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Background: Feeding intolerance (FI) represents a prevalent and serious 

complication in preterm infants, contributing to delayed enteral nutrition, 

prolonged hospitalization, and increased morbidity. Early identification of high- 

risk infants remains challenging due to limited predictive tools available before 

feeding initiation.

Methods: We conducted a retrospective cohort study of 402 preterm infants 

(<37 weeks gestational age) admitted between January 2023 and May 2024. 

Clinical data collected at admission underwent feature selection using cross- 

validated LASSO regression. Eleven machine learning algorithms were 

systematically compared using accuracy, area under the receiver operating 

characteristic curve (AUC), sensitivity, and specificity. Clinical utility was 

assessed through decision curve analysis (DCA).

Results: FI developed in 199 (49.5%) infants. Significant between-group 

differences were observed for birth weight, gestational age, time to first 

feeding, fetal distress, multiple gestation, prenatal dexamethasone exposure, 

neonatal infection, respiratory distress, and invasive mechanical ventilation (all 

P < 0.01). LASSO regression identified 14 optimal predictive variables. Among 

tested algorithms, AdaBoost demonstrated superior performance [accuracy: 

0.957; AUC: 0.964 (95% CI: 0.929–1.000); sensitivity: 0.957; specificity: 

0.958]. DCA confirmed greater net clinical benefit compared to “treat all” or 

“treat none” strategies. An interactive clinical decision support tool was 

developed for practical implementation.

Conclusions: The proposed machine learning model accurately predicts 

feeding intolerance before first feeding using 14 routinely collected clinical 

variables. This approach enables early risk stratification and may improve 

clinical outcomes through timely intervention. External validation in 

multicenter cohorts is warranted to confirm generalizability.
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Introduction

Feeding intolerance (FI) is a common and clinically significant complication among 

preterm infants, with global incidence estimates ranging from 16%–29% (1). FI, defined 

as the inability to tolerate enteral nutrition, is characterized by increased gastric residuals, 

vomiting, abdominal distension, and the need for feeding interruption or delay. The 

clinical consequences of FI are substantial, including higher rates of necrotizing 
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enterocolitis (NEC), prolonged dependence on parenteral 

nutrition, impaired growth, and adverse neurodevelopmental 

outcomes (2). The pathophysiology of FI is multifactorial, 

involving gastrointestinal dysmotility, immature digestion, 

impaired mucosal defense, and altered gut microbiota. Perinatal 

complications such as respiratory distress, infection, and 

intrauterine in+ammation further compound this risk (3).

Despite advances in neonatal intensive care, the early 

identification of infants at risk for FI remains an unmet clinical 

need (4). International guidelines from European Society for 

Paediatric Gastroenterology, Hepatology and Nutrition 

(ESPGHAN) and the World Health Organization (WHO) 

emphasize the importance of early enteral feeding, the use of 

mother’s own milk, and the minimization of feeding interruptions 

(5, 6). However, most guidelines do not provide robust tools for 

individualized risk prediction prior to feeding initiation. 

Conventional risk scores are often based on post-symptomatic 

markers and lack sufficient sensitivity or specificity for clinical utility.

Recent developments in machine learning (ML) have enabled 

the analysis of high-dimensional clinical data to identify complex, 

nonlinear relationships among multiple predictors (7). Although 

several ML models have demonstrated superior performance 

compared to traditional risk scores in predicting FI or NEC, 

most studies to date have utilized a limited set of variables and 

focused on infants already showing early symptoms (8). There is 

a pressing clinical need for integrative, pre-feeding risk models 

that leverage routinely available clinical data and can be 

seamlessly incorporated into clinical work+ows (9).

This study aimed to develop and validate a machine learning 

model for the pre-feeding prediction of FI in preterm infants 

using routinely collected clinical variables.

Methods

Patient selection and study parameters

Preterm infants were enrolled from January 2023 to May 2024, 

with a total of 402 infants included in the study. Inclusion criteria 

were: (1) gestational age less than 37 weeks; (2) admission to our 

neonatal intensive care unit within 24 h of birth. Exclusion criteria 

were: (1) congenital gastrointestinal malformations, congenital 

genetic abnormalities, or genetic metabolic diseases; (2) 

development of gastrointestinal diseases such as necrotizing 

enterocolitis or intestinal obstruction during hospitalization; (3) 

participation in other clinical trials.

Feeding intolerance was diagnosed based on the following 

criteria: (1) gastric residual volume exceeding 50% of the 

previous feeding volume, accompanied by vomiting and/or 

abdominal distension; (2) feeding plan modifications including 

reduction, delay, or interruption of enteral feeding. A diagnosis 

of FI was established if either criterion was met.

This study was approved by the Ethics Committee of Children’s 

Hospital Affiliated to the Capital Institute of Pediatrics (Ethics 

Review No. SHERLL2023071). Written informed consent was 

obtained from the guardians of all participating infants.

Data were collected for two categories of variables: (1) baseline 

characteristics including gender, gestational age, birth weight, time 

to first feeding, parental age, and maternal pregnancy 

complications; (2) neonatal factors including neonatal infection, 

respiratory distress after birth, and requirement for mechanical 

ventilation. All data were systematically organized, double-checked 

by two independent researchers, and entered into Excel spreadsheets.

Data processing

Numerical variables were standardized using Z-score 

normalization to transform the data to a standard normal 

distribution with a mean of 0 and a standard deviation of 1, 

thereby improving model prediction performance. Pearson 

correlation coefficients were calculated to examine relationships 

between variables. For highly correlated feature pairs (correlation 

coefficient >0.9), we performed feature filtering by retaining only 

one feature from each correlated pair to mitigate multicollinearity.

A LASSO (Least Absolute Shrinkage and Selection Operator) 

logistic regression model was applied with cross-validation to 

determine the optimal regularization parameter (λ). Feature 

coefficients were evaluated, and variables with non-zero 

coefficients after LASSO regularization were selected for 

inclusion in the final model.

Dataset splitting and model construction

The final selected feature set was randomly partitioned into 

training (70%) and testing (30%) sets. To enhance model 

robustness, random partitioning was repeated 10 times, and the 

split achieving the highest evaluation metrics was selected for 

model training and validation.

Eleven machine learning classification algorithms were employed 

for model construction: Logistic Regression (LR), Support Vector 

Machine (SVM), Random Forest (RF), Extra Trees, XGBoost, 

LightGBM, Naive Bayes (NB), AdaBoost, Gradient Boosting (GB), 

Multilayer Perceptron (MLP), and K-Nearest Neighbors (KNN). 

Model performance was evaluated using multiple metrics including 

accuracy, area under the receiver operating characteristic curve 

(AUC-ROC), negative predictive value (NPV), and positive 

predictive value (PPV). ROC curves, confusion matrices, and 

decision curve analysis (DCA) were generated to comprehensively 

assess predictive performance and clinical utility.

All analyses were conducted using Python version 3.10 (Python 

Software Foundation). Machine learning algorithms were 

implemented using open-source libraries including scikit-learn, 

XGBoost, and LightGBM. Data manipulation and visualization were 

performed using pandas, numpy, matplotlib, and seaborn libraries.

Statistical analysis

The Kolmogorov–Smirnov test was used to assess normality of 

continuous variables. Normally distributed data were presented as 
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mean ± standard deviation and compared between groups using 

independent t-tests. Non-normally distributed data were 

expressed as median (interquartile range) and compared using the 

Mann–Whitney U test. Categorical variables were presented as 

frequencies and percentages and compared using the chi-square 

test. A p-value < 0.05 was considered statistically significant.

Results

A total of 402 preterm infants were enrolled in this study and 

divided into two groups: the feeding intolerance (FI) group 

(n = 199) and the feeding tolerance group (n = 203).

Most maternal characteristics showed no significant 

differences between groups, including hypertensive disorders (35 

vs. 33, P = 0.791), gestational diabetes (37 vs. 42, P = 0.618), 

cesarean section (126 vs. 132, P = 0.755), maternal age 

(33.3 ± 4.5 vs. 33.9 ± 5.0 years, P = 0.348), severe preeclampsia 

(30 vs. 28, P = 0.777), maternal thyroid dysfunction (8 vs. 6, 

P = 0.598), number of pregnancies (2.0 ± 1.2 vs. 2.1 ± 1.2, 

P = 0.163), and premature rupture of membranes (71 vs. 72, 

P > 0.999). However, multiple pregnancy was significantly more 

common in the FI group compared to the feeding tolerance 

group (83 vs. 50, P < 0.001) (Table 1).

Infants in the FI group had significantly lower mean birth 

weight (1,495.5 ± 502.6 g vs. 2,394.5 ± 429.0 g, P < 0.001) and 

gestational age (30.9 ± 2.8 weeks vs. 34.9 ± 1.4 weeks, P < 0.001) 

compared to the feeding tolerance group. The time to initiation 

of enteral feeding after birth was significantly delayed in the FI 

group compared to the tolerance group (66.1 ± 56.1 h vs. 

15.4 ± 20.2 h, P < 0.001). Additionally, the FI group had 

significantly higher incidences of fetal distress (41 vs. 21, 

P = 0.004), intrauterine infection (113 vs. 49, P < 0.001), 

dexamethasone use (115 vs. 84, P < 0.001), invasive mechanical 

ventilation (164 vs. 41, P < 0.001), and respiratory distress (170 

vs. 49, P < 0.001). No significant differences were observed for 

sex distribution (90/109 vs. 110/93, P = 0.072), placental 

abnormality (38 vs. 35, P = 0.769), or amniotic +uid abnormality 

(35 vs. 38, P = 0.630) (Table 2).

Feature selection

Cross-validated LASSO regression was employed to identify the 

optimal set of predictive features by determining the best 

regularization parameter (λ). Figure 1A illustrates the LASSO 

coefficient paths, showing how feature coefficients progressively 

shrunk to zero as λ increased, enabling effective feature selection. 

As λ increased, feature coefficients progressively shrank to zero, 

enabling effective feature selection. Cross-validation identified an 

optimal λ value of 0.0095. Figure 1B shows the cross-validation 

mean squared error (MSE) across different λ values, with red dots 

representing the mean MSE and blue vertical lines indicating the 

standard deviation. The vertical dashed line marks the optimal λ 
value where the model achieved minimal and stable prediction 

error, demonstrating robust performance in distinguishing 

between feeding tolerance and intolerance.

Using the optimal λ value of 0.0095, 14 key features were 

retained in the final LASSO model: invasive mechanical 

ventilation, time to first feeding, gender, cesarean section, 

dexamethasone use, gestational diabetes mellitus, premature 

rupture of membranes, abnormal maternal thyroid function, 

fetal distress, intrauterine infection, multiple gestation, abnormal 

amniotic +uid, birth weight, and gestational age. In the final 

LASSO model (Figure 1C), gestational age and birth weight 

carry negative coefficients, indicating lower predicted FI 

probability with increasing values, which is consistent with 

clinical knowledge. Coefficients for other predictors are reported 

as predictive weights rather than causal effects within the 

regularized multivariable context.

Model performance comparison

Using the 14 features selected by LASSO regression, we 

developed 11 machine learning classification models: logistic 

regression (LR), support vector machine (SVM), random forest 

TABLE 1 Maternal characteristics between feeding tolerant and 
intolerant groups.

Parameters Feeding 
intolerant group 

N = 199

Feeding 
tolerant group 

N = 203

P

Hypertensive disorders 35 33 0.791

Gestational diabetes 37 42 0.618

Cesarean section 126 132 0.755

Maternal age (years) 33.3 ± 4.5 33.9 ± 5.0 0.348

Paternal age (years) 35.0 ± 4.7 35.5 ± 6.0 0.614

Severe preeclampsia 30 28 0.777

Maternal thyroid 

dysfunction

8 6 0.598

Number of pregnancies 2.0 ± 1.2 2.1 ± 1.2 0.163

Premature rupture of 

membranes

71 72 >0.999

Multiple pregnancy 83 50 <0.001

TABLE 2 Neonatal characteristics between feeding tolerant and 
intolerant groups.

Parameters Feeding 
intolerant group 

N = 199

Feeding 
tolerant group 

N = 203

P

Sex (male/female) 90/109 110/93 0.072

Birth weight (g) 1,495.502.6 2,394.5 ± 429.0 <0.001

Gestational age 

(weeks)

30.9 ± 2.8 34.9 ± 1.4 <0.001

Placental 

abnormality

38 35 0.769

Amniotic +uid 

abnormality

35 38 0.630

Time to first feeding 

(h)

66.1 ± 56.1 15.4 ± 20.2 <0.001

Fetal distress 21 41 0.004

Intrauterine 

infection

49 113 <0.001

dexamethasone use 84 115 <0.001

Invasive ventilation 41 164 <0.001

Respiratory distress 49 170 <0.001
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(RF), extra trees, XGBoost, LightGBM, naive Bayes (NB), 

AdaBoost, gradient boosting (GB), multilayer perceptron (MLP), 

and K-nearest neighbors (KNN). Model performance was 

evaluated using 10-fold cross-validation with a 70% training and 

30% testing split (Table 3).

Given the clinical importance of accurate FI prediction while 

avoiding unnecessary interventions, models with balanced 

sensitivity and specificity were prioritized, with particular 

attention to minimizing false positives. High AUC and overall 

accuracy were also essential to ensure robust predictive 

performance. Therefore, sensitivity and AUC were considered 

the primary metrics for assessing clinical utility.

On the test set, the AdaBoost model demonstrated superior 

performance, achieving an accuracy of 0.957 and an AUC of 

0.964 (95% CI: 0.929–1.000) (Table 3). The model achieved a 

sensitivity of 0.957 and a specificity of 0.958, effectively 

balancing the detection of FI cases while minimizing false 

positives. Following comprehensive evaluation of all 

performance metrics and clinical considerations, the AdaBoost 

model was selected as the optimal predictive model for clinical 

implementation. Detailed hyperparameters and configuration 

settings for the AdaBoost model are provided in the 

Supplementary Materials.

Clinical application analysis of the optimal 
model

The comprehensive performance evaluation of the AdaBoost 

model is illustrated in Figure 2. Decision curve analysis 

(Figure 2A) demonstrated that the AdaBoost model provided 

superior net clinical benefit compared to “treat all” or “treat 

none” strategies across a wide range of threshold probabilities. 

The predicted probability distribution (Figure 2B) illustrated the 

risk scores for individual patients, clearly showing the model’s 

discriminative ability between FI and tolerance cases (label-0 

and label-1).

The ROC curves (Figure 2C) demonstrate excellent 

discriminative performance with a training AUC of 0.990 (95% 

CI: 0.983–0.997) and a test AUC of 0.964 (95% CI: 0.929– 

1.000), indicating robust model performance without significant 

overfitting. The confusion matrix (Figure 2D) revealed that the 

AdaBoost model correctly identified 66 of 69 FI cases and 69 of 

72 feeding-tolerant cases in the test set, with only 3 false 

positives and 3 false negatives, demonstrating strong 

classification performance.

To facilitate clinical implementation of the AdaBoost model, 

we developed an interactive prediction tool based on the 

algorithm. The software features an intuitive interface that 

allows clinicians to input standard clinical parameters and 

obtain real-time predictions for FI risk. This tool has the 

potential to enhance both efficiency and accuracy of FI risk 

assessment in preterm infants (Figure 3).

Discussion

This study demonstrates that a machine learning model 

incorporating 14 routinely available clinical variables can 

accurately predict feeding intolerance in preterm infants prior to 

feeding initiation. The AdaBoost model significantly 

outperformed traditional risk assessment approaches and single- 

variable predictors, supporting the potential for early, 

individualized risk stratification for FI.

Gestational age and birth weight emerged as the strongest 

predictors, which aligns with established international evidence 

(10). Lower gestational age is associated with immature 

gastrointestinal motility, reduced digestive enzyme activity, and 

compromised mucosal barrier function, all of which predispose 

infants to FI (11). Low birth weight, particularly very low birth 

FIGURE 1 

LASSO regression feature selection and model coefficients. (A) LASSO coefficient paths showing how feature coefficients change with varying 

regularization parameter λ. Each colored line represents a different clinical variable, and coefficients progressively shrink toward zero as λ 
increases. The vertical dashed line indicates the optimal λ value (0.0095) selected through cross-validation. (B) Cross-validation mean squared 

error (MSE) across different λ values. Blue bars represent the mean MSE with error bars indicating standard deviation. The vertical dashed line 

marks the optimal λ value where the model achieved minimal prediction error. (C) Final model coefficients for the 14 selected features at optimal 

λ. Horizontal bars show the magnitude and direction of each feature’s contribution to feeding intolerance prediction, with positive coefficients 

(rightward bars) indicating increased risk and negative coefficients (leftward bars) indicating decreased risk.
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weight (<1,500 g), is widely recognized as a risk factor for FI due 

to its association with prematurity and underdeveloped organ 

systems (12).

Invasive mechanical ventilation was a strong independent 

predictor of FI in our model, consistent with findings from 

relevant research that have documented associations between 

prolonged respiratory support and delayed enteral feeding, 

impaired splanchnic perfusion, and altered gut motility (13). 

Early identification of ventilated infants at high risk for FI may 

inform targeted feeding protocols and monitoring strategies.

Delayed initiation of enteral feeding was also associated with 

increased FI risk. International guidelines, including those from 

ESPGHAN and WHO, recommend early, progressive enteral 

nutrition for stable preterm infants, and recent large cohort 

studies demonstrate that feeding initiation within 24–72 h 

reduces FI and NEC risk without increasing complications (14, 

15). Our findings support these recommendations and 

underscore the importance of timely feeding initiation.

Cesarean section, although associated with altered gut 

microbiota and increased perinatal morbidity, demonstrated 

only a modest association with FI in our cohort. International 

meta-analyses have reported inconsistent findings, suggesting 

that delivery mode may in+uence FI primarily through its 

effects on early microbial colonization rather than as a direct 

causal mechanism (16, 17).

Dexamethasone exposure, both prenatal and postnatal, was an 

independent predictor of FI. This finding is consistent with studies 

linking corticosteroid use to increased risk of gastrointestinal 

perforation and compromised gut integrity (18). While 

corticosteroids remain essential for specific clinical indications, 

enhanced monitoring for FI in exposed infants may be warranted.

Gestational diabetes mellitus was associated with increased FI 

risk, consistent with global evidence indicating higher rates of 

neonatal morbidity, altered gut motility, and feeding difficulties 

in infants of diabetic mothers (19). Premature rupture of 

membranes and intrauterine infection, including 

TABLE 3 Comparison of diagnostic performance metrics for different machine learning models.

Model name Accuracy AUC (95% CI) Sensitivity Specificity

LR

Training set 0.954 0.981 (0.966–0.996) 0.970 0.937

Testing set 0.901 0.937 (0.890–0.984) 0.870 0.931

NaiveBayes

Training set 0.932 0.976 (0.960–0.992) 0.939 0.925

Testing set 0.894 0.944 (0.905–0.984) 0.913 0.875

SVM

Training set 0.975 0.991 (0.980–1.000) 0.982 0.969

Testing set 0.851 0.907 (0.856–0.958) 0.826 0.875

KNN

Training set 0.932 0.986 (0.979–0.994) 0.927 0.937

Testing set 0.801 0.829 (0.761–0.896) 0.812 0.792

RandomForest

Training set 0.985 0.999 (0.998–1.000) 0.988 0.981

Testing set 0.922 0.960 (0.928–0.992) 0.870 0.872

ExtraTrees

Training set 0.985 1.000 (0.999–1.000) 0.976 0.994

Testing set 0.851 0.911 (0.863–0.959) 0.841 0.861

XGBoost

Training set 0.975 0.997 (0.995–1.000) 0.970 0.981

Testing set 0.943 0.947 (0.908–0.985) 0.928 0.958

LightGBM

Training set 0.948 0.987 (0.978–0.995) 0.964 0.931

Testing set 0.943 0.954 (0.915–0.993) 0.928 0.958

GradientBoosting

Training set 0.963 0.989 (0.977–1.000) 0.970 0.956

Testing set 0.943 0.961 (0.929–0.992) 0.928 0.958

AdaBoost

Training set 0.954 0.990 (0.9832–0.998) 0.970 0.937

Testing set 0.957 0.964 (0.929–1.000) 0.957 0.958

MLP

Training set 0.954 0.984 (0.969–0.998) 0.964 0.944

Testing set 0.865 0.928 (0.884–0.972) 0.826 0.903

LR, logistic regression; SVM, support vector machine; KNN, K-nearest neighbors; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; AdaBoost, adaptive 

boosting; MLP, multi-layer perceptron.
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chorioamnionitis, were also significant predictors, re+ecting the 

impact of intrauterine in+ammation on gut development and 

feeding tolerance (20).

Abnormal maternal thyroid function, while less extensively 

studied, has been suggested to in+uence fetal gastrointestinal 

and neurodevelopment, and our findings indicate a potential 

association warranting further investigation (21).

Multiple gestation was independently associated with FI, 

though the association was modest. While twins and triplets 

have higher overall rates of prematurity and morbidity, direct 

associations with FI are less well-established in the literature (22). 

Although abnormal amniotic +uid is commonly considered a risk 

factor for adverse neonatal outcomes, in our model, it was 

associated with a slightly decreased risk of feeding intolerance. 

This may be due to confounding by other stronger risk factors 

(such as prematurity and low birth weight), the impact of 

multicollinearity among predictors, as well as potential differences 

in clinical management and intervention for pregnancies 

complicated by abnormal amniotic +uid. Furthermore, the 

relatively small number of cases or heterogeneity in the types of 

amniotic +uid abnormalities may also contribute to this finding. 

Therefore, this result should be interpreted with caution, and 

further studies with larger and more diverse cohorts are needed 

to clarify this association (23). In a multivariable regularization 

FIGURE 2 

Performance evaluation of the optimal AdaBoost model. (A) Decision curve analysis (DCA) comparing the clinical utility of the AdaBoost model (blue 

line) against “treat all” (black solid line) and “treat none” (black dotted line) strategies. The pink shaded area represents the net benefit gained by using 

the model across different threshold probabilities. (B) Predicted probability distribution histogram for individual patients in the test set. Blue bars 

represent feeding-tolerant cases (label-0) and orange bars represent feeding intolerance cases (label-1), demonstrating clear separation between 

the two groups. (C) Receiver operating characteristic (ROC) curves showing model performance on training (pink solid line) and test (blue dotted 

line) datasets. Training AUC: 0.990 (95% CI: 0.983–0.997); Test AUC: 0.964 (95% CI: 0.929–1.000). (D) Confusion matrix displaying classification 

results on the test set. Numbers represent actual counts: 69 true negatives, 3 false positives, 3 false negatives, and 66 true positives.
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framework, the directions of certain coefficients (e.g., abnormal 

amniotic +uid and multiple gestation) are not fully aligned with 

clinical intuition. This phenomenon may relate to conditional 

(context-dependent) effects, variable heterogeneity, indication bias 

from clinical management, and the way regularization allocates 

weights among correlated features. Accordingly, we report these 

coefficients as predictive weights rather than causal effects; the 

key directions consistent with clinical consensus (e.g., the 

protective roles of gestational age and birth weight) are stably 

re+ected in the model.

AdaBoost is an ensemble learning method that sequentially 

combines multiple weak learners (typically decision trees) to 

create a strong classifier. The algorithm iteratively adjusts the 

weights of misclassified samples, forcing subsequent learners to 

focus on previously difficult cases, thereby improving overall 

predictive accuracy. This adaptive weighting mechanism makes 

AdaBoost particularly effective for medical prediction tasks 

where class imbalance and complex feature interactions are 

common challenges.

In the context of feeding intolerance prediction, AdaBoost’s 

ability to handle non-linear relationships among clinical 

variables while maintaining interpretability represents a 

significant advantage over traditional logistic regression models 

(24). The algorithm’s robustness to overfitting, combined with 

its capacity to identify subtle patterns in clinical data, likely 

contributed to its superior performance (AUC: 0.964) compared 

to other machine learning approaches tested in our study. 

Furthermore, AdaBoost’s inherent feature importance ranking 

capabilities align well with clinical decision-making processes, 

allowing healthcare providers to understand which factors most 

strongly in+uence FI risk predictions.

The development of an interactive clinical decision support 

tool represents a crucial step toward translating research 

findings into clinical practice. Our software application 

transforms the complex AdaBoost algorithm into an intuitive, 

user-friendly interface that enables real-time risk assessment at 

the bedside. This tool addresses a critical gap in neonatal care 

by providing objective, evidence-based risk stratification before 

FIGURE 3 

Interactive clinical decision support tool for feeding intolerance prediction. Screenshot of the web-based prediction system showing the user 

interface for inputting clinical parameters. The tool displays patient information fields including sex, birth weight, gestational age, time to initial 

feeding, abnormal amniotic fluid, ventilator use, cesarean section, and dexamethasone exposure. The diagnostic result shows a high-confidence 

prediction of feeding intolerance with 96.73% confidence and probability range [0.0327, 0.9673]. The system provides bilingual support (Chinese 

and English) and includes clinical decision support recommendations.

Mao et al.                                                                                                                                                                10.3389/fped.2025.1646973 

Frontiers in Pediatrics 07 frontiersin.org



feeding initiation, potentially reducing clinical uncertainty and 

supporting more informed decision-making.

The clinical significance of this tool extends beyond individual 

patient care to broader healthcare system implications. By 

enabling early identification of high-risk infants, the software 

may facilitate proactive management strategies, including 

enhanced monitoring protocols, modified feeding approaches, 

and early consultation with pediatric gastroenterology specialists. 

This predictive capability could potentially reduce the incidence 

of severe feeding complications, shorten hospital stays, and 

improve long-term neurodevelopmental outcomes through 

optimized nutritional support.

Moreover, the standardization of risk assessment through 

our decision support tool may reduce inter-clinician 

variability in FI risk evaluation, particularly valuable in 

settings with varying levels of neonatal expertise. The tool’s 

integration potential with electronic health records systems 

could further streamline clinical work+ows and ensure 

consistent application of evidence-based risk prediction across 

different healthcare settings.

When compared with international literature, our findings 

demonstrate broad consistency in the direction and 

magnitude of FI risk factors. However, our study represents 

one of the first applications of such a comprehensive, pre- 

feeding machine learning model in a Chinese neonatal 

population. The model’s robust performance, even within a 

single-center cohort, suggests potential for broader 

applicability and multicenter validation. The clinical decision 

support tool derived from our model further facilitates 

practical, bedside implementation by clinicians.

This study has several limitations, including its retrospective, 

single-center design and the generalizability of the current 

model remains to be confirmed due to the lack of external 

validation on a completely independent dataset, which is 

crucial for the model’s clinical adoption. Some potentially 

relevant variables, such as detailed gut microbiota profiles or 

specific prenatal exposures, were not assessed. Future research 

should focus on prospective, multicenter studies with external 

validation in diverse populations and incorporation of 

additional biomarkers when feasible. Ethical considerations 

regarding the use of artificial intelligence in neonatal care, 

including data privacy, model interpretability, and healthcare 

equity, must be addressed through adherence to established 

international frameworks.

Conclusion

AdaBoost model incorporating routinely available clinical 

variables enables accurate prediction of feeding intolerance in 

preterm infants prior to feeding initiation. This approach 

demonstrates superior performance compared to conventional 

risk assessment methods and supports early risk stratification 

with potential for broader clinical application. Prospective 

multicenter validation studies are needed to confirm these 

findings and facilitate clinical implementation.
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