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Objective: Type 1 diabetes mellitus (TIDM) is a common autoimmune disease
in children, characterized by the destruction of pancreatic B-cells. Despite
treatment advancements, many patients struggle with glycemic control.
Recent research suggests the gut microbiome plays a role in T1DM, with
dysbiosis contributing to its onset. Probiotics may help improve glycemic
control and reduce inflammation, but their effects in children with TIDM are
unclear. This study systematically reviews the impact of probiotics and related
supplements on glycemic control in pediatric TIDM patients.

Methods: This study adhered to PRISMA guidelines and was registered in
PROSPERO (CRD42025633971). We searched databases including PubMed
and EMBASE until January 5, 2025. The focus was on randomized controlled
trials (RCTs) involving participants under 18 with T1DM, examining the effects
of probiotics, prebiotics, and synbiotics on glycemic control indexes like
fasting blood glucose (FBG), hemoglobin Alc (HbAlc), C-peptide, and insulin
needs. Two researcher extracted data, quality was assessed via the Cochrane
Handbook, and STATA 16 was used for statistical analysis.

Results: Eight RCTs with 494 participants (246 intervention, 248 control)
showed that probiotics and synbiotics significantly reduced HbAlc levels
[Weighted Mean Difference (WMD) =-0.25%, 95% Confidence Interval
(Cl) = —0.45, —0.04; p = 0.019] with low heterogeneity [I-squared (I%) = 22%].
However, no significant changes were found in FBG, C-peptide levels, or
insulin requirements. Sensitivity analyses yielded similar directions of effect for
HbAlc. Subgroups suggested larger HbAlc reductions with longer
intervention duration, shorter disease duration, and multi-strain formulations.
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Conclusion: Probiotic supplementation may achieve a small improvement in
HbAlc in pediatric TIDM. Adequate dosing, longer intervention duration, and
multi-strain formulations may be more likely to improve HbAlc, but the clinical
importance is uncertain. However, our result shows no significant effects on
fasting blood glucose, C-peptide, or insulin requirements; no routine clinical
recommendations are proposed. The role of probiotics and related
supplements in long-term glycemic control still requires confirmation through
trials with extended follow-up. Large-scale, rigorously designed studies are
needed to determine optimal intervention parameters, clarify underlying
mechanisms, and evaluate the clinical applicability of probiotics in
T1DM management.

Systematic Review Registration: identifier [CRD42025633971].
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1 Introduction

Type 1 diabetes mellitus (T1IDM) is a chronic autoimmune
disease characterized by immune-mediated destruction of
pancreatic f-cells, eventually leading to absolute insulin
deficiency (1). In recent years, the incidence of TIDM has been
increasing globally, particularly among children and adolescents
(2). According to the International Diabetes Federation (IDF)
2025 report, approximately 9.2 million people are living with
T1DM worldwide, with more than 80% of cases occurring in
individuals under the age of 20 (3). The development of TIDM
typically progresses through multiple stages, beginning with
genetic susceptibility and environmental triggers, followed by
immune activation, islet inflammation, and progressive loss of
B-cell function. Based on its natural history, TIDM can be
divided into three clinical stages: Stage 1 involves the presence
of two or more islet autoantibodies with normal blood glucose;
Stage 2 includes abnormal glucose metabolism without overt
symptoms; and Stage 3 corresponds to the clinical onset of
diabetes, meeting diagnostic criteria. Some newly diagnosed
patients experience a transient “honeymoon phase”, during
which measurable C-peptide levels indicate residual p-cell
function. Individuals with longer disease duration typically
exhibit near-complete PB-cell exhaustion and rely entirely on
exogenous insulin (4). These disease-stage-related pathological
differences may influence how patients respond to adjunctive
therapeutic interventions. Despite advances in current treatment
strategies, many individuals still struggle to achieve sustained
glycemic control, highlighting the need for novel approaches to
optimize long-term management of TIDM.

Recent research has underscored the potential role of the gut
microbiome in the pathogenesis and progression of T1DM, as
well as in various immune-mediated disorders (5). Accumulating
evidence suggests that individuals with TIDM commonly exhibit
significant gut microbial dysbiosis, characterized by reduced
diversity, a decreased abundance of beneficial microbes, and an
increased presence of pro-inflammatory bacteria (6, 7). Such an
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imbalance can provoke autoimmune responses against pancreatic
B-cells through multiple mechanisms, thereby fostering chronic
inflammation and impairing insulin secretion (8). One major
pathway involves increased intestinal permeability, which allows
bacterial endotoxins such as lipopolysaccharides (LPS) to
translocate into systemic circulation. This translocation may
activate innate immune responses and promote inflammation-
driven B-cell destruction (9). Additionally, the depletion of short-
chain fatty acids (SCFAs)—key microbial metabolites with anti-
inflammatory and regulatory properties—may impair mucosal
immune homeostasis and reduce the number or function of
regulatory T cells (Tregs), further exacerbating immune
dysfunction (10). Moreover, Early-life factors such as cesarean
delivery, lack of breastfeeding, and antibiotic exposure may
further exacerbate dysbiosis, potentially increasing the risk of
T1DM onset (11, 12). Together, these findings highlight that the
gut microbiome may not simply reflect immune dysfunction in
TIDM, but actively contribute to its onset and progression.
Consequently, strategies aimed at restoring gut microbial balance
have been proposed as a promising adjunctive approach to
modulate immune responses, improve gut barrier function, and
reduce systemic inflammation in individuals with TIDM.
Probiotics, defined as live microorganisms that confer health
benefits to the host, have garnered increasing interest for their
potential to modulate the gut-immune-metabolic axis in type 1
diabetes mellitus (TIDM). A growing body of evidence suggests
that probiotics may protect pancreatic B-cells and improve
glycemic control through a series of interrelated mechanisms. By
reshaping the gut microbial landscape—enhancing the
abundance of beneficial taxa such as Lactobacillus and
Bifidobacterium while suppressing proinflammatory species like
Escherichia coli—probiotics help reduce systemic endotoxin
exposure and attenuate low-grade inflammation associated with
islet autoimmunity. This microbial modulation supports a more
balanced immune environment, mitigating the chronic immune
responses that underlie B-cell destruction (13). Additionally,
probiotic administration has been linked to increased
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production of SCFAs, particularly butyrate, which reinforces
intestinal epithelial barrier function and plays a vital role in
immune tolerance. Butyrate and other SCFAs also exert direct
effects on B-cells by improving mitochondrial activity, reducing
oxidative stress, and upregulating insulin gene expression,
thereby supporting residual B-cell function in the early or partial
stages of disease (14). Beyond local effects in the gut, probiotics
modulate systemic immunity by promoting regulatory T cell
(Treg) expansion and fostering tolerogenic dendritic cell
phenotypes, which collectively downregulate pathogenic Thl1/
Th17 responses implicated in T1DM progression (15). These
concerted actions not only reduce inflammatory burden but may
also delay B-cell failure and extend the therapeutic window for
intervention. Synbiotics and prebiotics, which further promote a
favorable gut environment, are being explored as adjunctive
strategies to sustain these benefits over time.

While some studies indicate potential benefits of probiotics for
patients with T1DM, the majority of research has predominantly
centered on adult populations, yielding inconsistent findings
(16-18). Furthermore, there exists considerable debate regarding
the effects of probiotics on glycemic control in pediatric and
adolescent populations (19, 20). Research regarding the effects
of probiotics on blood glucose regulation in pediatric TIDM
remains in its preliminary stages, necessitating further systematic
investigations to substantiate the clinical efficacy of probiotics in
diabetes management. Consequently, this study conducted a
systematic review and meta-analysis to assess the effects of
probiotics and related supplements on glycemic control in
children and adolescents with TIDM. In addition to assessing
key clinical outcomes such as HbAlc, fasting blood glucose,
C-peptide levels, and insulin requirements, we also performed
detailed subgroup analyses to account for potential sources of
heterogeneity across studies. This comprehensive approach
aim to provide more definitive evidence to inform clinical
treatment strategies.

2 Materials and methods
2.1 Protocol validation

The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) Statement served as a guideline
for the conduct and reporting of this systematic review and
meta-analysis (21). Additionally, this systematic review has
been registered in the International Prospective Register of
Systematic  Reviews (PROSPERO) database
number: CRD42025633971).

(Registration

2.2 Literature search

The following electronic databases were independently
searched by two researchers until January 5, 2025: PubMed,
EMBASE, Web of Science, ScienceDirect, and the English
Clinical Trial Registry. Additionally, published reviews and their
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references were manually examined to identify any further
studies that met the inclusion criteria. A combination of
Medical Subject Headings (MeSH) terms and free-text keywords
was employed, including terms such as “type 1 diabetes”,
“probiotics”,  “prebiotics”,  “synbiotics”, and “randomized
controlled trials”. Boolean operators were utilized to enhance
sensitivity (“OR”) and precision (“AND”), tailored to the
specific syntax of each database. For instance, the search strategy
implemented in PubMed was formulated as follows: [“Diabetes
Mellitus, Type 1”7 (Mesh) OR Type 1 Diabetes (Title/Abstract)]
AND [“Probiotics” (Mesh) OR Probiotic (Title/Abstract)
OR “Probiotics” (Mesh) OR “Prebiotics” (Mesh) OR Prebiotic
(Title/ Abstract) OR (Mesh) OR  Synbiotic
(Title/Abstract)]. Supplementary Table S1 of the Supplementary

PubMed

“Synbiotics”

Materials presents the search strategies as a

representative example.

2.3 Selection criteria

A study was included if the following criteria were met:
(I) RCT; (2) T1DM patients old);
(3) interventions were limited to probiotics, prebiotics, and

(children <18 years

synbiotics with no requirement on duration; (4) written in the
English language; and (5) providing parameters of glycemic
control, such fasting blood glucose (FBG), hemoglobin Alc
(HbAlc), C-peptide, and insulin requirements.

The exclusion criteria were as follows: (1) the subjects had
other types of disease; (2) the probiotics were taken within three
months before the trial; (3) Crucial data are incomplete; and
(4) review papers, case-control studies, medical hypotheses,
letters to the Editor, and duplicate studies.

2.4 Data extraction

Data were extracted by one author (H.H.) and independently
verified by a second author (DY.M.). Any discrepancies were
resolved by discussion or with a third author (LP.W.). The
following information was extracted from each eligible study:
(1) the surname of the first author, (2) the year of publication,
(3) participant characteristics, including number, gender, and
age, (4) study design, (5) duration and dosage of probiotics or
related supplements administered, and (6) primary measured
outcomes. In instances where data were unclear or incomplete,
the data analyst reached out to the corresponding authors via
email to request additional information. If a response was not
received, a second attempt to contact the authors was made.
Should there be continued non-response following the second
attempt, the study was excluded from the analysis.

2.5 Quality assessment

The Cochrane Handbook was utilized by two reviewers to
evaluate the risk of bias in each study. This assessment
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encompassed seven domains: random sequence generation

(selection bias), allocation concealment (selection Dbias),
blinding of participants and personnel (performance bias),
blinding of outcome assessment (detection bias), incomplete
outcome data (attrition bias), selective reporting (reporting
bias), and other biases. The levels of bias were classified as
“Low risk”, “High risk”, or “Unclear risk”. Any discrepancies
that arose were addressed through discussions involving a
third assessor.

The certainty of the evidence for the primary outcomes was
evaluated using the GRADE (Grading of Recommendations
Assessment, Development, and Evaluation) approach, based on
five domains: risk of bias, inconsistency, indirectness,
imprecision, and publication bias. The quality of evidence was
classified into four categories, namely high, moderate, low, and

very low, according to the corresponding evaluation criteria.

2.6 Statistical analysis

The meta-analysis was conducted using STATA software
version 16 (Stata Corp LP). Extracted data were input into the
software as mean differences accompanied by standard
(m*SD). The mean difference (MD), standard
deviation (SD), and 95% confidence interval (CI) served as the
primary effect size indicators. In instances where data were

deviations

initially reported as medians with interquartile ranges (IQR) or
as lower and upper quartiles (Q1; Q3), skewness was evaluated
using the online (https://www.math.hkbu.edu.hk/
~tongt/papers/median2mean.html) (22, 23). If the data exhibited
no significant skewness, transformation to mean with SD was

resource

performed. Between-study heterogeneity was assessed using the
I-squared [IZ] statistic, with I* values of 25%, 50%, and 75%
indicating low, moderate, and high heterogeneity, respectively
(24). In cases of significant heterogeneity (I*>50%, P<0.05), a
random-effects model was utilized. Additionally, Sensitivity
analyses were undertaken to evaluate the impact of the following
strategies on the pooled effects: leave-one-out analysis, exclusion
of studies at high risk of bias, and exclusion of trials involving
interventions.

prebiotic-only Subgroup  analyses

intervention duration,

were
subsequently performed by disease

duration, and probiotics formulation.

3 Results
3.1 Search details

The literature review resulted in the identification of 1,216
records, of which 474 were excluded: 326 due to duplication and
148 classified as review articles. Following an evaluation of the
titles and abstracts, an additional 706 papers were eliminated on
the basis of their focus on unrelated diseases (e.g., type 2
diabetes mellitus). Ultimately, the number of articles was
narrowed down to 36, which underwent a thorough review,
leading to the acquisition and reassessment of their full-text
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versions. From this final selection, 8 articles were included in
the meta-analysis (25-32) (Figure 1).

3.2 Study characteristics

Table 1 outlines the general characteristics of the eight
included randomized controlled trials (RCTs). To facilitate a
clearer understanding of patient heterogeneity, Supplementary
Table S2 presents detailed baseline and post-intervention clinical
data for each study (25-32). A total of 494 participants were
enrolled, comprising 246 individuals in the intervention group
and 248 in the control group. The mean age of participants was
10.99 years, with the duration of Type 1 Diabetes (T1D) ranging
from less than 2 months to 7.31 years. All clinical trials included
both male and female participants, maintaining a balanced
male-to-female ratio of 1.3. In terms of interventions, one study
utilized a prebiotic (inulin) (25), another employed a single-
strain probiotic (Lactobacillus rhamnosus GG) (26), while six
studies implemented multistrain probiotic or synbiotic
supplements (27-32). Significantly, one study investigated the
Collaborative effects of probiotics and the influenza vaccine on
immune function and HbAlc levels in patients with T1DM
(26). To reduce confounding effects and measurement bias, data
were extracted prior to the administration of the influenza
vaccine, specifically within the first three months of probiotic
treatment. Four studies administered probiotics and related
supplements for a duration of three months (25, 26, 28, 31),
with one study reporting a duration of less than three months
(27) and three studies extending beyond three months (29, 30,
32). Probiotics and related supplements were delivered in
various forms, including capsules (25, 28-31), drops (26), and
powder (27, 32).

3.3 Quality assessment

Within the studies incorporated into the analysis, one study
was classified as exhibiting a high risk of bias (12.5%, 1/8),
data (26).
Furthermore, six studies (75%, 6/8) were determined to have an
unclear risk of bias (27-32), while one study (12.5%, 1/8) was
evaluated as having a low risk of bias (25). Additional

primarily attributable to incomplete outcome

information regarding the quality assessment is presented in
Figures 2A,B, with further details provided in Supplementary
Table S3.

An evaluation of evidence quality using the GRADE
approach is presented in Supplementary Figure S1. The
certainty of evidence for HbAlc was rated low, with
downgrades for risk of bias (serious) and imprecision
(serious) (8 trials; total n=497) (25-32). For FBG, C-peptide,
and insulin requirements, the certainty was rated very low
due to risk of bias (serious) and inconsistency (serious)
together with imprecision (very serious) [FBG: 3 trials, total
n=156 (27, 31, 32); C-peptide: 4 trials, total n=278 (25, 28,
29, 32); insulin: 3 trials, total n=240 (28, 29, 32)]. No
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FIGURE 1
Flow chart of study selection.

additional downgrading was applied for other considerations
(e.g., publication bias); however, given the small number of
trials, small-study/publication bias cannot be excluded.

3.4 Results of meta-analysis

3.4.1 Baseline consistency analysis

Before performing the meta-analysis, baseline consistency
between the two groups was confirmed to ensure the validity of
subsequent analyses.

The results of the baseline assessment, detailed in Table 2 and
Supplementary Figure S2, reveal no statistically significant
differences between the groups concerning HbAlc [Weighted
Mean Difference (WMD) =-0.02%; 95% CI=-0.28, 0.24;
p=0.871], FBG (WMD =16.41 mg/dl; 95% CI=-1.05, 33.86;
p=0.065), C-peptide levels (WMD =0.04 ng/ml; 95%
CI=-0.07, 0.16; p=0447), and insulin requirements
(WMD = —0.05 Units/kg/day; 95% CI=—0.12, 0.02; p=0.146).
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These results indicate a lack of baseline differences, thereby
justifying the continuation of the meta-analysis.

3.4.2 Effect of probiotics and related supplements
on HbAlc

The effectiveness of probiotics and related supplements on
HbAlc (25-33),
encompassing a total of 494 participants (intervention group:

levels was assessed in eight studies
246; control group: 248). The pooled analysis revealed that
probiotics and synbiotic supplementation resulted in a
significant reduction in HbAlc levels (WMD =-0.25%; 95%
CI=-045, -0.04; p=0.019), exhibiting low heterogeneity

(I> = 22%; p = 0.255) (Figure 3A and Table 3).

3.4.3 Effect of probiotics and related supplements

on FBG
In the pooled analysis of three studies (27, 31, 32) involving a
total of 156 participants (with 78 in the intervention group and 78
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FIGURE 2
Risk-of-bias summary. (A) Risk of bias summary. (B) Risk of bias graph.

TABLE 2 Baseline consistency analysis.

Heterogeneity

Meta-analyzed variables

Effect model Meta analysis results

12 P WMD 95% CI (%)
HbAlc 47.5% 0.064 Fixed-effects model —0.02 (—0.28, 0.24) 0.871
FBG 0.0% 0.484 Fixed-effects model 16.41 (—1.05, 33.86) 0.065
C-peptide 0.0% 0.870 Fixed-effects model 0.04 (=0.07, 0.16) 0.447
Insulin requirements 13.0% 0317 Fixed-effects model —0.05 (-0.12, 0.02) 0.146

in the control group), no statistically significant effect of probiotics
and prebiotics on FBG was observed (WMD = —16.54 mg/dl; 95%
Cl=-47.55-14.47; p=0.296). the
demonstrated considerable heterogeneity (I* =65.3%, p = 0.056)
(Figure 3B and Table 3).

Furthermore, results

3.4.4 Effect of probiotics and related supplements
on C-peptide

The comprehensive analysis revealed no statistically significant
enhancement in serum C-peptide concentrations attributable to
probiotics and associated supplementation (WMD = 0.10 ng/ml;
95% CI=-0.03, 0.22; p=0.119) following the evaluation of four
RCTs involving a total of 278 participants (intervention group:
137; control group: 141) (25, 28, 29, 32). Additionally, notable
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heterogeneity among the studies was identified (I*=53.7%,
p=0.090) (Figure 3C and Table 3).

3.4.5 Effect of probiotics and related supplements
on insulin requirements

Three RCTs (28, 29, 32) investigated the impact of probiotic
administration on daily insulin requirements, involving a total
of 240 participants (120 in the intervention group and 120 in
the control group). The analysis revealed no significant
association between probiotic and synbiotic supplementation
and insulin requirements, with a WMD of —0.06 Units/kg/day
(95% CI=-0.14, 0.02; p=0.113). Additionally, no heterogeneity
was detected among the studies (I> = 0.0%, p = 0.475) (Figure 3D
and Table 3).
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A
Study %
D WMD (95% Cl) ~ Weight
Ho (2019) ——E—— -0.20 (-0.66, 0.26) 20.46
Bianchini (2020) e 0.31(-0.24,0.86) 13.97
Zare (2020) -0.47 (-1.80, 0.86) 2.41
Kumar (2021) - -0.60 (-1.39, 0.19) 6.83
Groele (2021) — -0.35 (-0.69, -0.01)36.46
Wang (2022) — -1.00 (-1.84, -0.16)6.08
Shabani-Mirzaee (2023) 0.30 (-1.42, 0.82) 3.41
Lokesh (2024) —— 0.02 (:0.62,0.66) 10.39
Overall (I-squared = 22.0%, p = 0.255) <> -0.25 (-0.45, -0.04)100.00

T T

1.84 0 1.84
Study %
D WMD (95% Cl) Weight
Ho (2019) 1—4— 0.16(0.08,024) 4139
Kumar (2021) B 0.00(-0.17,0.17)  24.83

Groele (2021) —4—-:—

-0.01(-0.19,0.17)  24.03

Lokesh (2024) s 035(:000,070) 975

Overall (I-squared = 53.7%, p = 0.090) <O

NOTE: Weights are from random effects analysis

0.10(-0.03, 0.22) 100.00

-703 0 703
FIGURE 3

and insulin requirements (D).

Forest plots of randomised controlled trials investigating the efficacy of probiotics on TIDM; selected variables are HbAlc (A), FBG (B), C-peptide (C),

Study %

D WMD (95% CI) Weight

Zare (2020) —_— 7.95 (-62.21,36.31) 25.05
habani-Mii (2023) -53.60 (-95.65, -11.55) 26.36

Lokesh (2024) i o -0.87 (-10.74,9.00)  48.60

-16.54 (47.55, 14.47) 100.00

Overall (I-squared = 65.3%, p = 0.056) <:>

NOTE: Weights are from random effects analysis

T T
-95.6 0 95.6

Study %
D WMD (95% CI) Weight
Kumar (2021) —_—— 0.10(:0.26,0.06)  23.91

Groele (2021) —— 0.03(-0.13,0.07)  63.74

Lokesh (2024) —_—

Overall (I-squared = 0.0%, p = 0.475) O

-0.17 (-0.40,0.06) 12.35

-0.06 (-0.14,0.02)  100.00

T
-.395 0 395

TABLE 3 Results of meta-analyzed variables.

Meta-analyzed variables

Heterogeneity

Effect model

Meta analysis results

2 P WMD 95% CI (%)
HbAlc 22.0% 0.255 Fixed-effects model -0.25 (—0.45, —0.04) 0.019
FBG 65.3% 0.056 Random-effects model —16.54 (—47.55, 14.47) 0.296
C-peptide 53.7% 0.090 Random-effects model 0.10 (=0.03, 0.22) 0.119
Insulin requirements 0.0% 0.475 Fixed-effects model —0.06 (-0.14, 0.02) 0.113

3.5 Sensitivity analysis

In conducting the sensitivity analysis, we utilized a leave-one-
out exclusion method to evaluate the outcome indicators of
HbAlc, FBG, C-peptide, and insulin requirements. Each study
was systematically excluded in turn prior to the calculation of
pooled effect sizes. The findings from the sensitivity analysis
revealed no significant variations, suggesting that the pooled
effect sizes in this meta-analysis are both stable and reliable, as
demonstrated in Supplementary Figure S3. It is important to
note that a subgroup analysis was not conducted due to the
limited number of studies available.

For the outcome of HbAlc, two sensitivity analyses were
performed. After removing one high risk-of-bias study (26), the
pooled effect was WMD —0.34% (95% CI —0.56 to —0.11;
I>=0%; Supplementary Figure S4). Compared with the main

Frontiers in Pediatrics

analysis (WMD —0.25%, 95% CI —0.45 to —0.04; I* = 22%), the
direction was consistent with a slightly larger effect and
heterogeneity reduced to 0%, indicating that the results are not
sensitive to this study and that the primary conclusion is more
stable. After excluding the prebiotic-only trial (25), the pooled
effect for HbAlc was WMD —0.26% (95% CI —0.49 to —0.03;
I>=32.7%; Supplementary Figure S5). Relative to the main
analysis, the direction remained consistent and the magnitude
was similar, indicating that the overall HbAlc effect is not
driven by the prebiotic study.

3.6 Subgroup analysis

Subgroup analyses were not performed for FBG, C-peptide, or
insulin requirement due to the limited number of eligible studies
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FIGURE 4

probiotics formulation on HbAlc (C).

A B
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E
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Overall (I-squared = 32.7%, p = 0.178 -0.26 (-0.49,-0.03)  100.00
(sq p ) <> ( )
T : T
-1.84 0 1.84

Subgroup analysis of intervention duration effects on HbAlc (A), subgroup analysis of disease duration

effects on HbAlc (B), subgroup analysis of

and small sample sizes. Subgroup analysis was conducted only for
glycated hemoglobin HbAlc. When stratified by intervention
duration, studies with a duration longer than 3 months showed
a significant reduction in HbAlc [WMD =-0.35 95% CI
(—0.64, —0.07), p=0.015] (29, 30, 32), whereas no significant
effect was observed in studies with an intervention of 3 months
[WMD =-0.13, 95% CI (=043, 0.17), p=0.405]
(25-28, 31) (Figure 4A). Heterogeneity was low in both
subgroups (1? = 44.5% for >3 months and 5.5% for <3 months),
and the test for subgroup differences did not indicate a
statistically significant interaction (p =0.287). When stratified by

or less

disease duration, a significant reduction in HbAlc was observed
among patients with a diagnosis of <2 months [WMD = -0.31,
95% CI (-0.59, —0.03), p=0.031] (28, 29, 32), while no
significant effect was found in those with a diagnosis of >2
[WMD =—0.17, 95% CI (—0.48, 0.13), p=0.264]
(25-27, 30, 31) (Figure 4B). Heterogeneity was low in both
subgroups (I>=0.0% for diagnosis <2 months and 42.5% for

months

diagnosis >2 months), with no statistically significant difference
between subgroups (p=0.515) (Supplementary Tables S4, S5).
Stratifying by probiotic formulation, the multistrain + prebiotic
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subgroup (5 trials; 79.41% weight) showed WMD —0.38% (95%
CI —0.64 to —0.12; I=0%) (28-32), indicating lower HbAlc
with minimal heterogeneity. The single-strain + prebiotic
subgroup (2 trials; 20.59% weight) showed WMD +0.20% (95%
CI —0.31 to +0.71; I*=11.3%) (26, 27).The overall pooled effect
across studies was WMD —0.26% (95% CI —0.49 to —0.03;
I*=32.7%) (26-32). The between-subgroup heterogeneity test
was p =0.050 (Figure 4C and Supplementary Table S6).

4 Discussion

This systematic review and meta-analysis focused on the
adjunctive role of probiotics and related supplements in the
management of TIDM among children and adolescents. With
growing evidence on the relationship between gut microbiota
and metabolic diseases, modulation of the gut microbiome has
been recognized as a promising strategy in diabetes care.
Following a systematic search and rigorous screening of the
literature, eight randomized controlled trials involving pediatric
and adolescent TIDM populations were included. Given the
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small number of trials, we did not perform Egger or Begg tests
(underpowered and potentially misleading in small-k settings)
Risk of bias (ROB) assessed using the Cochrane Handbook/ROB
2 framework indicated only one low-risk study, six with some
concerns, and one at high risk; overall study quality was limited.
According to GRADE, the certainty of evidence was low for
HbAlc and very low for fasting blood glucose (FBG), C-peptide,
and insulin requirements, warranting cautious interpretation.
Pooled analyses showed a modest mean reduction in HbAlc
(approximately 0.25%), with no consistent improvements
in FBG, C-peptide, or insulin requirements. Given that a
commonly cited threshold for clinically meaningful change in
HbAlc is about 0.5% (34), the observed magnitude suggests
limited clinical importance. Sensitivity analyses (excluding the
high-risk-of-bias trial, leave-one-out analyses, and excluding
prebiotic-only trials) yielded broadly consistent directions of
effect on HbAlc but did not materially raise the certainty of
evidence. These findings differ from some meta-analyses
conducted in type 2 diabetes mellitus (T2DM) or gestational
diabetes mellitus (GDM) (35-39), suggesting that TIDM may
have distinct pathophysiological characteristics and responses to
microbiota-targeted interventions. Importantly, our pooled
estimate integrates heterogeneous probiotic regimens (strain
composition and co-administration of prebiotics) and does not
attribute effects to any specific strain or formulation; the
implicit exchangeability assumption across formulations may not
hold biologically. In view of the limited evidence base and
between-study variability, overall certainty remains low, and
routine clinical recommendations are not proposed.

Prior evidence suggests that when the intervention duration
approaches or spans the HbAlc

(approximately 2-3 months), reductions are more likely to be

assessment  window
observed, whereas shorter follow-up may fail to capture changes
(40). Accordingly, we conducted an exploratory subgroup
analysis by duration: longer courses tended to show signals of
HbAlc reduction, whereas shorter courses did not. To further
parse heterogeneity, two additional exploratory subgroupings
were performed. First, by disease duration (newly diagnosed/
shorter duration vs. longer duration), the former more often
showed favorable changes in HbAlc; however, definitions and
reporting of “disease duration” varied across studies, limiting
interpretability. Second, by probiotic formulation (single-strain
vs. multi-strain), subgroup directions were broadly consistent,
with multi-strain formulations showing a tendency toward larger
HbAlc reductions; nonetheless, confidence intervals were wide
and the exchangeability assumption across formulations was
unverified, precluding comparative effectiveness inferences. All
three subgroup analyses were exploratory with limited statistical
power and do not support firm stratified conclusions.

At the mechanistic level, probiotics may influence glycemic
Microbiota-directed

effects include increased abundance of beneficial taxa (e.g.,

control through multiple pathways.
Lactobacillus, Bifidobacterium), reductions in proinflammatory
taxa (e.g., Proteobacteria), and restoration of diversity and
homeostasis (41). Metabolically, increased short-chain fatty acid

production (notably butyrate and propionate) may enhance gut

Frontiers in Pediatrics

10.3389/fped.2025.1633694

barrier integrity via tight junction upregulation, attenuate

translocation of lipopolysaccharide, and reduce low-grade
inflammation (42-44). Immunomodulatory effects may include
promotion of regulatory T-cell differentiation, suppression of
Th1/Th17 activity,

cytokine profiles, thereby potentially limiting immune-mediated

and a shift toward anti-inflammatory

B-cell injury. From a metabolic signaling perspective, short-
chain fatty acids can activate G-protein-coupled receptors,
stimulate GLP-1 secretion, slow gastric emptying, and improve
insulin secretion and sensitivity (45), with potential antioxidant
effects via enhanced antioxidant enzyme activity (46). These
mechanisms, synthesized from the broader literature, represent
plausible pathways that could partially account for the signal
observed with multi-strain regimens; however, the included
RCTs did not directly or systematically measure mechanistic
endpoints, and these explanations remain hypothesis-generating.

Probiotic regimens showed no significant effects on FBG,
C-peptide, or insulin requirements in children and adolescents with
T1DM. This may reflect disease-specific pathophysiology: unlike
T2DM, most individuals with T1IDM have profound f-cell
destruction and depend on exogenous insulin, so improvements in
insulin sensitivity may be insufficient to produce measurable
changes in glycemia among insulin-dependent patients (47).
Moreover, probiotic effects may preferentially influence longer-term
glycemic averages (HbAlc) rather than single time-point FBG or
direct B-cell function indices such as C-peptide (48, 49). Statistically,
the higher heterogeneity observed for FBG and C-peptide may stem
from differences in formulations (e.g., prebiotics vs. multi-strain
synbiotics), dosing, disease duration, and age distributions.
Although most studies reported no statistically significant baseline
imbalances, some baseline estimates (e.g., FBG) exhibited wide
confidence intervals (e.g., —1.05-33.86 mg/dl), suggesting potential
residual imbalance or measurement error that could affect the
stability of effect estimates. Given the limited number of studies per
outcome, we did not pursue additional subgroup analyses for these
endpoints and downgraded GRADE for inconsistency and
imprecision. No clinical recommendations are proposed for these
outcomes on current evidence. This study has several limitations: (1)
small overall sample size with uneven study quality and limited
power; (2) marked clinical and methodological heterogeneity (strain
composition and co-administration of prebiotics, dosing and
duration, disease stage, outcome measurement and aggregation),
with pooled estimates contingent on an exchangeability assumption
across distinct formulations, limiting comparative effectiveness and
causal inference; (3) generally short follow-up, with insufficient
evidence on long-term efficacy and safety; (4) incomplete reporting
on domains pertinent to risk of bias, including one high-risk study;
(5) too few studies to perform robust publication bias assessments,
so small-study and reporting biases cannot be excluded; and
(6) wide confidence intervals in baseline estimates for some
outcomes, suggesting potential residual imbalance. Overall, GRADE
certainty ranged from low to very low. We therefore do not advance
routine clinical recommendations. Therefore, future research should
address these issues from several perspectives. First, larger sample
sizes and multicenter collaborative studies employing rigorously
designed RCTs with detailed subgroup analyses are warranted to
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elucidate the effects and underlying mechanisms of probiotic
interventions on both long-term and short-term glycemic control in
diverse patient populations. Second, refined selection of probiotic
strains and dosage optimization represent critical directions for
future investigations. Systematic comparisons of different strains,
combinations, dosages, and intervention durations are necessary to
provide a scientific basis for personalized treatment regimens. Third,
exploring the synergistic effects of probiotics in conjunction with
conventional hypoglycemic agents, dietary modifications, and
exercise interventions may facilitate the development of a more
comprehensive TIDM management strategy. Additionally, further
basic research is required to elucidate the mechanisms by which
probiotics influence glucose metabolism through modulation of gut
microbiota composition, enhancement of intestinal barrier function,
reduction of systemic inflammation, and regulation of short-chain
fatty acid metabolism, as well as to develop predictive biomarkers.
Finally, comprehensive evaluations of the long-term safety and
tolerability of probiotic supplementation are essential to provide the
necessary data for their clinical application.

5 Conclusion

This systematic review and meta-analysis observed a small,
in HbAlc (x0.25%) with
probiotic supplementation in children and adolescents with type 1

statistically ~significant reduction

diabetes; however, the certainty of this evidence is low, the clinical
(below cited ~0.5%
thresholds), and no consistent effects were detected for fasting

importance is uncertain commonly
blood glucose, C-peptide, or insulin requirements. The evidence
base is constrained by small sample sizes, risk of bias, and
substantial clinical and methodological heterogeneity across
strains, dosages, regimens, and follow-up, and too few trials to
reliably assess publication bias. Sensitivity analyses showed
broadly similar directions of effect but did not increase the
GRADE certainty. While adequate dosing and longer intervention
duration may favor gut colonization and downstream metabolic
effects, whether probiotics can sustain long-term glycemic control
remains unproven and requires trials with extended follow-up.
Given the unverified exchangeability of different formulations,
routine clinical recommendations are not proposed. Future
research should include larger, rigorously designed multicenter
RCTs with

prespecified dosing and duration, ideally with head-to-head

using standardized, well-characterized strains

comparisons and mechanistic biomarker collection, to clarify

comparative efficacy, underlying mechanisms, and optimized
treatment protocols for TIDM management.
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