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Development and validation of a
non-invasive prediction model
for identifying high-risk children
with metabolic dysfunction-
associated fatty liver disease

Yuan Xiaowu, Dong Jian
†

, Wen Yizhu
†

, Ma Ting, Tong Jin,

Wei Juan, Wang Sirui, Wang Jinli, He Yuchen, Zhao Huan,

Cheng Yuhang and Li Jun*

Department of Ultrasound, The First Affiliated Hospital, Shihezi University, Shihezi, China

Objective: This study aims to investigate the prevalence and risk factors of

Metabolic dysfunction-associated fatty liver disease (MAFLD) in pediatric

populations and establish a novel health index scoring system derived from

key risk parameters for early identification of high-risk children with MAFLD.

Method: In this cross-sectional study, a systematic random sampling method

was employed to recruit children (6–18 years) with MAFLD. Data collection

involved standardized questionnaires and comprehensive anthropometric

measurements. The prevalence of MAFLD was determined through

epidemiological analysis. Both univariate and multivariate logistic regression

models were systematically applied to identify independent risk factors

(P < 0.05), with subsequent development of a health index scoring system. The

optimal diagnostic threshold for the health index was established using

receiver operating characteristic (ROC) curve analysis.

Results: The study cohort comprised 2,190 pediatric participants, revealing an

overall MAFLD prevalence of 26.30%. Significant demographic disparities were

observed: males exhibited a higher prevalence than females. The age, BMI

(Body Mass Index), Waist-Hip Ratio (WHR), and Waist-Height Ratio (WHtR)

values of the MAFLD group were higher than those of the Non-MAFLD group,

and the difference was statistically significant. Multivariable logistic regression

subsequently identified seven independent predictors (P < 0.05), age

(OR = 1.62, 95% CI 1.36, 1.92), gender (OR = 0.42, 95% CI 0.31,0.57), BMI

(OR = 2.15, 95% CI 1.75, 2.64), WHR (OR= 2.10, 95% CI 1.64, 2.69), WHtR

(OR = 4.01, 95% CI 3.07, 5.23), sleep duration (OR = 0.71, 95% CI 0.59, 0.85)

and dessert consumption (OR = 1.46, 95% CI 1.17, 1.81). Health index

demonstrated moderate predictive accuracy in both training (AUC=0.72, 95%

CI 0.68, 0.76) and validation cohorts (AUC = 0.74, 95% CI 0.70, 0.78) with

optimal diagnostic threshold at 11.5 points. Calibration analysis revealed

satisfactory model fit (Hosmer-Lemeshow χ2= 7.32, P= 0.12). Strong

concordance was observed between dimension weights and regression

coefficients (Pearson’s r= 0.93, P < 0.001).
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Conclusion: This study establishes seven independent determinants of MAFLD in

pediatric populations: age, gender, BMI, waist-hip ratio, waist-height ratio, sleep

duration, and frequent dessert consumption (P < 0.05). The health index

demonstrates robust clinical utility for early detection, providing an evidence-

based screening protocol for school health programs. Implementation of this

quantitative tool could significantly enhance targeted prevention strategies and

optimize resource allocation in childhood metabolic disorder surveillance

in communities.

KEYWORDS

metabolic dysfunction-associated fatty liver disease, non-alcoholic fatty liver disease,
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Background

Metabolic dysfunction-associated fatty liver disease (MAFLD),

introduced in 2020 by a multinational panel of experts through the

International Consensus Statement, represents a paradigm shift

from the previous diagnostic label of Non-alcoholic Fatty Liver

Disease (NAFLD) (1). Similar to NAFLD, MAFLD is

characterized by excessive hepatocellular lipid deposition (≥5%)

as its pathognomonic histopathological feature (2). The disease

spectrum encompasses simple steatosis, Metabolic Associated

Steatohepatitis (MASH), progressive hepatic fibrosis, and

hepatocellular carcinoma (HCC) (3). Emerging as the leading

etiology of pediatric chronic liver disease globally, MAFLD

demonstrates a multisystem metabolic perturbation profile that

transcends hepatic pathology. Contemporary epidemiological data

reveal its pathophysiological continuum with type 2 diabetes

mellitus (T2DM), cardiovascular diseases (CVD), metabolic

syndrome (MetS), and insulin resistance (4). Epidemiological

surveillance data document a striking 2.7-fold surge in pediatric

MAFLD prevalence rates worldwide, escalating from 3.9% in

2000 to 10.6% by 2020. Particularly alarming is the 34.2%

prevalence observed in obese pediatric cohorts, establishing

childhood obesity as the cardinal modifiable risk determinant.

Geospatial analysis reveals accelerated incidence trajectories in

Asian regions, with China and India demonstrating

epidemiological transition patterns strongly correlated with

Westernized dietary patterns and pervasive sedentarism (5–8).

The predictive modeling framework developed by Li, J. et al.

projects a staggering escalation in pediatric MAFLD prevalence,

with global estimates reaching 30.7% by 2040, Asian populations

demonstrate the most alarming trajectory, peaking at 49.7% (9).

This epidemic acceleration correlates strongly with sustained

obesogenic environments and epigenetic reprogramming induced

by developmental overnutrition (9).

Compared with adults, MAFLD in children has unique clinical

and histologic features due to its unique physiological stage. (1)

Rapidly progressive: about 9.3% of children progressed to MASH

within 5 years, significantly higher than adults (3.6%) (10). (2)

Metabolic dysfunction is prominent, with more than 80% of

children having comorbid insulin resistance (11). (3) Genetic

predisposition is significant. The transmission rate of PNPLA3

rs738409 allele (GG type) was 1.5 times higher in children than

in adults, and it was associated with early-onset severe fatty liver

disease (12). It is more likely to cause serious intrahepatic and

extrahepatic adverse outcomes, such as liver cirrhosis, HCC, and

cardiovascular-related diseases (13, 14). However, typical

symptoms are often absent in pediatric patients with NAFLD,

but MAFLD-induced cognitive decline, low self-esteem, and

social impairment have burdened children.

Early screening can detect MAFLD in children, and then

through lifestyle intervention, 30% of liver fat can be reversed

(15). However, mass screening may trigger unnecessary family

anxiety or excessive medical behavior, and at the same time

cause a waste of medical resources (16). Therefore, the

identification of high-risk children can not only detect children

with MAFLD in time, but also reduce the anxiety of patients’

families and reduce the waste of medical resources.

In this study, we innovatively constructed a multidimensional

health index scoring system, integrating demographic

characteristics, anthropometric indicators, and behavioral

parameters (17). Predictive models offer more comprehensive,

accurate, and cost-effective disease prevention than single

indicators (17–19). This study aimed to identify high-risk groups

for MAFLD in children and provide a basis for accurate

screening of MAFLD.

Methods

From January 2024 to December 2024, a cross-sectional survey

was conducted at a middle school in Shihezi City, Xinjiang Uyghur

Autonomous Region, China. A total of 2,280 students aged 6–18

years were included in the systematic cluster sampling method

for routine ultrasound screening. According to Guidelines for the

prevention and treatment of metabolic dysfunction-associated

(non-alcoholic) fatty liver disease (Version 2024) diagnostic

criteria (20), combined with questionnaire survey and clinical

data, 2,190 cases were finally included in the study cohort after

strict screening criteria. Inclusion Criteria: (1) Ultrasonography

meets diagnostic criteria for MAFLD; (2) Age 6–18 years old; (3)

Written informed consent signed by study subjects and their

legal guardians; (4) Complete the baseline questionnaire and

clinical examination items. Exclusion Criteria: (1) Patients with

viral hepatitis, drug-induced liver injury, hereditary metabolic

Xiaowu et al. 10.3389/fped.2025.1625864

Frontiers in Pediatrics 02 frontiersin.org

https://doi.org/10.3389/fped.2025.1625864
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


liver disease, type I diabetes mellitus and other chronic liver and

kidney diseases; (2) Those who have had more than 3 ultrasound

examinations but still have poor image quality and cannot be

diagnosed; (3) Key clinical data or questionnaire items are

missing >10%.

In this study, a cross-sectional study design was adopted, and

data collection was carried out based on the Assessment Scale of

Risk Factors for Metabolism-related Fatty Liver Disease in

Children made by our research group. After being reviewed by

the Ethics Committee of the First Affiliated Hospital of Shihezi

University (approval number: KJ2024-455-02), 2,280 school-age

children aged 6–18 years were included by cluster sampling. The

reliability and validity of the questionnaire were verified by pre-

experiments, and the Cronbach’s α coefficient was 0.82, and the

content validity index was 0.90.

Data collection

The uniformly trained investigator will explain the purpose of

the study to the legal guardian of the subject in detail and sign the

informed consent form, and complete the questionnaire for the

subject with comprehension impairment with the assistance of

the legal guardian and the guidance of the trained medical staff.

2,280 questionnaires were distributed, 2,230 questionnaires were

recovered, the questionnaire distribution and recovery rate was

97.81%, and 2,190 valid questionnaires (effective rate 98.21%)

were verified for completeness.

Existing studies have confirmed the effects of age, gender, BMI,

WHR, WHtR, diet, exercise, and other factors on MAFLD. This

study aims to develop a noninvasive prediction model based on

these reported MAFLD-related factors (17, 21–23). Variable

classification: Demographic characteristics: name, gender, age;

Physical measurements: height, weight, waist circumference, hip

circumference; History of metabolic diseases: hypertension,

diabetes, chronic kidney disease; Lifestyle: smoking status,

drinking behavior, daily sleep duration, weekly exercise duration;

Dietary evaluation: staple food structure (coarse grains, fine

grains), frequency of breakfast, night snack, milk, eggs, soy

products, coffee and desserts per week. Data quality control: Two

people independently enter data, logical verification eliminates

contradictory entries, Tukey’s fences method is used to identify

the outliers of continuous variables, and multiple imputation

methods are used for missing data processing.

Physical examination

Anthropometric data collection strictly follows a standardized

operating procedure: all subjects are fasted for ≥8 h and are

completed by standardized trained measurologists using

uniformly calibrated measuring equipment. (1) The upright

height was measured with a mechanical height measuring

instrument (accuracy 0.1 cm). (2) Body weight was determined

using a calibrated electronic scale (accuracy 0.01 kg). (3)

According to the WHO recommended method, the waist

circumference was measured at the midpoint of the upper edge

of the iliac crest and the lower edge of the costal arch using a

non-elastic tape measure (accuracy of 0.1 cm), and the hip

circumference was measured at the most prominent point of the

greater trochanteric of the femur (each index was measured

consecutively for 3 times and averaged). Based on the above

basic data, the following parameters are calculated: Body Mass

Index [BMI, BMI = weight (kg)/height2 (m2)], Waist-to-Hip Ratio

[WHR, WHR =Waist (cm)/Hip (cm)], and Waist-to-Height

Ratio [WHtR, WHtR =Waist (cm)/height (cm)]. All

measurements were performed by following the International

Standard for Anthropometric Methods (ISAK, 2011 Edition), and

the measurements were made in such a way that the subjects

were wearing only light underwear (24).

Diagnostic criteria

Based on current guidelines and expert consensus, the

diagnostic criteria for hepatic steatosis using ultrasound are

detailed below. (1) grade 0, normal echogenicity; (2) grade 1,

slight, diffuse increase in fine echoes in liver paren chyma with

normal visualization of diaphragm and intrahe patic vessel

borders; (3) grade 2, moderate, diffuse increase in fine echoes

with slightly impaired visualization of intrahepatic vessels and

diaphragm; (4) grade 3, marked increase in fine echoes with poor

or nonvisualization of the intrahepatic vessel bor ders,

diaphragm, and posterior right lobe of the liver (20, 25, 26). Two

sonographers with more than 5 years of work experience

screened the study subjects for fatty liver disease, and when the

two doctors disagreed, a third doctor with 10 years of work

experience was consulted for diagnosis.

Indicator building

Multivariate logistic regression was used to screen potential risk

variables (α = 0.05), and the variables with independent predictive

power were determined by the backward stepwise regression

method (α = 0.05). Based on the β values of the regression

coefficients, a weighted comprehensive health index scoring

system was constructed, and the specific scoring rules were the

integer approximations of the standardized regression coefficients

of each variable. The health index was used as a new predictor to

evaluate the differentiation of MAFLD by the receiver operating

characteristic curve (ROC), and the Youden index method was

used to determine the optimal diagnostic cut-off value. The area

under the curve (AUC) and the 95% confidence interval (95%

CI) were calculated at the same time.

Statistical methods

Statistical analyses were performed using the Python

programming language (version 3.10.12), with additional support

from the following open-source libraries: NumPy (v1.24.3),
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pandas (v2.0.3), SciPy (v1.10.1), and statsmodels (v0.14.0).

Continuous variables were first standardized to standard

deviation (Z-Score normalized), and then normality was assessed

by the Shapiro–Wilk test, and those who met the normal

distribution were expressed as mean ± standard deviation (�x+ s),

and an independent samples t-test was used for comparison

between groups. Non-normally distributed data were presented as

median (M, P25, P75), and the Mann–Whitney U test was used

for comparison between groups. Categorical variables were

expressed as frequencies (composition ratios), and comparisons

between groups were performed using either the chi-square test

or Fisher’s exact test. The MAFLD-related factors were

preliminarily screened by univariate binary logistic regression,

and the variables of P < 0.05 in univariate analysis were included

in the multivariate binary logistic regression model. Based on the

independent risk factors screened out by multivariate analysis,

the health index was constructed, the ROC curve was plotted to

evaluate the health index to evaluate discriminant performance

of MAFLD, and the AUC, 95% CI, and optimal diagnosis

threshold were calculated. All statistical analyses were performed

using a two-sided test, and the test level was set at α = 0.05.

Results

Basic information

A total of 2,190 children were included in this study (1,024

males and 1,106 females), and the mean age, BMI, WHR, and

WHtR were 12.75 ± 3.56, 19.58 ± 2.58, 0.85 ± 0.08, and

0.46 ± 0.06, respectively (Figure 1). All baseline data are

presented in Table 1. Data analysis showed that there were

significant differences in the detection rate of MAFLD among

different age groups, and showed an increasing trend with age

(Figure 2). In terms of gender distribution, there were 1,024

males (46.76%) and 1,166 females (53.24%), and there was a

significant gender difference in the detection rate of MAFLD

(16.80% males and 9.50% females (Figure 3).

Univariate analysis

In this study, MAFLD was used as the outcome measure, and

the variables were initially screened by univariate logistic regression

analysis (α = 0.05). The P values of the five variables of smoking

(P = 0.12), alcohol consumption (P = 0.86), hypertension

(P = 0.62), diabetes mellitus (P = 0.78) and kidney disease

(P = 0.38) were all >0.05, and the fifteen variables were finally

included in age, gender, BMI, WHR, WHtR, sleep, exercise,

breakfast frequency, supper frequency, staple food composition,

eggs, milk, soy products, coffee, and desserts (Table 2).

Variance inflation factor

To improve the stability of the prediction model, a

multicollinearity test was performed for statistically significant

variables in univariate analysis. The variance inflation factor

(VIF) was used to evaluate the degree of collinearity between

variables, and VIF > 5 was set as the criterion for the existence of

moderate collinearity; such variables were eliminated. The VIF

values of the variables such as night snack (VIF = 14.35), eggs

FIGURE 1

The distribution of continuous variables.
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TABLE 1 Demographic and clinical characteristics.

Characteristic Total population N-MAFLD MAFLD χ
2/t P

All 2,190 1,614 576

Gender 10.12 <0.001

Male 1,024 656 368 (35.94%)

Female 1,166 958 208 (17.84%)

Age (years) 12.75 ± 3.56 12.65 ± 3.41 13.59 ± 3.29 118.39 <0.001

6 78 71 7 (8.97%)

7 127 108 19 (14.96%)

8 176 143 33 (18.75%)

9 124 98 26 (20.97%)

10 136 106 30 (22.06%)

11 148 111 37 (25.00%)

12 174 128 46 (26.44%)

13 195 141 54 (27.69%)

14 258 184 74 (28.68%)

15 192 134 58 (30.21%)

16 167 115 52 (31.14%)

17 196 132 64 (32.65%)

18 219 143 76 (34.70%)

BMI 19.58 ± 2.58 18.90 ± 2.07 21.50 ± 2.88 −42.98 <0.001

WHR 0.85 ± 0.08 0.82 ± 0.07 0.92 ± 0.07 −38.27 <0.001

WHtR 0.46 ± 0.06 0.44 ± 0.06 0.53 ± 0.06 −19.21 <0.001

Average sleep duration (h/d) 44.76 <0.001

<6 261 207 54

6–6.99 407 293 114

7–7.99 840 561 279

≥8 682 553 129

Exercise duration (h/w) 85.97 <0.001

<1 279 219 60

1–2.99 565 375 190

3–4.99 863 592 271

≥5 483 428 55

Frequency of breakfast per week 134.38 <0.001

<1 328 260 68

1–3 501 325 176

4–6 637 398 239

7 724 631 93

Frequency of late-night snacks per week 144.04 <0.001

<1 704 631 73

1–3 756 501 255

4–6 523 330 193

7 207 152 55

Staple food composition 7.32 0.007

Coarse grains 1,266 905 361

Fine grains 924 709 215

Frequency of milk consumption per week 289.61 <0.001

<1 369 294 75

1–3 356 184 172

4–6 547 314 233

7 918 822 96

Frequency of egg consumption per week 455.74 <0.001

<1 273 212 61

1–3 179 33 146

4–6 737 470 267

7 1,001 899 102

Frequency of soy product consumption per week 216.76 <0.001

<1 350 278 72

(Continued)
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(VIF = 6.43), milk (VIF = 16.54), bean products (VIF = 9.65), and

coffee (VIF = 11.44) all exceeded the threshold, indicating that

they had strong collinearity with other variables, so they were

excluded from the final model.

Multivariate analysis

In this study, MAFLD was used as the dependent variable, and

variables with a VIF < 5 were included in the multivariate binary

logistic regression analysis. The results showed that age, gender,

BMI, WHR, WHtR, sleep time, and dessert intake frequency

were statistically significantly associated with the occurrence of

MAFLD (P < 0.05). Among them, age (OR = 1.62, 95% CI 1.36,

1.92), BMI (OR = 2.15, 95% CI 1.75, 2.64), WHR (OR = 2.10, 95%

CI 1.64, 2.69), WHtR (OR = 4.01, 95% CI 3.07, 5.23), and dessert

intake frequency (OR = 1.46, 95% CI 1.17, 1.81), suggesting that

these factors are independent risk factors for the development of

MAFLD. In contrast, the OR values for women (OR = 0.42, 95%

CI 0.31, 0.57) and adequate sleep (OR = 0.71, 95% CI 0.59, 0.85)

were less than 1, suggesting that female and adequate sleep time

may be protective factors for NAFLD (Table 3).

TABLE 1 Continued

Characteristic Total population N-MAFLD MAFLD χ
2/t P

1–3 631 428 203

4–6 487 260 227

7 722 648 74

Frequency of coffee consumption per week 291.62 <0.001

<1 227 171 56

1–3 345 183 162

4–6 570 324 246

7 1,048 936 112

Dessert consumption frequency per week 150.52 <0.001

<1 611 502 109

1–3 1,084 852 232

4–6 429 226 203

7 66 34 32

N-MAFLD, non-metabolic associated fatty liver disease; MAFLD, metabolic associated fatty liver disease; BMI, body mass index; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio; h/d,

hour/day; h/w, hour/week.

FIGURE 2

Prevalence of MAFLD in children across different age groups.
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Interactive effect

Following multivariable screening of seven variables,

interaction analyses were performed to assess synergistic or

antagonistic effects on MAFLD. Significant interactions (P < 0.05)

were observed between (1) age and BMI (OR = 1.68, 95% CI

1.35–2.10; P < 0.001), (2) WHR and sleep duration (OR = 1.28,

95% CI 1.05–1.56; P = 0.01), (3) WHtR and sleep duration

(OR = 1.28, 95% CI 1.05–1.58; P = 0.02), (4) frequency of dessert

intake and sleep duration (OR = 0.73, 95% CI 0.61–0.88;

P < 0.001), (5) WHR and frequency of dessert intake (OR = 1.86,

95% CI 1.44–2.40; P < 0.001), and (6) WHtR and frequency of

dessert intake (OR = 1.90, 95% CI 1.45–2.48; P < 0.001). No

significant interactions were found for gender-BMI (P = 0.17),

sleep duration-BMI (P = 0.77), frequency of dessert intake-BMI

(P = 0.59), age -gender (P = 0.88), WHR-gender (P = 0.85), or

WHtR-gender (P = 0.09) (Table 4).

Health index

Based on significant predictors identified by multivariable

logistic regression analysis, a health index scoring system was

developed (Table 5). The scoring criteria and weights for each

variable were derived from standardized β coefficients (P < 0.05).

Age (total 2 points), <14 years (2 points), ≥14 years (1 point);

Gender (total 3.5 points), Female (3.5 points), Male (1.75 points);

BMI (total 3 points), <18.9 (3 points), 18.9–21.5 (2 points),

≥21.5 (1 point); WHtR (total 5.5 points; strongest predictor),

<0.46 (5.5 points), ≥0.46 (2.75 points); WHR (total 3 points),

<0.85 (3 points), ≥0.85 (1.5 points); Sleep Duration (total 1.5

points), >8 h (1.5 points), 7–8 h (1.125 points), 6–7 h (0.75

points), <6 h (0.375 points); Dessert Intake (total 1.5 points;

non-linear association), ≥6 times/week (0.375 points), 4–5 times/

week (0.75 points), 2–3 times/week (1.125 points), ≤1 time/week

(1.5 points). The theoretical range of the health index score is

8.75–20. ROC curve analysis determined an optimal diagnostic

threshold of 11.5 (Youden index = 0.68). The model

demonstrated good discrimination in both the training set

FIGURE 3

Prevalence of MAFLD in children of different genders. MAFLD,

metabolic associated fatty liver disease, NMAFLD, non-metabolic

associated fatty liver disease.

TABLE 2 Univariate analysis results.

Variable Z P

Age 6.51 0.001

Gender −9.45 0.001

BMI 17.75 0.001

WHR 21.17 0.001

WHtR 22.11 0.001

Sleep duration −9.36 0.001

Exercise duration −4.41 0.001

Frequency of breakfast −4.80 0.001

Frequency of late-night snacks 8.38 0.001

Staple food composition −2.75 0.006

Frequency of milk −7.71 0.001

Frequency of egg −11.10 0.001

Frequency of soy products −5.02 0.001

Frequency of coffee −10.56 0.001

Frequency of dessert 10.45 0.001

BMI, body mass index; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio.

TABLE 3 Results of multivariate analysis.

Characteristic Z P OR (95% CI)

Age 5.47 0.001 1.62 (1.36∼1.92)

Gender −5.50 0.001 0.42 (0.31∼0.57)

BMI 7.28 0.001 2.15 (1.75∼2.64)

WHR 5.94 0.001 2.10 (1.64∼2.69)

WHtR 10.23 0.001 4.01 (3.07∼5.23)

Sleep duration −3.65 0.001 0.71 (0.59∼0.85)

Frequency of dessert 3.41 0.001 1.46 (1.17∼1.81)

Exercise duration 1.19 0.24 1.11 (0.94∼1.31)

Frequency of breakfast −1.02 0.31 0.92 (0.79∼1.08)

Staple food composition −0.67 0.50 0.89 (0.63∼1.25)

OR, odds ratio; 95% CI, 95% confidence interval; BMI, body mass index; WHR, waist-to-hip

ratio; WHtR, waist-to-height ratio.

TABLE 4 Statistical interactions between variables.

Characteristic β OR (95% CI) P

Age * BMI 0.52 1.68 (1.35, 2.10) <0.001

Gender * BMI −0.25 0.17

Sleep * BMI 0.03 0.77

Dessert * BMI 0.07 0.59

Age * gender −0.02 0.88

WHR * gender 0.04 0.85

WHtR * gender −1.00 0.09

WHR * Sleep 0.25 1.28 (1.05, 1.56) 0.01

WHtR * Sleep 0.25 1.28 (1.05, 1.58) 0.02

dessert * Sleep −0.31 0.73 (0.61, 0.88) 0.001

WHR * Dessert 0.62 1.86 (1.44, 2.40) <0.001

WHtR * Dessert 0.64 1.90 (1.45, 2.48) <0.001

β, regression coefficient; OR, odds ratio; 95% CI, 95% confidence interval; BMI, body mass

index; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio.
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(AUC = 0.72; 95% CI 0.68, 0.76, P < 0.001) and validation set

(AUC = 0.74; 95% CI 0.70, 0.78, P < 0.001) (Figure 4). The

Hosmer-Lemeshow test indicated good model calibration

(P = 0.12). Predictor weights, ranked by standardized β coefficient

magnitude, were WHtR (β = 1.39), gender (β =−0.86), BMI

(β = 0.77), WHR (β = 0.74), ethnicity (β = 0.56), age (β = 0.48),

dessert intake (β = 0.38), and sleep duration (β =−0.34). The

assigned scores for each dimension showed high consistency with

the direction and magnitude of the regression coefficients

(Pearson’s r = 0.93, P < 0.01).

Discussion

MAFLD has become a health problem that cannot be ignored

in children, and it is gradually decreasing (27). This study analyzed

the risk factors of MAFLD in children and confirmed the

independent risk factors of anthropometric indicators (BMI,

WHR, WHtR) and metabolic risk behaviors (lack of sleep, high-

sugar diet) (17). Among them, the weight of WHtR (β = 1.39)

was much higher than BMI (0.77). This finding is consistent

with Li, C. et al., the abdominal obesity index can better predict

NAFLD in the Chinese population, suggesting that in the child

population, the abdominal obesity index can better reflect the

metabolic harm of visceral fat ectopic deposition than BMI (28).

This is related to the unique anatomical location and metabolic

activity of visceral fat, which is usually directly diverted from

visceral adipose tissue (such as mesentery and omentum fat) into

the portal venous system, and the free fatty acids and adipokines

released by it reach the liver directly without systemic dilution

(29). In addition, the concentration of free fatty acids in the

portal blood of visceral obese patients was much higher than that

of systemic obese patients, which directly promoted the synthesis

of fatty acids in hepatocytes and significantly increased the rate

of liver TG synthesis (30). This study found that the detection

rate of MAFLD gradually increased with age, which was

consistent with the results of most investigators (31). This may

be because as children age, sedentary time increases, and their

diet deteriorates (high-sugar, high-fat foods), resulting in excess

energy, visceral fat and liver fat deposits gradually increasing,

and increased levels of sex hormones during puberty may affect

fat distribution and metabolism, promoting visceral fat

accumulation (32). Like adults, the detection rate of MAFLD in

men is still higher than that in women, which is mainly related

to the differences in sex hormones and fat distribution

characteristics. At the same time, higher testosterone levels in

men may promote visceral fat accumulation and increase liver fat

accumulation (32, 33). This study found that the intake of high-

frequency desserts will increase the detection rate of MAFLD,

which may be because since common added sugars in desserts

(such as sucrose and fructose syrup) contain a large amount of

fructose, fructose, unlike glucose, its metabolism is not regulated

by insulin, and it is mainly completed through the liver, and

fructose is rapidly converted into triglycerides in the liver,

resulting in fat accumulation in hepatocytes (34). At the same

time, this study found that adequate sleep is a protective factor

for MAFLD, and adequate sleep can reduce the risk of MAFLD

by regulating hormones, inhibiting inflammation, and

maintaining the balance of the biological clock (35). Research by

Romero-Gómez, M. et al. demonstrated that physical exercise

effectively reduces hepatic fat content (36). While this study also

examined the relationship between exercise and fatty liver

disease, no statistically significant association was observed.

Subsequent telephone follow-up of 100 participants revealed that

their reported exercise duration primarily reflected scheduled

physical education (PE) class time. Further investigation,

however, indicated that approximately 70% of students engaged

in only minutes of actual active exercise during PE sessions—

often exercising briefly followed by extended rest periods—

resulting in significantly lower effective exercise duration than

reported. Consequently, based on potentially overestimated

exercise duration data, this study failed to establish a significant

association between physical activity and fatty liver disease.

Furthermore, research by Ioannou, G. N. et al. identified diabetes

and insulin resistance as significant risk factors for MAFLD,

mediated through disruption of lipid metabolism and induction

of metabolic dysregulation (22). However, as the study cohort

consisted exclusively of school-aged children and adolescents—a

population with inherently low prevalence rates of diabetes and

insulin resistance—no statistically significant association between

these metabolic factors and fatty liver disease was observed in

TABLE 5 Health index.

Variable Point

Age

<14 2

≥14 1

Gender

Male 1.75

Female 3.5

BMI

<18.9 3

≥18.9, <215 2

≥21.5 1

WHtR

<0.46 5.5

≥0.46 2.75

WHR

<0.85 3

≥0.85 1.5

Sleep duration

<6 0.375

≥6, <7 0.75

≥7, <8 1.125

≥8 1.5

Frequency of dessert

≤1 1.5

≥2, <4 1.125

≥4, <6 0.75

≥6 0.375

Range 8.75–20

BMI, body mass index; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio.
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this cohort. Studies by Xuan, Y. et al. demonstrated that in patients

younger than 20 years, the ROC for predicting MAFLD was 0.67

using triglyceride (TG), and 0.66 using aspartate

aminotransferase (AST) (37). Research by Li, H. et al. confirmed

an AUC of 0.61 for the triglyceride-glucose (TyG) index and

0.66 for the TyG index combined with TyG-BMI in predicting

MAFLD (38). Compared to other predictive models, the health

index developed in our study achieved AUC of 0.72 in the

training cohort and 0.74 in the validation cohort for identifying

individuals at high risk of MAFLD, surpassing the predictive

performance of the aforementioned individual biomarkers as well

as the TyG-BMI combination. Furthermore, this index is non-

invasive and easily implementable.

In developing a predictive model for MAFLD risk, the dataset

was randomly partitioned into training (70%) and validation (30%)

sets. Notably, the model demonstrated marginally superior

discriminative performance on the validation set, with an AUC

of 0.74, compared to 0.72 on the training set. This observed

discrepancy, where validation AUC exceeded training AUC, may

be attributable to random sampling variability, potentially

resulting in the validation cohort providing a slightly more

representative characterization of underlying MAFLD risk factors

(39, 40). Comparative analysis of key parameters revealed

minimal differences between cohorts. Continuous variables

(mean ± standard deviation) were comparable: Age (training:

12.78 ± 3.56 years vs. validation: 12.69 ± 3.56 years), BMI

(19.94 ± 3.88 kg/m2 vs. 19.91 ± 3.76 kg/m2), WHR (0.83 ± 0.07 vs.

0.83 ± 0.07), and WHtR (0.46 ± 0.06 vs. 0.46 ± 0.06). Similarly,

categorical variables showed no significant differences in the

proportion of individuals with sleep duration <6 h (11.8% vs.

12.2%) or dessert consumption frequency ≥6 times/week (2.6%

vs. 3.2%), although male gender distribution reached statistical

significance (45.3% vs. 50.2%, P < 0.05). Overall, the minor

variations between sets fall within expected ranges of random

fluctuation. These results support the robust generalization

capability of the developed health index prediction model.

The health index scoring system constructed in this study

achieves methodological breakthroughs in multiple dimensions

(18, 19). (1) The introduction of WHtR instead of the traditional

waist circumference index is more suitable for the body shape

changes of children during the growth spurt period; (2) By

quantifying the effect of dessert intake frequency and sleep

deprivation, the explanatory dimension of the traditional

metabolic model was expanded. The stable prediction

performance of the model in the validation set (AUC = 0.74)

suggests that it can be used as a community-based primary

screening tool for children’s MAFLD, and can detect high-risk

groups of MAFLD in time.

FIGURE 4

ROC curve of the health index predicts MAFLD risk.
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In school, community, or household settings, utilizing only a

weighing scale and a measuring tape following standardized

protocols enables the efficient collection of children’s height, weight,

waist circumference, and hip circumference. These measurements

are then used to calculate BMI, WHR, and WHtR using established

formulas. Integrating this anthropometric data with an assessment of

children’s sleep patterns and dietary habits allows for the assignment

of scores to each indicator according to the health index scoring

system proposed in this study. Aggregating these scores yields a

comprehensive health index. This health index, based on the optimal

cut-off value of 11.5 points, serves as a practical tool for the timely

identification of children at high risk for MAFLD. The health index

can enable high-risk children to obtain early intervention

opportunities before liver enzyme abnormalities occur. Compared

with the general screening scheme, the risk stratification model can

reduce ineffective screening and meet the evaluation criteria of

health economics (41). Especially in areas with scarce medical

resources, the tool can be implemented through the school medical

system to realize the closed-loop management of the school-family-

community three-level prevention and control network.

The management of MAFLD necessitates multidisciplinary

collaboration, focusing on reducing body weight and waist

circumference, improving insulin resistance, preventing/treating

T2DM, alleviating MASH, and reversing fibrosis (20, 25). All patients

require health education for lifestyle modification, with

pharmacological intervention indicated for those with metabolic

cardiovascular risks or liver injury. Combined diet-exercise therapy is

fundamental: Weight loss magnitude correlates positively with

metabolic benefits in overweight/obese patients (3%–5% reduction

reverses steatosis within 1 year; 7%–10% alleviates MASH;≥ 10%

reverses fibrosis; ≥15% may ameliorate T2DM) (25). A daily caloric

deficit of 500–1,000 kcal achieves progressive weight loss and hepatic

fat reduction, with efficacy demonstrated for low-carbohydrate, low-

fat, intermittent fasting, and Mediterranean diets. For exercise,

≥150 min/week of moderate aerobic activity (e.g., brisk walking) or

3–5 HIIT sessions weekly reduces hepatic fat, improves

cardiorespiratory fitness, and decreases waist circumference

(showing a dose-response relationship) (25). Resistance training

alone is reserved for patients with poor cardiorespiratory function.

Crucially, combined diet-exercise therapy outperforms either

modality in isolation and requires sustained personalized

implementation (20, 25).

There are the following limitations in this study. (1) As the

study cohort excluded children with diabetes and insulin

resistance, the established relationship between these conditions

and MAFLD could not be confirmed. Consequently, the

predictive health index model developed herein does not

incorporate diabetes or insulin resistance metrics. Therefore, the

application of the 11.5 diagnostic threshold to children with

insulin resistance or diabetes may fail to accurately identify their

risk of developing MAFLD. (2) Dietary habits, primarily reported

by guardians, may underestimate the frequency of sugary food

intake, as guardians are often unaware of their children’s dietary

choices during school hours. (3) MAFLD diagnosis in this study

relied on conventional ultrasonography performed with portable

devices. The diagnostic accuracy of this method is inherently

lower than that achieved with MRI-PDFF quantification. (4) The

health index assessment system was developed and validated

exclusively in a pediatric population. Thus, its applicability and

performance in adult populations require further investigation.

Subsequent research will focus on: (1) developing a novel health

index model incorporating insulin resistance and metabolic

syndrome indicators for children with diabetes and insulin

resistance, based on the current study, to establish diagnostic

thresholds for identifying high-risk MAFLD individuals within this

population; (2) constructing and validating a health index

diagnostic model tailored for high-risk MAFLD adults and

determining its optimal diagnostic threshold; (3) evaluating the

effectiveness of implementing dietary control, lifestyle

modification, and increased physical activity interventions for

improving MAFLD in pediatric patients with a confirmed diagnosis.

The comprehensive health index scoring system provides a

quantifiable decision-making tool for the precise prevention and

control of MAFLD in children, and its standardized and low-cost

characteristics meet the needs of the hierarchical diagnosis and

treatment system. In the future, it is necessary to improve the

adaptability of the model through multi-center verification and

explore a dynamic risk early warning system based on artificial

intelligence, to finally realize the paradigm shift from disease

diagnosis to health risk management.

Conclusion

This study showed that the occurrence of MAFLD was

significantly independently associated with age, gender, ethnicity,

BMI, WHR, WHtR, sleep duration, and high-frequency dessert

intake (P < 0.05). The health index scoring system based on

multi-dimensional risk factors showed good risk stratification

ability, with the optimal prediction threshold of 12.25 (Youden

index = 0.68), and the AUC of the training set and the validation

set were 0.72 (95% CI 0.68–0.76) and 0.74 (95% CI 0.70–0.78),

respectively. The model was well calibrated (Hosmer-Lemeshow

χ2 = 7.21, P = 0.12), suggesting that it could be used as an early

screening tool for high-risk groups of MAFLD in children and

provide a quantitative basis for targeted intervention.
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