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Background: Nosocomial infections (NIs) pose a substantial global health 

challenge, affecting an estimated 7%–10% of hospitalized patients worldwide. 

Neonatal intensive care units (NICUs) are particularly vulnerable, with NIs 

representing a leading cause of infant morbidity and mortality. Similarly, 

pediatric intensive care units (PICUs) report that 28% of admitted children 

acquire NIs during hospitalization. Although prediction models offer a 

promising approach to identifying high-risk individuals, a systematic 

evaluation of existing models for ICU-ill children remains lacking.

Aim: This review systematically synthesizes and critically evaluates published 

prediction models for assessing NI risk in ill children in the ICU.

Methods: We conducted a comprehensive search of PubMed, Embase, Web of 

Science, CNKI, VIP, and Wanfang from inception through December 31, 2024. 

Study quality, risk of bias, and applicability were assessed using the PROBAST 

tool. Model performance metrics were extracted and summarized.

Results: Three studies involving 1,632 participants were included. Frequency 

analysis identified antibiotic use, birth weight, and indwelling catheters as the 

most consistently incorporated predictors. All models employed traditional 

logistic regression, with two undergoing external validation. However, critical 

limitations were observed across studies: inadequate sample sizes, omission 

of key methodological details, insufficient model specification, and a 

universally high risk of bias per PROBAST assessment.

Conclusion: Current NI prediction models for ill children in the ICU exhibit 

significant methodological shortcomings, limiting their clinical applicability. 

No existing model demonstrates sufficient rigor for routine implementation. 

High-performance predictive models can assist clinical nursing staff in the 

early identification of high-risk populations for NIs, enabling proactive 

interventions to reduce infection rates. Future research should prioritize (1) 

methodological robustness in model development, (2) external validation in 

diverse settings, and (3) exploration of advanced modeling techniques to 

optimize predictor selection. We strongly advocate adherence to TRIPOD 

guidelines to enhance predictive models’ transparency, reproducibility, and 

clinical utility in this vulnerable population.

Systematic Review Registration: PROSPERO CRD420251019763.
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1 Introduction

Over seven decades of development, critical care medicine has 

undergone transformative, industrial-scale advancements in 

managing life-threatening conditions. However, mirroring 

the unintended consequences of industrialization, these 

breakthroughs- particularly for vulnerable populations (e.g., 

elderly, immunocompromised, and chronically ill patients) - 

have inadvertently increased the prevalence and complexity of 

nosocomial infections (NIs) in modern intensive care units 

(ICUs) (1). The US Center for Disease Control and Prevention 

identifies that nearly 1.7 million hospitalized patients annually 

acquire NIs while being treated for other health issues and that 

more than 98,000 patients (one in 17) die due to these (2). The 

burden of NIs demonstrates marked geographical inequalities. 

Lower- and middle-income countries (LMICs) report an average 

NI prevalence of 17%, with surgical site infections constituting 

the predominant type, followed by urinary tract infections, 

bloodstream infections, then respiratory tract infections (3). In 

striking contrast, high-income countries (HICs) document NI 

rates approaching 30% among ICU patients - a phenomenon 

attributable primarily to three key factors: (1) higher prevalence 

of patient comorbidities, (2) greater use of immunosuppressive 

therapies, and (3) more frequent employment of invasive 

medical devices (3, 4).

NIs in neonatal intensive care units (NICUs) represent a 

particularly alarming global health concern, significantly 

contributing to infant morbidity and mortality worldwide (5). 

Premature neonates are confronted with a host of compounded 

vulnerabilities: prolonged hospitalizations, immature immune 

systems, fragile skin integrity, and frequent exposure to life- 

saving yet infection-prone medical interventions (5–7). While 

the United States witnessed significant reductions in central 

line-associated bloodstream infections (CLABSIs) between 2007 

and 2012, recent progress in this area has unfortunately 

stagnated (8, 9). In contrast, in low- and middle-income 

countries (LMICs), neonatal nosocomial infections (NIs) impose 

a disproportionately higher burden, mainly due to resource 

constraints and care disparities (10). Globally, in pediatric 

intensive care units (PICUs), 28% of children develop 

nosocomial infections during their stay (11). In such critical 

care settings, the timely identification of high-risk child patients 

and the implementation of preventive interventions are of 

paramount importance. Complications such as prolonged length 

of stay in ICU, prolonged length of stay in hospital, excess 

hospitalization costs, and predicted mortality are highly 

associated with NIs (12, 13), and place a substantial economic 

burden on healthcare systems (14). Fortunately, modifiable care 

processes present actionable targets for reducing infection 

prevalence, offering hope for meaningful improvements in 

patient outcomes and healthcare efficiency.

In clinical settings, the current identification of NIs primarily 

relies on specimen culture-based diagnostics, which typically 

require several days to produce results. This delay often 

necessitates initiating empirical broad-spectrum antibiotic 

therapy, exposing non-infected patients to unnecessary 

treatments and exacerbating the selective pressure for antibiotic- 

resistant pathogens (15). Moreover, traditional NI risk 

stratification remains inherently subjective, as it depends on 

clinician experience and qualitative interpretations of patient 

data. This subjectivity leads to inconsistent decision-making and 

limited reproducibility across care providers (16). Such 

variability compromises the reliability of correlating clinical risk 

factors with prognostic outcomes, further underscoring the 

critical role of practitioner expertise in contextualizing patient- 

specific scenarios. Clinical prediction models (CPMs) offer a 

promising alternative by providing objective, algorithm-driven 

frameworks that integrate multidimensional risk factors into 

statistical models to estimate disease probability or event risk in 

defined populations (17–19).

By leveraging historical patient data, data-driven decision 

support systems can effectively mitigate cognitive biases in 

clinical judgment, delivering standardized prognostic insights 

that enhance care precision (20). However, while numerous 

CPMs have been developed for NI risk prediction in adult ICUs, 

pediatric applications in neonatal and pediatric critical care 

populations remain significantly underdeveloped. Existing 

pediatric models often lack systematic evaluation, comparative 

benchmarking, or consensus-based validation for clinical 

implementation. Additionally, the methodological rigor across 

studies varies widely, necessitating rigorous appraisal to establish 

evidence-based recommendations for practice.

To address these gaps, this study conducts a comprehensive 

performance evaluation of all published, validated NI risk 

prediction models specific to ill children in ICUs. Through 

structured comparison and quality assessment, we aim to 

identify optimal predictive tools for clinical translation and 

formulate prioritized research directions to advance NI risk 

stratification in critically ill children.

2 Methods

2.1 Design

This study adhered to the Critical Appraisal and Data 

Extraction for Systematic Reviews of Prediction Modelling 

Studies (CHARMS) checklist to systematically evaluate 

predictive modeling studies (21). The review was planned and 

reported by the PRISMA 2020 guidelines (22). The protocol was 

registered on the International Prospective Register of Systematic 

Reviews (PROSPERO, ID: CRD420251019763).

2.2 Search strategy

We conducted a comprehensive systematic search across six 

major databases: PubMed, Web of Science, Embase, China 

National Knowledge Infrastructure (CNKI), Chinese Technical 

Periodicals (VIP), and Wanfang databases, covering their 

inception to December 2024. The search strategy incorporated 

relevant medical subject headings (MeSH) and free-text terms 
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related to ICU, infection control, and predictive modeling. 

A detailed description of the complete search strategy is 

provided in the Supplementary Table S1. Additionally, the 

reference lists of all included studies and relevant reviews were 

reviewed to identify any additional references.

2.3 Study eligibility criteria

We established the inclusion and exclusion criteria before 

the study.

2.3.1 Inclusion criteria
1. Study population: Children aged under 18 years.

2. Study content: Studies on risk prediction models for NIs in 

ICU child patients (including neonatal and pediatric 

populations).

3. Study type: Case-control studies and cohort studies.

2.3.2 Exclusion Criteria
1. Studies focusing on adult populations (age ≥ 18 years).

2. Non-longitudinal study designs.

3. Models with fewer than two predictors.

4. Duplicate publications.

5. Unofficial publications, such as conference abstracts and 

academic papers.

6. Studies not available in Chinese or English.

2.4 Study selection

We imported the search results into EndNote X9 software for 

data management. After removing duplicates, the titles and 

abstracts of the retrieved studies were screened. Full texts of 

potentially eligible studies were then obtained and evaluated. 

Two authors independently assessed all studies, with any 

disagreements resolved through discussion with additional 

review authors. Multiple publications from the same model were 

compiled, with the most comprehensive report designated as the 

primary reference.

2.5 Data extraction

Data extraction was independently conducted by two authors 

using Microsoft Excel, with discrepancies resolved through 

consultation with other review authors. Standardized data 

extraction forms were designed based on the CHARMS checklist 

(21). The critical information extracted followed the PICOTS 

principles, including the number of subjects included, data 

source, predictors (e.g., age, albumin infusion), model status 

(e.g., performance, modeling status, and model presentation), 

and outcome metrics. We collected information such as author 

names, year of publication, study type, and statistical details 

(e.g., treatment of missing data, selection of predictors, and 

treatment of continuous variables).

To analyze the predictive ability of each model, the following 

metrics were used to evaluate the clinical applicability: 

1. Discrimination: The model’s ability to distinguish between 

individuals with and without the outcome of interest, often 

measured by the Consistency Statistics (C-index) and the 

Area Under the Curve (AUC). The closer the AUC is to 1, 

the better the diagnostic effectiveness of the model (23);

2. Calibration: The accuracy of probability predictions, measured 

by the Hosmer-Lemeshow test and calibration curves (24);

3. Clinical Validity Evaluation Metrics: Decision Curve Analysis 

(DCA) was used to assess the clinical utility of predictive 

models, aligning with practical clinical decision-making 

processes (25). In addition to these metrics, the confusion 

matrix, accuracy, sensitivity, specificity, F1-score, and Brier 

score were also evaluated (26).

2.6 Quality assessment

We applied the Risk of Bias Assessment Tool (PROBAST) (27) 

to assess the risk of bias (ROB) and the applicability of the 

prediction models. PROBAST comprises four domains: 

participants, predictors, outcomes, and analysis. Each question 

can be answered as “yes,” “probably yes,” “probably no,” “no,” 

or “no information.” A domain was considered high risk if any 

question was answered “no” or “probably no.” Conversely, a 

domain was defined as low risk if all questions were answered 

“yes” or “probably yes.” The overall ROB was deemed low when 

each domain consistently exhibited a low ROB. If one or several 

domains exhibited an uncertain ROB while the remaining 

domains were low risk, the ROB was categorized as unclear. The 

applicability evaluation followed a similar approach, but only the 

first three domains were used to assess the applicability of the 

predictive model. Two authors independently evaluated the risk 

of bias in the included models, with any discrepancies resolved 

through consultation with other review authors.

2.7 Data synthesis and analysis

Given the significant heterogeneity in study design, 

populations, and outcomes across the studies, we decided 

against pooling data for meta-analysis. This decision ensured 

that the unique findings of each study, reIecting diverse study 

designs and population characteristics, were preserved.

3 Results

3.1 Study selection and characteristics

The PRISMA Iowchart illustrates our process for searching 

and selecting literature (Figure 1). A total of 6,857 articles were 
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identified in the initial search. After removing duplicates, 3,846 

articles remained for title and abstract screening. Full-text 

reviews were conducted on 106 articles, of which only three 

were ultimately included in this review (28–30).

3.2 Characteristics of the included studies

The characteristics of the included studies are summarized in 

Table 1. The three studies were published between 2016 and 2023 

and conducted across Asia, specifically in China and India.

3.2.1 Study design and population

The modeling research designs were predominantly 

retrospective (28, 29), with one study employing a prospective 

design (30). The sample sizes of the two retrospective studies 

were 549 and 672, respectively, while the prospective study 

included 411 participants. One study focused on patients in the 

PICU aged 1 month to 12 years (30), while the other two 

involved NICU patients (28, 29).

3.2.2 Outcomes

The outcome measures in the three included studies were not 

identical. Zhou et al. (28) used multidrug-resistant organisms 

(MDROs) as the outcome measure for modeling. Miao et al. 

(29) focused on umbilical vein catheterization bloodstream 

infections, while Saptharishi L. G. et al. (30) used healthcare- 

associated infections (HAIs) as the outcome measure 

for modeling.

3.2.3 Predictors selection
All three studies used univariate analysis to select the most 

relevant factors for their models. A total of 17 final variables 

were identified across the studies, as shown in Table 1. Among 

the 17 predictors, three variables were most consistently 

incorporated across studies: antibiotic use (included in 2 

studies): “use of antibiotics >7 days” (28) and “prior antibiotic 

FIGURE 1 

Flowchart of the selection of studies for inclusion in the systematic review.
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use (≥4)” (30) were identified in both NICU and PICU models. 

Birth weight (included in 2 studies): “low birth weight” and 

“birth weight <1,500 g” (28, 29) were exclusive to NICU models. 

Indwelling catheters (included in 2 studies): “total indwelling 

time >7 days” (29) and “presence of indwelling catheters” (30) 

were featured in both NICU and PICU models.

Other predictors were included in only one study, including 

maternal age ≥35 years, MDRO colonization, serum albumin 

<35 g/L, puncture attempts >2 times, history of mechanical 

ventilation, history of peripherally inserted central catheter 

(PICC) treatment, age (<5 years), pediatric risk of mortality III 

(PRISM III) score (within 24 h), need for intubation, albumin 

infusion, and immunomodulator use, reIecting variability in 

study populations (NICU vs. PICU) and outcomes (MDROs vs. 

catheter-related infections vs. HAIs).

3.2.4 Missing data handling

In the study by Zhou et al., a total of 459 cases of nosocomial 

infections were detected in the modeling cohort. After excluding 

24 cases (5.2%) with incomplete data, 435 neonates were finally 

included to construct the prediction model; the cases in the 

validation cohort had complete data, with no exclusions (28). In 

the study by Miao et al., the completeness of clinical data was 

set as an inclusion criterion. In the modeling group, 17 cases 

(3.7%) were excluded due to missing clinical and laboratory 

data, and 6 cases (2.6%) were excluded in the validation group 

(29). In the study by Saptharishi et al., among the 412 initially 

screened eligible subjects who signed the informed consent 

form, 1 case (0.2%) with incomplete data was excluded, and 

finally 411 cases were included in the model construction (30).

3.2.5 Modeling methods and validation
All three studies utilized multivariate logistic regression for 

modeling. Two studies conducted internal and external 

validation after model establishment (28, 29), while the other 

research combined model construction with internal validation 

using the Bootstrap method (30). Discrimination and calibration 

were reported for all three models, and only one model used 

DCA to assess clinical validity (28). The discrimination 

AUC values of the internally validated models ranged from 

0.773 to 0.866.

3.2.6 Model presentation and reporting standards

Two of the models were presented as nomograms (28, 29), 

while the presentation format of the third model was scoring 

table (30). The Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis 

(TRIPOD) guidelines were published in 2015 to standardize the 

reporting of prediction model research, ensuring transparency 

and reproducibility (19, 31). Although all three included studies 

were published after 2015, none explicitly stated that they 

followed the TRIPOD statement. The completion status of the 

TRIPOD checklist among the three studies is shown in 

Supplementary Table S2.T
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3.2.7 Risk of bias and applicability
The PROBAST bias risk assessment results revealed that all 

three included models had a high risk of bias (Figure 2). Among 

the four assessed dimensions, the statistical analysis dimension 

had the worst assessment results, with all three models 

exhibiting a high risk of bias. Detailed scores for each 

dimension are shown in Supplementary Table S1.

One study was deemed to have a high risk for applicability due 

to the lack of external validation (Figure 3).

4 Discussion

This review comprehensively assessed the current state of 

predictive models designed to forecast NIs in ICU child 

patients. We identified three models and summarized their 

performance and the predictors used. Additionally, we 

conducted an in-depth analysis and identified several 

methodological shortcomings in developing and validating these 

predictive models.

All studies employed Logistic regression, a commonly used 

method for constructing models with binary classification 

variables, which likely reIects practical and contextual factors 

inherent to pediatric ICU research. On the one hand, Logistic 

regression generates odds ratios that are clinically intuitive, 

allowing clinicians to directly link individual predictors 

(e.g., “antibiotic use >7 days”) to infection risk (28, 29). This 

interpretability is particularly valued in neonatal and pediatric 

settings, where clinical decision-making often requires clear 

mechanistic links to justify interventions. On the other hand, 

the included studies had relatively small samples (411–672 

FIGURE 2 

Risk of bias assessment for all included models (N = 3).

FIGURE 3 

Applicability assessment for all included models (N = 3).
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participants), with event rates as low as 5.1% (29). Logistic 

regression is robust to small datasets, remains a default due to 

its low computational demand, and familiarity among 

researchers. And avoids overfitting compared to complex models 

(e.g., machine learning), which require larger samples to 

generalize (28). However, the issue of multicollinearity was not 

addressed in any of the models, which may compromise model 

performance. Machine learning (ML) techniques, such as 

random forest (RF), artificial neural networks (ANN), LASSO, 

and eXtreme gradient boosting (XGBoost), have demonstrated 

robust capabilities in handling high-dimensional data and strong 

generalization abilities (32). Therefore, in developing models to 

predict the impact of NIs in ICU child patients, it is advisable 

to explore alternative algorithms like RF, LASSO and XGBoost. 

Pediatric ICU data, especially for critically ill children, often 

suffer from small sample sizes and limited event rates (e.g., 5.1% 

for umbilical vein catheter-related infections (29), which 

constrain traditional statistical methods like logistic regression. 

ML techniques offer unique advantages in this context: 

Handling small datasets with regularization: (1) Algorithms such 

as LASSO regression and elastic net incorporate built-in 

regularization, which penalizes overfitting by shrinking 

coefficients of less relevant predictors. This is critical for 

pediatric data, where limited events (e.g., 34 infections in 672 

NICU patients (29) increase the risk of overfitting with 

conventional methods. (2) Leveraging feature interactions 

without large samples: ML models (e.g., random forests, 

gradient boosting) automatically capture non-linear relationships 

and interactions between predictors (e.g., the combined effect of 

low birth weight and prolonged antibiotic use (28, 29) without 

requiring the large sample sizes needed to validate such 

interactions in regression models. This is valuable given the 

complex, multifactorial nature of pediatric NI risk. If the 

performance of models developed using a single algorithm is 

unsatisfactory, ensemble learning methods could be employed to 

create ensemble models. These models automatically model 

non-linear relationships and interactions without manual 

transformation, capturing complex patterns in pediatric data, 

integrate the strengths of multiple algorithms, significantly 

enhancing prediction accuracy (33).

Most studies directly deleted missing values, leading to 

incomplete reporting. This approach can introduce bias, as 

missing data can distort model performance if correlated with 

other variables (34). Missing value imputation methods include 

deletion, simple imputation, multiple imputation, and 

algorithmic imputation. Multiple imputation (35) and Miss 

Forest (36) are currently more recommended. About half of the 

studies also transformed continuous variables into binary or 

multi-class classifications. While this simplifies clinical decision- 

making, it can result in loss of data information and reduced 

prediction performance (37). The choice of method should be 

guided by the study’s purpose, the data characteristics, and the 

intended application.

Three studies selected predictors using univariate analysis. 

However, with the advancement of modeling methods, predictor 

selection is crucial for model quality and effectiveness. 

Predictors should be chosen by combining clinical literature 

with data-driven approaches. Relying solely on statistical 

significance for predictor selection can lead to overfitting and 

overly optimistic performance measures (38). Variable selection 

methods can be categorized into filter, wrapper, and embedding 

(39). Regularized regression (penalized models or shrinkage 

methods) can help reduce overfitting for data with many 

features or multicollinearity. Machine learning algorithms, such 

as random forest, can also be used for predictor selection and 

dimensionality reduction (40), thereby improving research 

quality. The predictors in the models identified in this review 

varied substantially based on the outcomes and study 

population, demonstrating the multifactorial nature of risk 

factors associated with NIs in ICU child patients. For frequently 

occurring predictors (included in 2 studies): Antibiotic use 

reIecting the well-established link between prolonged antibiotic 

exposure and increased risk of NIs, particularly MDRO 

infections (28, 30). Birth weight highlights the critical role of 

immature immune function and fragile skin barrier in neonatal 

susceptibility to infections (5, 6). Indwelling catheters were 

featured in both NICU and PICU models, consistent with the 

known association between invasive devices and infection risk 

due to disruption of physical barriers and pathogen colonization 

(4, 41). Furthermore, the sample size is intrinsically linked to 

the variables under consideration. Beyond the conventional 

10-EPV (events per variable) estimation approach, advanced 

sample size calculation tools have been specifically developed to 

more accurately estimate the required sample size for clinical 

prediction models (42).

Two studies conducted internal and external validation, while 

another combined model construction with internal validation. 

Calibration, which assesses whether the predicted outcome 

matches the observed outcome, was investigated for all models. 

Poorly calibrated models can mislead decision-making processes 

(43). Predictive models often perform better on development 

data than external validation data, but external validation is 

more convincing than internal validation (44). Therefore, 

models should be validated using different datasets whenever 

possible to ensure generalizability. Validation studies should 

verify that the model’s performance on new data is comparable 

to its performance on the development data (45), and model 

usefulness should be assessed through clinical judgment.

The included studies exhibited inadequate model presentation 

and incomplete regression equations. Poor presentation wastes 

research resources and hinders future activities such as 

validation, updating, and clinical application. Various forms can 

be used for model presentation, including scoring systems, 

nomograms, web calculators, and mobile apps. In this study, 

two models were presented using nomograms, while one model 

adopted a scoring table. None of the included studies reported 

converting their models into bedside scoring systems, online 

calculators, or EHR-embedded alert formats critical for real-time 

decision-making in busy ICUs. None of the studies reported 

formal usability testing with clinical end-users (e.g., ICU nurses, 

physicians). The limited attention to model presentation and 

usability in the included studies reIects a common focus on 
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methodological rigor (e.g., discrimination, calibration) over 

practical implementation in early-stage model development. The 

Transparent Reporting of a Multivariable Prediction Model for 

Individual Prognosis or Diagnosis (TRIPOD) guidelines, 

published in 2015 in multiple well-known journals (19, 31), aim 

to standardize the reporting of prediction model research to 

ensure transparency and reproducibility. Although all three 

included studies were published after 2015, none explicitly stated 

adherence to the TRIPOD statement. Adhering to TRIPOD 

guidelines can significantly enhance transparency and 

reproducibility. We strongly recommend that researchers submit 

the TRIPOD checklist when submitting manuscripts to facilitate 

evaluation by journal editors and reviewers. Full compliance 

with these standards will ensure scientific rigor in model 

development and improve the model’s applicability in 

clinical settings.

Most studies developed new models with excellent predictive 

power. However, these models consistently exhibited a high risk 

of bias (ROB). Among the two studies (28, 29) based on a 

retrospective design, there was a high risk of bias in the 

assessment of study subjects. None of the three studies reported 

whether the predictors were assessed without knowledge of the 

outcome data or whether all predictors were available at the 

time the model was intended to be used, or whether the 

outcome was determined without knowledge of the predictor 

information. Thus, the risk of predictor and outcome bias was 

rated as “unclear.” All models had issues in statistical analysis, 

such as insufficient sample size, inadequate consideration of 

overfitting, handling of missing data, and unclear treatment of 

continuous variables. This can result in good performance on 

the training set but poor performance on the test set or in real- 

world applications (44). Overfitting means that while the model 

learns the training data well, it cannot generalize to new data 

effectively, significantly reducing its usefulness and reliability 

(46). Therefore, identifying child patients who could benefit 

from interventions to prevent NIs remains a critical public 

health strategy. Predictive models used with clinical decision 

support have been shown to improve patient outcomes (47) and 

should be considered when deploying risk models in ICU 

child patients.

Last but not least, it is essential to evaluate models’ impact in 

practice. In our review, two studies were conducted in NICUs and 

one in a PICU, with populations from China and India only. The 

baseline infection rates, pathogen spectra, and resource availability 

in the study settings (China and India) exhibit distinct 

characteristics that may constrain the external validity of the 

models. The included studies were conducted in high-volume 

tertiary centers, where the burden of NIs may differ from other 

settings. For example, the NICU studies from China reported 

16.2% (89/549) and 5.1% (34/672) infection rates for MDRO 

infections and umbilical vein catheter-related bloodstream 

infections, respectively (28, 29), while the Indian PICU study 

reported a HAI rate of 23.1% (95/411) (30). The models focus 

on region-specific pathogens: Zhou et al. (28) targeted MDROs, 

which are prevalent in Asian tertiary centers with high 

antibiotic usage; Miao et al. (29) focused on umbilical vein 

catheter-related pathogens, relevant to neonates in resource- 

intensive NICUs; and Saptharishi et al. (30) used HAI 

definitions aligned with CDC criteria but in an Indian PICU, 

where pathogen profiles may include more community-acquired 

or drug-resistant strains due to limited antimicrobial 

stewardship (11). The included models incorporate predictors 

tied to local resource access, such as “antibiotic use >7 days” 

(28), “mechanical ventilation history” (29), and “indwelling 

catheter presence” (30). Conversely, resource-rich HICs may 

prioritize different predictors (e.g., immunocompromised status, 

advanced organ support) not captured in the current models, 

further limiting cross-context applicability. Based on the 

available evidence, none of the identified models are currently 

validated for global use. Their applicability may be restricted to 

settings with similarities to the original study populations.

We additionally searched for studies that implemented NI 

prediction models in child patients in ICUs, but we could not 

identify any references. However, evaluating whether 

introducing a prediction model changes to care, e.g., increases 

interventions and improves outcomes, e.g., reduces the incidence 

of NIs, will be necessary for future investigations. Based on 

these methodological shortcomings, we make the following 

recommendations. First, models should be externally validated 

several times in different populations, and sample sizes must be 

adequately considered. Second, when data are missing, 

interpolation should be performed via multiple interpolations or 

machine learning. Third, predictive variables with incremental 

solid values should be mined based on clinical feasibility and 

applicability, and preventing overfitting should be emphasized in 

the predictive model. At the same time, we also need to 

recognize the importance of diversified evaluation, as far as 

possible, sensitivity, specificity, the calibration index, the net 

benefit, and DCA for comprehensive evaluation. Finally, model 

development is strongly recommended to adhere to the 

TRIPOD process. Only complete, full, and transparent reporting 

of all aspects of a prediction model can its risk of bias and 

potential usefulness be adequately assessed.

The distinction between NICU and PICU populations 

introduces critical variability that limits cross-setting 

generalizability: Developmental stage: NICU populations consist 

of neonates, often premature, with immature immune systems, 

fragile skin barriers, and prolonged exposure to invasive 

interventions (e.g., umbilical catheters) (5, 6). In contrast, PICU 

patients are older children (1 month to 12 years (30) with 

diverse comorbidities and varying degrees of immune 

competence. Risk factors: NICU models emphasize neonatal- 

specific predictors such as birth weight <1,500 g (29) and 

maternal age (28), which are irrelevant to older PICU patients. 

PICU models, meanwhile, focus on factors like intubation need 

and PRISM III scores (30), reIecting the acuity of critical illness 

in older children. Infection dynamics: Neonates in NICUs are 

disproportionately susceptible to device-related infections (e.g., 

umbilical vein catheter sepsis (29), whereas PICU patients face 

broader HAI risks linked to mechanical ventilation and 

immunomodulatory therapies (30). These differences mean that 

models developed for one setting (e.g., NICU) may not 
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accurately identify high-risk patients in the other (e.g., PICU), as 

the underlying pathophysiology and risk profiles diverge.

Outcome variability further constrains generalizability: MDROs 

as a subset of HAIs: MDRO infections (28) represent a specific, 

drug-resistant subgroup of HAIs, driven by factors like prolonged 

antibiotic exposure (28, 30). This focus limits applicability to 

settings with high antibiotic stewardship or low MDRO 

prevalence. Device-specific vs. broad HAIs: The umbilical vein 

catheter-associated infections modeled by Miao et al. (29) are 

niche outcomes relevant only to neonates with invasive devices, 

whereas Saptharishi et al.’s (30) broader HAI definition 

(encompassing all healthcare-acquired infections) has a wider 

scope but may mask device-specific risks. Diagnostic criteria: 

Variations in diagnostic standards (e.g., CDC criteria for HAIs 

(30) vs. Chinese Ministry of Health criteria for MDROs (28) 

complicate cross-study comparisons and reduce the transferability 

of findings to settings with different surveillance protocols. Thus, 

models targeting MDROs or device-specific infections cannot be 

generalized to predict all HAIs, and vice versa, as their 

underlying etiologies and risk factors differ.

This review aimed to identify and evaluate predictive models 

for NIs in ICU child patients to inform clinical decision-making. 

However, we cannot recommend any specific model for several 

reasons. First, nearly all reviewed models exhibited a high risk of 

bias, and the included models require further external validation. 

Additionally, significant heterogeneity among the models, non- 

standardized statistical analysis methods, and incomplete data in 

model reports all contribute to the challenge of selecting the 

optimal model. While no existing model meets the criteria for 

routine clinical application, we propose the following interim 

strategies to address the urgent need for NI risk stratification in 

critically ill children: (1) Adapting validated adult ICU models 

with pediatric-specific adjustments: (A) Adult NI prediction 

models (e.g., those incorporating variables like invasive device 

duration, antibiotic exposure, and comorbidity burden) (4, 41) 

could serve as a foundation, with key modifications to account 

for pediatric physiology. (B) Adjusting for developmental factors 

[e.g., replacing adult age with postmenstrual age in neonates (5, 

6)]. Incorporating pediatric-specific variables identified in our 

review, such as birth weight (28, 29), umbilical catheter use (29), 

and PRISM III scores (30). (C) Calibrating risk thresholds to 

reIect higher baseline vulnerability in children [e.g., lower 

thresholds for initiating interventions in NICUs due to immature 

immune function (7)]. (2) Implementing structured clinical risk 

assessment tools: Given the paucity of validated models, we 

recommend using consensus-based checklists that integrate the 

most consistent predictors from included studies: Antibiotic use 

exceeding 7 days (28, 30), presence of indwelling catheters (29, 

30), and (in neonates) low birth weight (28, 29).

To address the “methodological robustness” gap highlighted in 

our conclusions, we specify the following priorities for future 

research, based on PROBAST and TRIPOD guidelines (19, 27). 

(1) Rigorous model development: (A) Sample size and event 

rates: Adhere to modern standards [e.g., minimum 100–200 

events (42)] to avoid overfitting, particularly for rare outcomes 

like MDRO infections (28). (B) Handling missing data: Use 

advanced imputation methods [e.g., multiple imputation (35) or 

MissForest (36)] instead of complete-case analysis, which risks 

bias (28, 29). (C) Predictor selection: Combine clinical expertise 

(e.g., neonatology input for NICU models) with data-driven 

methods [e.g., LASSO regression, random forest variable 

importance (39, 40)] to avoid over-reliance on univariate analysis 

(28–30). (2) Comprehensive validation: (A) External validation 

across diverse settings: Validate models in geographically distinct 

centers (e.g., comparing tertiary vs. community hospitals) and 

populations (e.g., NICUs vs. PICUs) to assess generalizability (34, 

44). (B) Temporal validation: Include longitudinal cohorts to 

ensure stability of model performance over time, as demonstrated 

in two included studies (28, 29), but expanded to multi-year 

follow-up. (3) Advanced modeling techniques: Explore machine 

learning approaches [e.g., random forest, XGBoost (32, 33)] to 

capture non-linear relationships between predictors [e.g., 

interaction between antibiotic use and indwelling catheters (28, 

30)] that traditional logistic regression may miss. Use ensemble 

methods to integrate the strengths of multiple models, potentially 

improving performance beyond single-algorithm approaches (33). 

(4) Enhanced transparency and clinical utility: (A) Strictly adhere 

to TRIPOD guidelines (19, 31), including full reporting of 

regression equations, calibration metrics, and validation protocols 

(absent in all included studies (28–30). (B) Develop user-friendly 

tools (e.g., electronic health record-integrated calculators, mobile 

apps) and conduct usability testing with ICU nurses/physicians to 

ensure real-world applicability (47).

Strengths and limitations

This study is the first to conduct a comprehensive and 

integrated assessment of predictive models for NIs in ICU child 

patients. We provided valuable information for primary 

healthcare systems and clinical healthcare professionals through 

an extensive literature search, meticulous screening, and 

standardized data extraction. This approach lays the foundation 

for more effective construction and external validation of future 

predictive models. Furthermore, this study conducted a risk of 

bias and applicability assessment of the prediction models using 

the PROBAST tool, another significant strength.

This review is subject to certain limitations. Firstly, the 

literature search was confined to computerized databases and 

restricted to materials published in English and Chinese, 

potentially excluding relevant studies in other languages. 

Secondly, we could not perform meta-analyses or subgroup 

analyses due to the limited number of included studies and 

considerable heterogeneity in participant demographics, research 

settings, and outcomes. These variabilities could have affected 

the comparability and generalizability of the findings.

Conclusions

We identified three predictive models (one study was 

conducted in the PICU). In contrast, two studies were carried out 
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in NICUs, and most of the researchers reported excellent 

discrimination and calibration in their research. However, for 

various reasons, the risk of bias in nearly all the models was high. 

Consequently, this finding implies that the predictive performance 

of these models might be overestimated, their accuracy in 

practical application to the target population remains 

questionable, and currently, we cannot endorse any of these 

predictive models for clinical practice. High-performance 

predictive models can assist clinical nursing staff in the early 

identification of high-risk populations for NIs, enabling proactive 

interventions to reduce infection rates. With the development of 

modeling methods, the selection of predictors largely determines 

the quality and effectiveness of the model. Predictors should be 

selected by combining clinical literature reports with data-driven 

approaches. Future research on predictive models for NI risk in 

ICU child patients should adhere to methodological guidelines, 

prioritize practicality and cost-effectiveness in model evaluation, 

conduct large-scale external validation, and ultimately facilitate 

effective identification of NIs in critically ill children.
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