2023) 14:1030198. doi: 10.
3389/fimmu.2023.1030198

28. Robles-Jimenez LE, Aranda-Aguirre E, Castelan-Ortega OA, Shettino-Bermudez
BS, Ortiz-Salinas R, Miranda M, et al. Worldwide traceability of antibiotic residues
from livestock in wastewater and soil: a systematic review. Animals (Basel). (2021)
12:60. doi: 10.3390/ani12010060

29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-
time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. (2001)
25(4):402–8. doi: 10.1006/meth.2001.1262

30. Mohamed SOO, Elhassan ABE, Elkhidir IHE, Ali AHM, Elbathani MEH,
Abdallah OOA, et al. Detection of cytomegalovirus infection in infants with biliary
atresia: a meta-analysis. Avicenna J Med. (2021) 12:3–9. doi: 10.1055/s-0041-1739236

31. Davenport M, Muntean A, Hadzic N. Biliary atresia: clinical phenotypes and
aetiological heterogeneity. J Clin Med. (2021) 10:5675. doi: 10.3390/jcm10235675

32. Xu X, Zhan J. Biliary atresia in twins: a systematic review and meta-analysis.
Pediatr Surg Int. (2020) 36:953–8. doi: 10.1007/s00383-020-04690-4

33. Durlacher CT, Li ZL, Chen XW, He ZX, Zhou SF. An update on the
pharmacokinetics and pharmacodynamics of alisertib, a selective Aurora kinase
A inhibitor. Clin Exp Pharmacol Physiol. (2016) 43:585–601. doi: 10.1111/1440-
1681.12571

34. de Souza VB, Kawano DF. Structural basis for the design of allosteric inhibitors
of the Aurora kinase a enzyme in the cancer chemotherapy. Biochim Biophys Acta Gen
Subj. (2020) 1864:129448. doi: 10.1016/j.bbagen.2019.129448

35. Ice RJ, McLaughlin SL, Livengood RH, Culp MV, Eddy ER, Ivanov AV, et al.
NEDD9 Depletion destabilizes Aurora A kinase and heightens the efficacy of
Aurora A inhibitors: implications for treatment of metastatic solid tumors. Cancer
Res. (2013) 73:3168–80. doi: 10.1158/0008-5472.CAN-12-4008

36. Umene K, Yanokura M, Banno K, Irie H, Adachi M, Iida M, et al.
Aurora kinase A has a significant role as a therapeutic target and clinical
biomarker in endometrial cancer. Int J Oncol. (2015) 46:1498–506. doi: 10.
3892/ijo.2015.2842

Na et al. 10.3389/fped.2025.1624671

Frontiers in Pediatrics 15 frontiersin.org

https://www.frontiersin.org/articles/10.3389/fped.2025.1624671/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fped.2025.1624671/full#supplementary-material
https://doi.org/10.1002/hep.29905
https://doi.org/10.21037/dmr-20-97
https://doi.org/10.1038/nrgastro.2015.74
https://doi.org/10.3390/jcm10091978
https://doi.org/10.1016/j.sempedsurg.2025.151477
https://doi.org/10.1016/j.sempedsurg.2025.151477
https://doi.org/10.1097/MOG.0000000000000509
https://doi.org/10.1016/j.sempedsurg.2025.151474
https://doi.org/10.2174/1573396318666220510130259
https://doi.org/10.1093/gbe/evae022
https://doi.org/10.1007/s11684-023-1038-2
https://doi.org/10.1093/lifemedi/lnae030
https://doi.org/10.1093/lifemedi/lnae030
https://doi.org/10.1016/j.pharmthera.2023.108547
https://doi.org/10.1016/j.pharmthera.2023.108547
https://doi.org/10.1016/B978-0-12-380866-0.60004-6
https://doi.org/10.3389/fimmu.2020.00329
https://doi.org/10.1053/j.gastro.2019.06.017
https://doi.org/10.1172/jci.insight.135751
https://doi.org/10.1002/hep.27045
https://doi.org/10.1038/s42003-023-05459-w
https://doi.org/10.1038/s42003-023-05459-w
https://doi.org/10.1111/cns.13901
https://doi.org/10.3389/fimmu.2022.1052692
https://doi.org/10.1002/imt2.43
https://doi.org/10.1016/j.jep.2023.117323
https://doi.org/10.1038/s41598-024-51918-7
https://doi.org/10.3389/fimmu.2023.1149686
https://doi.org/10.2174/0109298673274563231031044134
https://doi.org/10.3389/fimmu.2023.1030198
https://doi.org/10.3389/fimmu.2023.1030198
https://doi.org/10.3390/ani12010060
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1055/s-0041-1739236
https://doi.org/10.3390/jcm10235675
https://doi.org/10.1007/s00383-020-04690-4
https://doi.org/10.1111/1440-1681.12571
https://doi.org/10.1111/1440-1681.12571
https://doi.org/10.1016/j.bbagen.2019.129448
https://doi.org/10.1158/0008-5472.CAN-12-4008
https://doi.org/10.3892/ijo.2015.2842
https://doi.org/10.3892/ijo.2015.2842
https://doi.org/10.3389/fped.2025.1624671
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


37. Vallejo A, Erice O, Entrialgo-Cadierno R, Feliu I, Guruceaga E, Perugorria MJ,
et al. FOSL1 Promotes cholangiocarcinoma via transcriptional effectors that could be
therapeutically targeted. J Hepatol. (2021) 75:363–76. doi: 10.1016/j.jhep.2021.03.028

38. Long S, Zhang XF. AURKA Is a prognostic potential therapeutic target in skin
cutaneous melanoma modulating the tumor microenvironment, apoptosis, and
hypoxia. J Cancer Res Clin Oncol. (2023) 149:3089–107. doi: 10.1007/s00432-022-
04164-1

39. Liu Z, Wu B, Liu X, Wu X, Du J, Xia G, et al. CD73/NT5E-mediated
Ubiquitination of AURKA regulates alcohol-related liver fibrosis via modulating
hepatic stellate cell senescence. Int J Biol Sci. (2023) 19:950–66. doi: 10.7150/ijbs.80461

40. Yang Y, Wang J, Wan J, Cheng Q, Cheng Z, Zhou X, et al. PTEN Deficiency
induces an extrahepatic cholangitis-cholangiocarcinoma continuum via aurora
kinase A in mice. J Hepatol. (2024) 81:120–34. doi: 10.1016/j.jhep.2024.02.018

41. Chen RH. Phosphorylation and activation of Bub1 on unattached chromosomes
facilitate the spindle checkpoint. EMBO J. (2004) 23:3113–21. doi: 10.1038/sj.emboj.
7600308

42. Taylor SS, Hussein D, Wang Y, Elderkin S, Morrow CJ. Kinetochore localisation
and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are
differentially regulated by spindle events in human cells. J Cell Sci. (2001)
114:4385–95. doi: 10.1242/jcs.114.24.4385

43. Zhang H, Li Y, Lu H. Correlation of BUB1 and BUB1B with the development
and prognosis of endometrial cancer. Sci Rep. (2024) 14:17084. doi: 10.1038/s41598-
024-67528-2

44. Hoang D, Sue GR, Xu F, Li P, Narayan D. Absence of aneuploidy and
gastrointestinal tumours in a man with a chromosomal 2q13 deletion and BUB1
monoallelic deficiency. BMJ Case Rep. (2013) 2013:bcr2013008684. doi: 10.1136/bcr-
2013-008684

45. Long Z, Wu T, Tian Q, Carlson LA, Wang W, Wu G. Expression and prognosis
analyses of BUB1, BUB1B and BUB3 in human sarcoma. Aging (Albany NY). (2021)
13:12395–409. doi: 10.18632/aging.202944

46. Wang S, Liu X, Yang M, Yuan D, Ye K, Qu X, et al. BUBs are new biomarkers of
promoting tumorigenesis and affecting prognosis in breast cancer. Dis Markers. (2022)
2022:2760432. doi: 10.1155/2022/2760432

47. Muraji T, Suskind DL, Irie N. Biliary atresia: a new immunological insight into
etiopathogenesis. Expert Rev Gastroenterol Hepatol. (2009) 3:599–606. doi: 10.1586/
egh.09.61

48. Jin M, Li J, Hu R, Xu B, Huang G, Huang W, et al. Cyclin A2/cyclin-dependent
kinase 1-dependent phosphorylation of Top2a is required for S phase entry during
retinal development in zebrafish. J Genet Genomics. (2021) 48:63–74. doi: 10.1016/j.
jgg.2021.01.001

49. Winters ZE. P53 pathways involving G2 checkpoint regulators and the role of
their subcellular localisation. J R Coll Surg Edinb. (2002) 47:591–8.

50. Zhong Y, Yang J, Xu WW, Wang Y, Zheng CC, Li B, et al. KCTD12 Promotes
tumorigenesis by facilitating CDC25B/CDK1/Aurora A-dependent G2/M transition.
Oncogene. (2017) 36:6177–89. doi: 10.1038/onc.2017.287

51. Zhao H, Li S, Wang G, Zhao W, Zhang D, Wang F, et al. Study of the
mechanism by which dinaciclib induces apoptosis and cell cycle arrest of
lymphoma Raji cells through a CDK1-involved pathway. Cancer Med. (2019)
8:4348–58. doi: 10.1002/cam4.2324

52. Michowski W, Chick JM, Chu C, Kolodziejczyk A, Wang Y, Suski JM, et al.
Cdk1 Controls global epigenetic landscape in embryonic stem cells. Mol Cell. (2020)
78:459–476.e13. doi: 10.1016/j.molcel.2020.03.010

53. Gachechiladze M, Škarda J, Soltermann A, Joerger M. RAD51 as a potential
surrogate marker for DNA repair capacity in solid malignancies. Int J Cancer.
(2017) 141(7):1286–94. doi: 10.1002/ijc.30764

54. Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1
in homologous recombination and DNA replication. DNA Repair (Amst). (2024)
134:103613. doi: 10.1016/j.dnarep.2023.103613

55. Liu G, Huang K, Liu S, Xie Y, Huang J, Liang T, et al. RAD51 Plays critical roles
in DNMT1-mediated maintenance methylation of genomic DNA by dually regulating
the ubiquitin ligase UHRF1. Proc Natl Acad Sci U S A. (2024) 121(50):e2410119121.
doi: 10.1073/pnas.2410119121

56. Kang K, Choi Y, Moon H, You C, Seo M, Kwon G, et al. Epigenomic
analysis of RAD51 ChIP-seq data reveals cis-regulatory elements associated with
autophagy in cancer cell lines. Cancers (Basel). (2021) 13:2547. doi: 10.3390/
cancers13112547

57. Linder B, Kögel D. Autophagy in cancer cell death. Biology (Basel). (2019) 8:82.
doi: 10.3390/biology8040082

58. Zhou T, Niu Y, Li Y. Advances in research on malignant tumors and targeted
agents for TOP2A (review). Mol Med Rep. (2025) 31:50. doi: 10.3892/mmr.2024.
13415

59. Liu G, Lin W, Zhang K, Chen K, Niu G, Zhu Y, et al. Elucidating the prognostic
and therapeutic significance of TOP2A in various malignancies. Cancer Genet. (2024)
288-289:68–81. doi: 10.1016/j.cancergen.2024.10.005

60. Wang K, Jiang X, Jiang Y, Liu J, Du Y, Zhang Z, et al.
EZH2-H3K27me3-mediated Silencing of mir-139-5p inhibits cellular senescence in
hepatocellular carcinoma by activating TOP2A. J Exp Clin Cancer Res. (2023)
42:320. doi: 10.1186/s13046-023-02855-2

61. Zhang J, Yang T, Wang K, Pan J, Qiu J, Zheng S, et al. Multi-omics analysis
reveals the panoramic picture of TOP2A in pan-cancer. Sci Rep. (2025) 15:6046.
doi: 10.1038/s41598-025-85929-9

62. Feng J, Wei X, Liu Y, Zhang Y, Li G, Xu Y, et al. Identification of topoisomerase
2A as a novel bone metastasis-related gene in liver hepatocellular carcinoma. Aging
(Albany NY). (2023) 15:13010–40. doi: 10.18632/aging.205216

63. Matthews RP, Eauclaire SF, Mugnier M, Lorent K, Cui S, Ross MM, et al. DNA
Hypomethylation causes bile duct defects in zebrafish and is a distinguishing feature of
infantile biliary atresia. Hepatology. (2011) 53:905–14. doi: 10.1002/hep.24106

64. Cofer ZC, Cui S, EauClaire SF, Kim C, Tobias JW, Hakonarson H, et al.
Methylation microarray studies highlight PDGFA expression as a factor in biliary
atresia. PLoS One. (2016) 11:e0151521. doi: 10.1371/journal.pone.0151521

65. Trussoni CE, O’Hara SP, LaRusso NF. Cellular senescence in the
cholangiopathies: a driver of immunopathology and a novel therapeutic target.
Semin Immunopathol. (2022) 44:527–44. doi: 10.1007/s00281-022-00909-9

66. Wu Q, Qin SK, Teng FM, Chen CJ, Wang R. Lobaplatin arrests cell cycle
progression in human hepatocellular carcinoma cells. J Hematol Oncol. (2010) 3:43.
doi: 10.1186/1756-8722-3-43

67. Luzón-Toro B, Fernández RM, Martos-Martínez JM, Rubio-Manzanares-
Dorado M, Antiñolo G, Borrego S. LncRNA LUCAT1 as a novel prognostic
biomarker for patients with papillary thyroid cancer. Sci Rep. (2019) 9:14374.
doi: 10.1038/s41598-019-50913-7

68. Singh B, Roy Chowdhury S, Mansuri MS, Pillai SJ, Mehrotra S. The BRCA2 and
CDKN1A-interacting protein (BCCIP) stabilizes stalled replication forks and prevents
degradation of nascent DNA. FEBS Lett. (2022) 596:2041–55. doi: 10.1002/1873-3468.
14406

69. Massey AJ. Inhibition of ATR-dependent feedback activation of Chk1 sensitises
cancer cells to Chk1 inhibitor monotherapy. Cancer Lett. (2016) 383:41–52. doi: 10.
1016/j.canlet.2016.09.024

70. Wu M, Wang X, McGregor N, Pienta KJ, Zhang J. Dynamic regulation of Rad51
by E2F1 and p53 in prostate cancer cells upon drug-induced DNA damage under
hypoxia. Mol Pharmacol. (2014) 85:866–76. doi: 10.1124/mol.113.090688

71. Covarrubias-Pinto A, Acuña AI, Beltrán FA, Torres-Díaz L, Castro MA. Old
things new view: ascorbic acid protects the brain in neurodegenerative disorders. Int
J Mol Sci. (2015) 16:28194–217. doi: 10.3390/ijms161226095

72. Lezaja A, Altmeyer M. Inherited DNA lesions determine G1 duration in the next
cell cycle. Cell Cycle. (2018) 17:24–32. doi: 10.1080/15384101.2017.1383578

73. Chkhotua AB, Schelzig H, Wiegand P, Grosse S, Reis S, Art M, et al. Influence of
ischaemia/reperfusion and LFA-1 inhibition on telomere lengths and CDKI genes in
ex vivo haemoperfusion of primate kidneys. Transpl Int. (2005) 17:692–8. doi: 10.
1007/s00147-004-0766-8

74. Chusilp S, Lee C, Li B, Lee D, Yamoto M, Ganji N, et al. A novel model of
injured liver ductal organoids to investigate cholangiocyte apoptosis with relevance
to biliary atresia. Pediatr Surg Int. (2020) 36:1471–9. doi: 10.1007/s00383-020-
04765-2

75. Liang Z, Liu W, Cao M, Cui J, Lan J, Ding Y, et al. Epigenetic regulation-
mediated disorders in dopamine transporter endocytosis: a novel mechanism for
the pathogenesis of Parkinson’s disease. Theranostics. (2025) 15:2250–78. doi: 10.
7150/thno.107436

76. Petrella BL, Armstrong DA, Vincenti MP. CCAAT-enhancer-binding protein
beta activation of MMP-1 gene expression in SW1353 cells: independent roles of
extracellular signal-regulated and p90/ribosomal S6 kinases. J Cell Physiol. (2011)
226:3349–54. doi: 10.1002/jcp.22693

77. Wang Q, Wei S, Zhou H, Li L, Zhou S, Shi C, et al. MicroRNA-98 inhibits
hepatic stellate cell activation and attenuates liver fibrosis by regulating HLF
expression. Front Cell Dev Biol. (2020) 8:513. doi: 10.3389/fcell.2020.00513

78. Huynh TTX, Pham TX, Lee GH, Lee JB, Lee SG, Tark D, et al. Amuvatinib
blocks SARS-CoV-2 infection at the entry step of the viral life cycle. Microbiol
Spectr. (2023) 11:e0510522. doi: 10.1128/spectrum.05105-22

79. Zhao H, Luoto KR, Meng AX, Bristow RG. The receptor tyrosine kinase
inhibitor amuvatinib (MP470) sensitizes tumor cells to radio- and chemo-therapies
in part by inhibiting homologous recombination. Radiother Oncol. (2011)
101:59–65. doi: 10.1016/j.radonc.2011.08.013

80. Tibes R, Fine G, Choy G, Redkar S, Taverna P, Oganesian A, et al. A phase I,
first-in-human dose-escalation study of amuvatinib, a multi-targeted tyrosine kinase
inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol.
(2013) 71:463–71. doi: 10.1007/s00280-012-2019-3

81. Asami Y, Jang JH, Soung NK, He L, Moon DO, Kim JW, et al. Protuboxepin A, a
marine fungal metabolite, inducing metaphase arrest and chromosomal misalignment
in tumor cells. Bioorg Med Chem. (2012) 20:3799–806. doi: 10.1016/j.bmc.2012.04.039

Na et al. 10.3389/fped.2025.1624671

Frontiers in Pediatrics 16 frontiersin.org

https://doi.org/10.1016/j.jhep.2021.03.028
https://doi.org/10.1007/s00432-022-04164-1
https://doi.org/10.1007/s00432-022-04164-1
https://doi.org/10.7150/ijbs.80461
https://doi.org/10.1016/j.jhep.2024.02.018
https://doi.org/10.1038/sj.emboj.7600308
https://doi.org/10.1038/sj.emboj.7600308
https://doi.org/10.1242/jcs.114.24.4385
https://doi.org/10.1038/s41598-024-67528-2
https://doi.org/10.1038/s41598-024-67528-2
https://doi.org/10.1136/bcr-2013-008684
https://doi.org/10.1136/bcr-2013-008684
https://doi.org/10.18632/aging.202944
https://doi.org/10.1155/2022/2760432
https://doi.org/10.1586/egh.09.61
https://doi.org/10.1586/egh.09.61
https://doi.org/10.1016/j.jgg.2021.01.001
https://doi.org/10.1016/j.jgg.2021.01.001
https://doi.org/10.1038/onc.2017.287
https://doi.org/10.1002/cam4.2324
https://doi.org/10.1016/j.molcel.2020.03.010
https://doi.org/10.1002/ijc.30764
https://doi.org/10.1016/j.dnarep.2023.103613
https://doi.org/10.1073/pnas.2410119121
https://doi.org/10.3390/cancers13112547
https://doi.org/10.3390/cancers13112547
https://doi.org/10.3390/biology8040082
https://doi.org/10.3892/mmr.2024.13415
https://doi.org/10.3892/mmr.2024.13415
https://doi.org/10.1016/j.cancergen.2024.10.005
https://doi.org/10.1186/s13046-023-02855-2
https://doi.org/10.1038/s41598-025-85929-9
https://doi.org/10.18632/aging.205216
https://doi.org/10.1002/hep.24106
https://doi.org/10.1371/journal.pone.0151521
https://doi.org/10.1007/s00281-022-00909-9
https://doi.org/10.1186/1756-8722-3-43
https://doi.org/10.1038/s41598-019-50913-7
https://doi.org/10.1002/1873-3468.14406
https://doi.org/10.1002/1873-3468.14406
https://doi.org/10.1016/j.canlet.2016.09.024
https://doi.org/10.1016/j.canlet.2016.09.024
https://doi.org/10.1124/mol.113.090688
https://doi.org/10.3390/ijms161226095
https://doi.org/10.1080/15384101.2017.1383578
https://doi.org/10.1007/s00147-004-0766-8
https://doi.org/10.1007/s00147-004-0766-8
https://doi.org/10.1007/s00383-020-04765-2
https://doi.org/10.1007/s00383-020-04765-2
https://doi.org/10.7150/thno.107436
https://doi.org/10.7150/thno.107436
https://doi.org/10.1002/jcp.22693
https://doi.org/10.3389/fcell.2020.00513
https://doi.org/10.1128/spectrum.05105-22
https://doi.org/10.1016/j.radonc.2011.08.013
https://doi.org/10.1007/s00280-012-2019-3
https://doi.org/10.1016/j.bmc.2012.04.039
https://doi.org/10.3389/fped.2025.1624671
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/

	Research on biliary atresia and epigenetic factors from the perspective of transcriptomics: identification of key genes and experimental validation
	Introduction
	Methods
	Data collection
	Analysis of differentially expressed genes (DEGs)
	Enrichment analysis
	PPI network construction
	Localization analysis
	Exploration of correlation analysis and network construction
	Gene set enrichment analysis (GSEA)
	Construction of molecular regulatory network
	Drug prediction and molecular docking
	Experimental validation
	Statistical analysis

	Results
	Screening and enrichment analysis of candidate genes
	Screening of key genes
	Analysis of key genes localization and tissue specificity
	Correlation analysis among key genes
	GSEA
	Construction of the molecular regulatory network of key genes
	Drug prediction and molecular docking analysis of key genes
	Validation by RT-qPCR experiment

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


