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Introduction: Barth syndrome (BTHS) is an ultra-rare genetic disease caused by

a mutation in the TAFAZZIN gene, located on the X chromosome. This gene

codes for the protein tafazzin, which is involved in the metabolism of the

mitochondrial phospholipid - cardiolipin. Symptoms of this genetic defect

include dilated cardiomyopathy (DCM), skeletal myopathy, neutropenia, growth

retardation, reduced cholesterol levels, increased serum lactic acid levels, and

hypoglycemia in the neonatal period.

Case description: ACaucasian boy with DCM and left ventricular non-compaction

associated with BTHS, caused by a previously unreported variant in the

TAFAZZIN gene: NM_000116.4:c.525_533del; NP_000107.1:p.(His176_Phe178del)

at NC_000023.11:g.154419607_154419615del, in the exon 6. Due to the patient’s

heart failure, a mechanical circulatory support (MCS) system was required,

followed by orthotopic heart transplantation (OHT). Because of the presence of

neutropenia, standard immunosuppressive therapy had to be modified in the

postoperative period.

Conclusions: A previously unreported mutation is presented, leading to BTHS. This

disease can have severe cardiovascular manifestations, requiring MCS and OHT.

KEYWORDS

Barth syndrome, TAFAZZIN gene, tafazzin, cardiolipin, cardiomyopathy, heart

transplant

Introduction

Barth syndrome (BTHS; MIM 302060) is an ultra-rare genetic disorder with an

incidence of 1 in 400,000 to 1 in 1,000,000 births (1). Approximately 250 cases of the

disease have been described worldwide since 1983 (1). The cause of BTHS is a mutation

in the TAFAZZIN gene, located on the X chromosome (1, 2). This gene encodes the

protein tafazzin, and its mutation results in impaired mitochondrial metabolism of the

phospholipid cardiolipin. Tafazzin is a non-specific phospholipid-lysophospholipid

transacylase responsible for modifying the structure of cardiolipin, a key component of

the mitochondrial membrane. This leads to severe abnormalities, like a disruption of the
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electron transport chain, increased mitochondrial reactive oxygen

species (both in the mechanism of enhanced production and

accumulation), dysregulation of CoA-dependent metabolism, and

dysfunction of the citric acid cycle (1–4).

Symptoms of this genetic disease include dilated

cardiomyopathy (DCM), skeletal myopathy, neutropenia, growth

retardation, reduced cholesterol level, increased serum lactic acid

levels, and hypoglycemia in the neonatal period (1–5). This case

study presents a male patient with DCM and left ventricular

non-compaction (LVNC) attributed to BTHS, caused by a

previously unreported variant of the c.525_533del

p.(His176_Phe178del) in the TAFAZZIN gene.

Case description

A Caucasian boy was delivered by cesarean section at 36 weeks’

gestation due to fetal growth restriction and placental insufficiency.

Patient’s birth weight was 2,450 g and he was 50 cm in length. The

patient was from his mother’s third pregnancy and second delivery.

The mother had previously one miscarriage, and the boy’s older

brother had died at 5 months of age due to DCM with

myocardial non-compaction.

Prenatal testing had shown thickened right ventricular

myocardium. On the second day of life, the patient was admitted

to the cardiology unit due to bradycardia (heart rate dropping to

about 76 beats per minute). At that time, decreased muscle tone

and a heart rate of 90–100 bpm with drops to 80 bpm were

observed. Blood tests revealed leukopenia (7.59 × 103/µl; normal

range: 9.40–34.00 × 103/µl) with a low number of eosinophils

(0.04 × 103/µl; normal range: 0.2–0.4 × 103/µl) and an elevated

number of monocytes (1.55 × 103/µl; normal range: 0.10–

1.10 × 103/µl). Echocardiography revealed right ventricular

myocardial thickening and decreased contractility of both

ventricles, with a reduced left ventricular ejection fraction (LVEF)

of approximately 55%. The left ventricular diameter measured

1.79 cm in diastole (LVDd) and 1.34 cm in systole (LVDs).

A patent foramen ovale (PFO) and increased LV trabeculation

was also identified. Based on these findings, DCM was

diagnosed, and LVNC was suspected.

After treatment with captopril, spironolactone, and carvedilol,

normalization of heart rate and an increase in LVEF to about

80% were achieved.

Based on the clinical symptoms, BTHS was suspected, and a

urine test for organic acids using gas chromatography coupled to

mass spectrometry (GC-MS) was ordered. The test showed

elevated concentrations of lactic acid, 2-ketoglutaric acid, p-

hydroxyphenyllactic acid, and p-hydroxyphenylpyruvic acid; no

succinylacetone was found.

In the first months of the patient’s life, delayed motor and

speech development were observed. At the age of 14 months, he

was hospitalized for sepsis of staphylococcal etiology

and agranulocytosis.

During the diagnostic process, genomic DNA was isolated from

blood leukocytes using standard procedures, including phenol/

chloroform extraction and automated DNA extraction (MagNA

Pure LC 2.0, Roche). Mutation analysis was performed using

Sanger sequencing of PCR-amplified exons 2–11 of the

TAFAZZIN gene, including exon/intron boundaries, on a 3130

Genetic Analyzer (Applied Biosystems/Life Technologies, Foster

City, CA).

During the diagnostic process, DNA sequencing was

performed using the Sanger method with analysis of exons 2–11

of the TAFAZZIN gene. Numbering of revealed nucleotide

changes was based on the reference sequence for the TAFAZZIN

gene (hg38; NM_000116.5; NP_000107.1); position +1

corresponded to the A of the ATG translation initiation codon.

The study revealed a deletion of (NM_000116.4:c.525_533del;

NP_000107.1:p.(His176_Phe178del); NC_000023.11:g.154419607_

154419615del) in exon 6 of the TAFAZZIN gene. This molecular

variant c.525_533del.p(His176_Phe178del) had not been

previously reported in The Human Gene Mutation Database

(HGMD). The same mutation was found in the patient’s mother,

who was heterozygous (a carrier), and was subsequently inherited

by the child.

At the age of 7, the boy was admitted to a cardiac center due to a

sudden deterioration in his condition. On admission, the patient’s

weight was 17.4 kg and he was 115 cm tall (both values were <3

percentile). There was tachycardia (approximately 160 bpm),

profuse vomiting, and a quiet systolic murmur on the left side of

the sternum. Blood tests showed elevated NT-proBNP (10,064 pg/

ml; normal <83 pg/ml) and troponin T (86 pg/ml; normal <14 pg/

ml). Chest X-ray revealed an increased cardiac silhouette

(Figure 1). An echocardiogram revealed a dilated left ventricle

(LVDd: 4.73 cm – Z-score: 2.7; LVDs: 4.33 cm – Z-score: 5.22)

with features of non-compaction, PFO, and small regurgitations on

FIGURE 1

Chest x-ray (AP view) showing marked cardiomegaly consistent with

dilated cardiomyopathy, without signs of pulmonary congestion.
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the mitral and tricuspid valves (Figure 2). The LVEF was about 18%.

The electrocardiograms (ECG) showed non-specific intraventricular

conduction abnormalities, ST-T segment inversion in the V5, V6

leads and a borderline corrected QT interval (QTc) of up to

453 ms (normal: <440 ms). The Holter ECG showed ten

ventricular extrasystoles. Due to the patient’s deteriorating

condition, a left ventricular assist device (LVAD) was implanted as

a bridge to orthotopic heart transplant (OHT).

During hospitalization, fluctuating levels of neutrophils (from

0.07 × 103/µl to 8.34 × 103/µl, often remaining below the lower

limit of normal) and monocytes (from 0.60 × 103/µl to

2.74 × 103/µl, consistently above the upper limit of normal) were

observed. Two times the LVAD chamber had to be exchanged

due to fibrin deposits. Antibiotic therapy was required on several

occasions: vancomycin due to Clostridioides difficile infection,

ceftriaxone due to urinary tract infection and cloxacillin due to

LVAD cannulation site infection. After 383 days of mechanical

circulatory support, the patient underwent OHT.

After OHT, immunosuppression was implemented:

methyloprednisone (in dose 50 mg twice daily), basiliximab (in

dose 10 mg). On the day following the surgery, a neutropenia

(2.19 × 103/µl) was observed, leading to a temporary decision to

withhold mycophenolate mofetil. Two days later, normal

neutrophil levels were achieved. The tacrolimus in dose 2 mg was

ordered. The mycophenolate mofetil was introduced on the fifth

post-operative day at a dose of 250 mg twice daily. Additionally,

on the fifth day after surgery, methyloprednisolone was substituted

with prednisone in dose 20 mg. The patient was discharged home

in good general condition after three weeks. Twenty months after

surgery, the patient is well and has not required further cardiac

interventions. The function of the transplanted heart was normal

with an LVEF of 55%. During follow-up, no significant

haematological disorders or infections were observed.

Discussion

Cardiomyopathies are a heterogeneous group of myocardial

disorders classified according to etiology, phenotypic features,

and impact on cardiac function. In the category of primary

genetic cardiomyopathies, hypertrophic cardiomyopathy (HCM),

arrhythmogenic right ventricular cardiomyopathy (ARVC), and

FIGURE 2

Echocardiographic image in a parasternal long-axis view showing the left ventricle, left atrium, and aortic root. Cardiac structures appear with clear

wall delineation, suggesting preserved image quality for structural assessment.
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LVNC are distinguished. Cardiomyopathies of mixed etiology

include DCM and restrictive cardiomyopathy (RCM), while

peripartum and stress-induced cardiomyopathy (Tako-Tsubo

syndrome) are classified as acquired cardiomyopathies. Secondary

cardiomyopathies result from systemic diseases (6).

DCM, the most common cardiomyopathy in the general

population (1:250–1:2500 people) with an incidence of 5–7 cases

per 100,000 persons per year. DCM most often manifests itself

between 20 and 60 years of age, but it is also the most common

form of cardiomyopathy in children (more than 60% of childhood

cardiomyopathies) (7). DCM is characterized by dilatation of the

heart chambers with preserved wall thickness and systolic

dysfunction, often leading to heart failure with reduced ejection

fraction (8). The most common primary cardiomyopathy is HCM

(9). Among primary cardiomyopathies, rare forms such as LVNC,

which has an embryonic origin manifesting as significant

trabeculation and development of intertrabecular spaces in the left

ventricle, are also identified. The prevalence of LVNC in the

general population is difficult to determine but is estimated to

affect less than 1% of the population (6).

DCM is the most common form of cardiomyopathy leading to

orthotopic heart transplantation (OHT) and represents a major

cardiac complication in BTHS (2, 3). In the present case, prenatal

thickening of the right ventricular myocardium and postnatal

deterioration of biventricular contractility, with a reduced ejection

fraction, indicate early cardiac involvement in the disease process.

These findings are consistent with previous reports describing

BTHS manifestations as early as the fetal period (10). LVNC is

also a common phenotype in patients with BTHS, affecting 20%–

50% of these patients (1, 4). Unlike other etiologies of DCM,

where ventricular dilatation is usually progressive and associated

with continuous impairment of systolic function, in BTHS it can

be fluctuating, which may be related to the underlying

mitochondrial dysfunction characteristic of the syndrome. In

BTHS, despite the presence of DCM, a preserved or slightly

reduced ejection fraction is often observed, distinguishing it from

other causes of DCM (2, 5). In BTHS, left ventricular dilatation is

not directly related to left ventricular weakness but may result

from impaired relaxation and filling of the ventricle. This

condition may be partially reversible, as evidenced by cases of

improvement after supportive treatment (1, 4).

In the presented case, initial management centered on the

administration of captopril, spironolactone, and carvedilol. This

standard pharmacotherapy, in accordance with current clinical

guidelines, led to the normalization of heart rhythm and a

significant improvement in LVEF, reaching approximately 80%.

This outcome aligns with existing evidence suggesting that patients

with BTHS may respond favorably to conventional heart failure

therapies, despite the absence of specific clinical trials evaluating

the efficacy of these treatments in this population (1, 11, 12).

However, due to an acute clinical deterioration characterized by

left ventricular dilation and a marked reduction in LVEF to

approximately 18%, more advanced therapeutic interventions

became necessary. LVAD implantation is typically employed as a

bridging therapy to OHT (13), which is considered the definitive

treatment option when other therapeutic modalities have proven

insufficient (1). Available data indicate that approximately 14%

of patients with BTHS ultimately require OHT (1).

The molecular etiology of BTHS is attributed to mutations in

the TAFAZZIN gene, which encodes the tafazzin protein. This

mutation disrupts the regulation of cardiolipin biosynthesis and

remodelling within the inner mitochondrial membrane (1–5).

Given the high mitochondrial density in organs such as the heart

and skeletal muscle, mitochondrial dysfunction typically

manifests as cardiomyopathy or skeletal myopathy (1).

The described proband, along with his mother, was found to

harbor a previously unidentified gene mutation, c.525_533del.p

(His176_Phe178del), located in exon 6 of the TAFAZZIN gene

(Figure 3). This variant has not been previously reported in the

Human Gene Mutation Database (HGMD) (14), the ClinVar

database maintained by the National Center for Biotechnology

Information (15), the Human Tafazzin Gene Variants Database

curated by the Barth Syndrome Foundation (16) (accessed on

14th April 2025) and also in GnomAD v.4.1.0 database (17).

Variant is located in a region where there are missense (likely)

pathogenic changes reported (chrX: 154419614T>A and chrX:

154419614T>C), both affects protein function (acyltransferase

domain). MutationTaster algorithm predicts its deleterious effect (18).

According to AlphaFold, the average missense pathogenicity

scores were 0.995 for histidine, 0.876 for isoleucine, and 0.99 for

phenylalanine, with a threshold of 0.564 above which

pathogenicity is considered likely (19) (Figure 4).

The potential impact of the c.525_533del variant on splicing was

assessed using SpliceAI and Pangolin. SpliceAI predicted a low-

confidence donor site loss (score = 0.23 at position −2 bp relative

to the variant), while Pangolin indicated minimal splice site loss

(score = 0.05) and negligible splice site gain (score = 0.01). These

findings suggest that the variant is unlikely to significantly disrupt

canonical splicing or create cryptic splice sites (20).

According to Ensembl - all TAFAZZIN gene variants encoding

the tafazzin protein contain the locus in which the mutation

described in our study has occurred (21).

In silico conservation analysis using PhyloP100 revealed a score

of 8.555 for the deleted region, indicating strong evolutionary

conservation (22). This supports the pathogenic potential of the

in-frame deletion.

According to American College of Medical Genetics and

Genomics (ACMG) scoring this variant was classified as likely

pathogenic: PM1 (located in a critical and well-established

functional domain - active site of an enzyme); PM2 (absent from

controls in Exome Sequencing Project, 1000 Genomes Project, or

Exome Aggregation Consortium); PM4 (protein length changes

as a result of in-frame deletions in a nonrepeat region) and PP3

(can be used only once in any evaluation of a variant) (23).

Analysis of the c.525_533del.p(His176_Phe178del) mutation

revealed its impact at the amino acid level, altering a conserved

region within the tafazzin protein. This protein functions as a

phospholipid–lysophospholipid transacylase, essential for cardiolipin

remodeling. Disruption of tafazzin activity leads to an accumulation

of monolysocardiolipin and a decrease in mature cardiolipin levels,

resulting in increased mitochondrial reactive oxygen species (ROS)

production. Elevated ROS levels activate Ca2+/calmodulin-dependent

Krawiec et al. 10.3389/fped.2025.1634258

Frontiers in Pediatrics 04 frontiersin.org

https://doi.org/10.3389/fped.2025.1634258
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


protein kinase II (CaMKII), which phosphorylates ryanodine receptor

2 (RyR2), enhancing Ca2+ leakage from the sarcoplasmic reticulum.

This cascade elevates diastolic Ca2+ levels and depletes sarcoplasmic

reticulum Ca2+ stores, impairing cardiomyocyte contractility,

relaxation, and development, thereby contributing to the

pathophysiology of BTHS and DCM (1, 24).

This finding is particularly significant given the previously

reported novel mutation c.83T > A, p.Val28Glu, in a Polish

family (25). The challenges encountered in diagnosing BTHS, as

highlighted by the previously reported familial mosaicism

necessitating multi-tissue genetic testing, further emphasize the

critical need for increased genetic diagnostic efforts. The rarity of

diagnosed cases, coupled with the recurrent discovery of novel

pathogenic variants in the Polish population, strongly advocates

for a proactive approach to genetic screening.

Additional mutations within this region have been documented,

underscoring the significance of this genomic segment in the

pathogenesis of BTHS. A case involving a c.526C>T mutation

(p.His176Tyr), described by Hirono et al., concerned a neonate

diagnosed on the second day of life. The patient presented with

heart failure, marked by an LVEF of 17%, ventricular tachycardia,

tachypnoea, neutropenia, motor retardation, and 3-methylglutaconic

aciduria, with no relevant family history. The patient succumbed to

the condition at 5 months of age (26). Similarly, Thompson et al.

reported a 4-year-old patient with the same mutation, presenting

with delayed growth (Z-scores for height and weight of −3.25 and

−2.60, respectively), increased LVDd and LVSd (Z-scores of 1.54

and 2.60, respectively), reduced left ventricular fractional shortening

(29.06%), and elevated cardiolipin ratio (17.3; normal <0.2) along

with raised methylglutaconic acid levels (1,048.5 nmol/L; normal

range 162 ± 68 nmol/L) (27). Wang C. et al. described a case of

fetal death due to congestive heart failure, attributed to a double

pathogenic mutation involving both p.His176Tyr in the TAFAZZIN

gene and p.Arg99His in the KCNE3 gene, the latter being

associated with Brugada syndrome (28).

FIGURE 3

Electropherogram of the TAFAZZIN gene sequencing in the hemizygous patient revealed the in-frame deletion c.525_533del.p(His176_Phe178del).

FIGURE 4

3D model of the tafazzin protein generated using AlphaFold

(DeepMind), with amino acids affected by mutation marked in red.

Model visualization is based on data provided by AlphaFold, [used

under the Creative Commons Attribution 4.0 (CC BY 4.0)].
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Wang J. et al. reported the c.527A>G mutation (p.His176Arg)

in twin brothers. These male infants were born with moderately

low birth weights and presented with pneumonia and heart

failure at 2.5 months of age, followed by a diagnosis of

cardiomyopathy. Both exhibited hypotonia, motor delay, and

growth retardation. Echocardiographic findings revealed reduced

LVEF (45.6% and 36.2%), decreased left ventricular shortening

fractions (22.1% and 16.7%), and LVDd Z-scores of 5.7 and 3.8,

respectively. Additionally, a high, though sub-pathological,

noncompaction/compaction (NC/C) ratio of 1.58 and 2.20 was

observed. ECG revealed ST-T segment abnormalities and

borderline QTc intervals (441 ms and 431 ms), alongside

3-methylglutaconic aciduria. Both patients died at 7 and 7.5

months of age (29).

WangH. et al. reported amutation at c.528A>C(p.His176Pro) (30).

The c.528_541 + 7del (r.spl) mutation is listed in the ClinVar

database (31).

The c.532T>A mutation (p.Phe178Ile) was identified in a

patient presenting with DCM, neutropenia, and growth

retardation. The patient’s brother was also affected, and the

patient died at 9 months of age (32).

The c.532T>C mutation (p.Phe178Leu) is noted in the Human

Tafazzin Gene Variants Database, based on an individual report (15).

The available data suggest that patients carrying mutations

affecting at least one nucleotide within the region of the

c.525_533del deletion, as observed in our patient, exhibit a

similar constellation of symptoms: heart failure with reduced

LVEF, DCM, tachypnea, prolonged QTc interval, ventricular

extrasystoles, ST-T segment changes, growth retardation, motor

delays, or neutropenia. Data regarding cardiolipin levels and

3-methylglutaconic aciduria in the described patient were not

available. According to the literature, our patient with the

c.525_533del deletion is the longest-lived patient (currently 10

years) and the only patient with a mutation in this region to

have undergone OHT.

Neutropenia is a well-documented, dose-dependent adverse

effect of mycophenolate mofetil (33). There are also reports

describing abnormalities in both the number and morphology of

neutrophils in heart transplant recipients treated with

mycophenolate mofetil (34). It has been suggested that these

morphological changes may result from inhibition of the enzyme

inosine monophosphate dehydrogenase, leading to reduced de

novo synthesis of guanosine nucleotides (35). Azathioprine is

another immunosuppressive agent associated with a high risk of

neutropenia (36); however, it was not administered in the case

described. In patients with an increased risk of neutropenia, such

as those with BTHS, immunosuppressive therapy should be

managed with particular caution.

Conclusions

The deletion c.525_533del.p(His176_Phe178del) is strongly

suspected to be responsible for the clinical manifestations of

BTHS. OHT remains the gold standard of treatment for

advanced cardiomyopathy in this syndrome. Therefore, our

findings, coupled with the limited number of diagnosed cases

and the prevalence of novel TAFAZZIN variants in the Polish/

Caucasian population, strongly underscore the critical need for

increased awareness and the routine implementation of genetic

diagnostics in individuals presenting with pathognomonic

symptoms or a family history of such cardiac manifestations.
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