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Introduction: Gut microbiota dysbiosis is implicated in autism spectrum disorder
(ASD), yet scalable therapeutic interventions remain limited. This study
investigated gut dysbiosis profiles in children with ASD and evaluated the
clinical efficacy of a simplified fecal microbiota transplantation (FMT) protocol
using pediatric donors.

Methods: In a cross-sectional phase, 48 children with ASD and 51 age-/sex-
matched healthy controls underwent gut microbiota analysis. Subsequently, 25
ASD participants received FMT via a streamlined protocol: 3-day bowel
preparation followed by 6-day transcolonoscopic microbiota infusion from
pediatric donors. Clinical outcomes and microbiota shifts were assessed at 3-
month follow-up.

Results: (1) Baseline Dysbiosis: ASD subjects exhibited reduced microbial
diversity, with decreased Faecalibacterium and Bifidobacterium but elevated
Megamonas and Akkermansia vs. controls. (2) Clinical Efficacy: Post-FMT,
significant improvements occurred in core ASD symptoms and gastrointestinal
comorbidities. (3) Microbiota Shifts: FMT recipients showed increased
beneficial genera (Prevotella, Faecalibacterium, Agathobacter, Dorea) and
reduced Escherichia-Shigella.

Discussion: A simplified pediatric donor FMT protocol effectively modulates gut
microbiota composition and alleviates both behavioral and gastrointestinal
symptoms in children with ASD. This strategy demonstrates feasibility for
clinical translation, highlighting microbiota-targeted therapy as a promising
intervention for ASD.
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Introduction
Autism  spectrum  disorder (ASD) is a complex

neurodevelopmental condition that originates in infancy and
early childhood. Its core characteristics include persistent deficits
in social communication and interaction, as well as restricted
interests and repetitive patterns of behavior (1).In recent years,
the prevalence of ASD has shown a consistent upward trend.
According to data from the Centers for Disease Control and
Prevention (CDC), the prevalence of ASD among 8-year-old
children rose from 2.27% in 2018 to 2.7% in 2023 (2, 3).
National epidemiological surveys in China similarly reported a
prevalence of 0.7% among school-aged children (ages 6-12) in
2020 (4), whereas young children (0-6 vyears) showed a
prevalence of 1.8% in 2023 (5). Conservatively estimated,
approximately 2 million children aged 0-14 years are currently
affected by ASD in China, with 160,000 new cases emerging
annually (6). The high disability rate and incurability of ASD
have created a significant public health burden.

The pathogenesis of ASD remains incompletely elucidated.
Current evidence suggests that its etiology involves an interplay of
genetic susceptibility, immune dysregulation, and environmental
factors (7).At present, primary interventions predominantly focus
on behavioral therapy and educational support, with a significant
lack of specific agents aimed at addressing core symptoms (8, 9).
Significantly, children with ASD exhibit higher susceptibility to
comorbidities-including functional gastrointestinal disorders (e.g.,
abdominal pain, constipation, diarrhea), sleep disturbances, and
emotional/behavioral ~ problems-compared to  neurotypically
developing (TD) children (10-12). These comorbidities not only
substantially impair quality of life but may also exacerbate core
behavioral symptoms (13, 14). Consequently, investigating the
mechanisms

underlying  pathophysiological and developing

novel interventions are key priorities in research on
neurodevelopmental disorders.

In recent years, advances in the gut-brain axis (GBA) theory have
intensified investigations into the mechanistic roles of gut microbiota
in neurodevelopment. This theory highlights the bidirectional
communication between gut microbiota and the central nervous
system through multiple pathways including chemical, neural,
immune, and endocrine routes, which ultimately modulate brain
development and function (15-17). The pathological significance of
this axis is now widely recognized, as mounting evidence implicates
intestinal dysbiosis as a crucial susceptibility factor in the
progression of numerous neurological disorders, including
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and
notably, ASD (18). In the context of ASD specifically, a consistent
body of evidence points to characteristic dysbiosis. The main
manifestations are featuring reduced microbial diversity, depletion
of beneficial bacteria [including short-chain fatty acid (SCFA)-
producing taxa], and enrichment of potential pathogens such as
(19-27). In addition,

investigations further demonstrate microbial involvement in ASD

the Clostridium  genus metabolomic
pathogenesis via dysregulation of key metabolic pathways, including
SCFA  production,
compound synthesis (25, 28-35). Crucially, this dysbiosis is now

tryptophan  metabolism, and phenolic
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understood to be a potent driver of immune dysregulation, a core
pathological feature in ASD. Emerging studies highlight how an
imbalanced gut microbiome can trigger pro-inflammatory
responses and compromise intestinal barrier integrity, contributing
to the neuroinflammatory states observed in the disorder (36).
However, certain heterogeneity persists across studies due to
variations in geographic distribution, dietary patterns, antibiotic
exposure history, and subtypes of ASD among the cohorts (20,
37-39). Despite this variability, the compelling link between the gut
microbiome and ASD pathophysiology has spurred the exploration
of microbiota-targeted therapies. This approach is built upon the
growing success of such interventions in managing other
conditions rooted in microbial dysbiosis. A recent comprehensive
review, for example, highlights the therapeutic potential of
modulating the gut microbiome for a range of gastrointestinal
disorders, thereby establishing a strong rationale for exploring these
strategies in neurodevelopmental conditions that frequently present
with GI comorbidities (40).

FMT is an emerging intervention that restores intestinal
microbial balance and has demonstrated potential in autism
spectrum disorder (ASD) management. Preliminary evidence
indicates FMT ameliorates gastrointestinal symptoms and partially
improves core behavioral manifestations in ASD. In an open-label
trial administering microbiota transfer therapy (MTT) to 18
children with ASD for a period of 10 weeks, over 80% experienced
abdominal

distension and diarrhea, and the symptom improvement could last

relief from gastrointestinal symptoms such as
for up to 2 years (41, 42). Furthermore, a recent study reported
20% and 17% reductions in Autism Behavior Checklist (ABC) and
Social Responsiveness Scale (SRS) scores, respectively, among 40
children following a 4-week FMT protocol (43). Although FMT
has shown preliminary therapeutic efficacy in treating ASD, its
clinical application encounters significant challenges. Specifically,
the lack of standardized protocols for the preparation of fecal
bacterial liquid, administration routes and treatment plans has
hindered the wide implementation of this treatment measure (44).
More importantly, most current studies utilize microbiota from
adult donors. However, the developing gut ecosystem in children
may display age-related incompatibilities in microbial composition
and metabolic functions when compared to adult-derived
communities. This discrepancy could potentially lead to immune
dysregulation and disorders related to sexual development (45, 46).
Currently, there is still a lack of a systematically constructed child-
specific donor microbiota bank, which has become one of the
main limiting factors for the application of FMT in the pediatric
ASD  population.

microbiota with clearly defined sources and age-matched is

Therefore, exploring the pediatric donor
anticipated to offer a more suitable microecological foundation for
the safety and efficacy of FMT in pediatric ASD.

In light of the aforementioned context, this research is
structured into two distinct components. The first component
consists of a cross-sectional cohort study designed to
systematically assess the differences in intestinal microbiota
characteristics between children diagnosed with ASD and healthy
control children in the central region of China. The second

component involves a single-center, self-controlled open-label
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study that will administer FMT via colonoscopy, utilizing
microbiota from pediatric donors. This intervention seeks to
evaluate the relationship between clinical improvements and
behavioral symptomatology in children with ASD, both prior to
and following the treatment. Collectively, this study aims to
establish a foundational understanding of the mechanisms
underlying FMT, enhance the development of individualized
treatment strategies, and establish a safety framework for the
application of FMT in pediatric populations.

Materials and methods
Research design

This research design is divided into two parts: (1) Cross-
sectional cohort study: We recruited 48 children with autism
spectrum disorder (ASD) aged 3-17 years meeting the
Diagnostic and Statistical Manual of Mental Disorders (5th ed.;
DSM-5) (1) criteria, along with 51 age/sex-matched healthy
controls, were recruited. To analyze gut microbiota structural
profiles in ASD. (2) Single-center, self-controlled open-label trial:
Among the 48 ASD participants, 25 eligible patients were
selected through physician screening to receive fecal microbiota
transplantation (FMT). Changes in ASD core symptoms and gut
microbial composition were assessed using standardized rating
scales and fecal microbial analyses pre- and post-intervention to
investigate therapeutic effects of FMT. This study was approved
by the Medical Ethics Committee of Zhongnan Hospital, Wuhan
University in accordance with the Declaration of Helsinki. Before
enrolling in the study, written informed consent was obtained
from all participants or their legal guardians. Furthermore,
the study was registered at the Chinese Clinical Trial Registry
(www.chictr.org.cn). The trial protocol is accessible through the
registration number ChiCTR2500105006.

Recruitment and grouping of subjects

ASD group: From December 2023 to January 2025, patients
with ASD who met the diagnostic criteria of DSM-5 were
recruited from the pediatric outpatient department of Zhongnan
Hospital of Wuhan University.

Healthy Control (HC)
adolescents without neurodevelopmental disorder histories were

Group: Healthy children and

recruited from public kindergartens and schools in Wuhan.

Enrollment Criteria for the FMT treatment group: (1) Aged 4-
17 years old; (2) ASD diagnosis confirmed by at least two
experienced child neurologists per DSM-5 criteria; (3) Legal
guardians fully understand the research protocol and sign a
written informed consent form.

Exclusion criteria: (1) Antibiotic or probiotic use within 3
disorders;  (3)
gastrointestinal diseases (e.g., intestinal obstruction) or major

months prior; (2) Coagulation Severe
organic pathologies; (4) Presence of infectious diseases; (5)

Presence of other mental disorders.
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Donor screening and FMT treatment for the
ASD patients

FMT donor preparation was exclusively conducted by
Maintainbiotech. Ltd. (Wuhan), which has been pre-approved by
the hospital. Donor screening strictly adhered to the Chinese
FMT Donor Screening Guidelines (47). Specifically, donors were
selected from healthy control (HC) volunteers meeting health
criteria in Part 1 of this study, and were further screened and
evaluated according to guideline to ensure microbial safety and
suitability. Written
guardians for the use of donor samples. Fecal microbiota

informed consent was obtained from
suspension preparation rigorously followed the Chinese FMT
Preparation Guidelines (48): Donor feces were collected in sterile
containers, and 200 g of feces were immediately mixed uniformly
with 500 ml of 0.9% sterile saline. The resulting suspension was
filtered through sterile gauze to remove large particulate matter.
The suspension was centrifuged at 3,000 rpm for 10 min at 4 °C
to remove precipitates. The resulting bacterial suspension was
stored at —80 °C and resuscitated in a 37 °C water bath before use.

Three days prior to FMT, subjects initiated a liquid diet and
bowel preparation with oral rifaximin (0.1 g three times daily)
plus polyethylene glycol 4,000 powder. Bowel preparation
adequacy was confirmed when colorless or light yellow
transparent watery stools were discharged. On transplantation
day, a catheter was inserted into the ileocecal region via
colonoscopy. Fifty milliliters of fecal suspension, rewarmed to
37 °C in a water bath, were infused through the catheter.
Transplantations were performed once daily for six consecutive
days. Food was restricted within 2h before and after each
infusion, with subjects maintaining a right lateral position for 2 h
post-infusion. A liquid diet was sustained throughout FMT.
Following treatment completion, gluten-containing foods were
strictly avoided for at least 1 month.

Evaluation and sample collection

Fecal sample collection: Baseline stool samples were obtained
from both the ASD and HC groups. The FMT treatment group
was resampled pre-intervention and at the 3-month post-
treatment time point. All samples were immediately aliquoted
and stored at —80 °C for subsequent microbiological analyses.

Behavioral and comorbidity assessment: An assessment battery
including the Autism Behavior Checklist (ABC) (49), Childhood
(CARS) (50), and comorbidity
questionnaires (e.g., gastrointestinal symptoms and sleep quality)

Autism  Rating  Scale

was administered with the cooperation of their guardians to all
FMT recipients pre- and post-treatment.
DNA extraction, microbial sequencing and

bioinformatics analysis

Genomic DNA was extracted from fecal samples using the
HiPure Stool DNA Mini Kit (Magen, Guangzhou, China)
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according to the manufacturer’s protocol. DNA concentration was
quantified using a Qubit 4 Fluorometer with the Qubit dsDNA HS
Assay Kit (Thermo Fisher Scientific, USA), while integrity
was assessed via 1% agarose gel electrophoresis. The V3-V4
region of the bacterial 16S rRNA gene was amplified using
primers 341F (5-CCTACGGGNGGCWGCAG-3’) and 805R (5’-
GACTACHVGGGTATCTAATCC-3) in a reaction system
containing KAPA HiFi HotStart ReadyMix (Roche, Switzerland),
performed on a Veriti Thermal Cycler (Applied Biosystems, USA).
PCR amplicons were purified using AMPure XP beads (Beckman
Coulter, USA) and subjected to paired-end sequencing (2 x 250 bp)
on the Iumina MiSeq platform. Quality control of the raw
sequencing data was performed using the DADA2 plugin to
remove low-quality bases and chimeric sequences, generating high-
quality non-redundant feature sequences (Amplicon Sequence
Variants, ASVs). Subsequently, ASVs were taxonomically annotated
using the SILVA database (Release 138). Alpha diversity of
microbial communities was assessed via Shannon and Simpson
indices. Beta diversity analysis employed Bray-Curtis dissimilarity
matrices visualized through principal coordinates analysis (PCoA).
Statistical significance of community structure differences was
using ANOSIM  (Analysis of Similarities) and
permutational multivariate ANOVA  (Adonis). To identify
differentially abundant taxa across groups, linear discriminant

assessed

analysis effect size (LEfSe) was employed, with biological relevance
evaluated by LDA scores. Spearman rank correlation analysis was
performed to examine associations between ASVs and clinical scale
scores including the Autism Behavior Checklist (ABC) and
Childhood Autism Rating Scale (CARS).

Statistical analysis

Statistical conducted using SPSS 26.0.
Continuous variables are presented as medians with interquartile

analyses were
ranges (IQR). Normality testing was performed to guide selection
of appropriate statistical methods. Between-group comparisons
for continuous variables utilized Mann-Whitney U or Wilcoxon
signed-rank tests based on data distribution characteristics, while
categorical data comparisons employed chi-square tests. Unless
otherwise specified, all statistical tests incorporated false
discovery rate (FDR) correction to control for false positives in
multiple testing. Corrected p-values <0.05 were considered

statistically significant.

Result
Demographic characteristics

This study included a total of 48 patients with ASD aged 3-17
years and 51 age/sex-matched healthy control (HC) children for
comparative analysis of gut microbiota. There were no
statistically significant differences in age distribution and sex

ratio between the two groups (Table 1).
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TABLE 1 Demographic characteristics of
description of the FMT subgroup.

study participants and

Characteristic

Healthy
controls (HC)
(n=>51)

ASD group
(n = 48)

Gender (male/female)

EMT subgroup -

(n=25)

Age (years, median 7 (5-8) 7 (5-8) 0.600
[IQR)

FMT subgroup - 7 (7-9) -
(n=25)

Analysis of o and B diversity of gut
microbiota in children with ASD and HC

Venn analysis revealed that only 23.5% of ASVs were shared
between the ASD and HC groups (Figure 1A). The proportion of
unique microbial communities in the ASD group is significantly
higher than that in the HC group (55.8% vs. 20.7%), indicating
that the gut microbiome composition of ASD patients has
significant specificity. Further analysis revealed significantly
decreased Faith’s phylogenetic diversity index (p<0.0001) and
Shannon index (p=0.002), along with increased Simpson index
(p=0.0019; Figure 1B) in the autism spectrum disorder (ASD)
group compared to healthy controls (HC). These findings
collectively indicate reduced a-diversity in the gut microbiota of
ASD subjects. The PCoA based on Bray-Curtis distance shows
significant separation in the spatial distribution of the two groups
of microbial communities (p <0.001, Figures 1C,D), confirming
the structural abnormalities of the gut microbial ecosystem in
ASD patients at the community level.

The composition of gut microbiota in
children with ASD and HC groups

Significant differences in gut microbiota composition were
observed between patients with ASD and HC children. At the
phylum level, the ASD group exhibited significantly higher
relative  abundances of Bacteroidota, Proteobacteria, and
Verrucomicrobiota, while showing significantly reduced abundances
of Firmicutes and Actinobacteriota compared to the HC group
(Figure 2A). Family-level analyses revealed significantly higher
relative abundances of Enterobacteriaceae and Prevotellaceae, but
lower abundances of Bifidobacteriaceae and Ruminococcaceae in
the ASD group compared to HC (Figure 2B). At the genus level,
significantly reduced relative abundances of Faecalibacterium,
Bifidobacterium, and Agathobacter were observed in the ASD
Prevotella and  Escherichia-Shigella  exhibited

increased abundances compared to HC (Figure 2C).

cohort, whereas

LEfSe analysis further identified differentially abundant genera
between groups. Significantly increased relative abundances of
Megamonas, Akkermansia, and Lachnoclostridium were observed
in the ASD group, whereas Faecalibacterium, Bifidobacterium,
and Subdoligranulum exhibited reduced abundances in the ASD
group (LDA score >3.0; Figures 2D,E).
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differences, along with their corresponding significance levels (p < 0.05).
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FIGURE 1

The differences in the composition of gut microbiota between ASD and HC groups. (A) The Venn diagram shows the ASV count between the ASD
group and the HC group. (B) a-diversity indices (Faith's phylogenetic diversity, Shannon, and Simpson) in ASD and HC groups. (C) Principal
coordinates analysis (PCoA) of B-diversity based on Bray-Curtis dissimilarity between groups, analyzed by Wilcoxon rank-sum test. (D) weighted
analysis of similarity (ANOSIM) was conducted based on Bray-Curtis distance matrices. The ANOSIM R values indicate inter-group microbial

The improvement effect of FMT on core
symptoms and comorbidities of ASD

Among 25 ASD patients receiving FMT, 21 completed the
post-treatment follow-up assessment (4 lost to follow-up due to
questionnaire refusal). Assessment scales revealed a 14.6%
decrease in mean CARS scores post-treatment vs. baseline
(p=0.0089; Figure 3B). Although changes in ABC scores did not
reach statistical significance (p=0.51 Figure 3A), the observed
downward trend suggests a potential therapeutic effect of FMT
on the core symptoms of ASD.

Furthermore, the common comorbidities symptoms of ASD after
FMT treatment also showed significant improvement. Pre-treatment,
the incidence of comorbidities in these patients was as follows:
attention deficit hyperactivity disorder (ADHD, 100%), emotional
problems (89.5%), sleep disturbances (73.7%), and gastrointestinal
symptoms (52.6%). Post-treatment, gastrointestinal symptoms showed
the most pronounced improvement (100% improvement rate).
ADHD, emotional problems, and sleep disturbances demonstrated
improvement rates of 42.1%, 47.7%, and 42.9%, respectively (Table 2).

Frontiers in Pediatrics

The impact of FMT on gut microbiota
structure in ASD patients

FMT significantly altered the gut microbiota composition in
ASD patients. Venn analysis demonstrated an increase in
shared ASV proportions between patients and donors from
17.1% pre-treatment to 19.9% post-treatment (Figure 4A).
Although not
revealed increased diversity post-FMT compared to baseline
levels, approaching donor diversity profiles (Figure 4B). PCoA
further confirmed significant structural shifts toward donor

statistically significant, a-diversity analysis

microbiota in post-treatment samples, indicating effective
microbial remodeling by FMT that promoted convergence of
the gut microbiota in ASD patients toward healthy donor
profiles (Figure 4C).

Phylum-level relative abundance analysis revealed increased
abundances of Firmicutes and Bacteroidota, but decreased
Proteobacteria in the gut of patients post-FMT compared to
5A). At the family level,
exhibited

pre-treatment levels (Figure

Ruminococcaceae and Lachnospiraceae elevated
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relative abundances, while Enterobacteriaceae showed reduced
abundance post-FMT (Figure 5B). At the genus level, increased
relative abundances of Prevotella, Faecalibacterium, and
Agathobacter were observed alongside significantly reduced
Escherichia-Shigella abundance (Figure 5C). Collectively, these
shifts demonstrate microbial convergence toward healthy
donor profiles.

LEfSe analysis further identified signature taxa with significant
inter-group differences: Healthy donors exhibited enrichment
of Bifidobacterium, Agathobacter, and Romboutsia. Following
FMT, the predominant in ASD patients shifted
from Lachnoclostridium (LDA score >3.0;

Figures 5D,E). Analysis of specific genera post-FMT revealed

genera
to Megamonas

significantly increased relative abundances of Agathobacter and
Dorea in ASD children, approaching donor levels (Figure 5F).
Conversely, the relative abundance of Bifidobacterium was lower
than pre-treatment baseline levels, contrasting with the common
expectation from previous studies that its abundance should

Frontiers in Pediatrics

increase as a potential beneficial bacterium following

effective interventions.

Correlation analysis between gut
microbiota and clinical score

To investigate relationships between symptoms and specific gut
bacterial genera in ASD, correlation analyses were performed
between genus-level relative abundances and total scores on the
CARS and ABC, (Figure 6).
Agathobacter relative abundance showed significant positive
correlations with both ABC total scores (r=0.56, p<0.05) and
CARS total scores (r=0.53, p<0.05), while Fusobacterium
abundance positively correlated with ABC total scores (r=0.59,
p<0.05) (Figure 6A). Analysis of ABC subscale scores further
revealed significant positive correlations between Agathobacter
relative abundance and scores in the Sensory (r=0.49, p <0.05),

including subscale scores
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FIGURE 3
Scores of ABC and CARS scales before and after FMT treatment. (A) ABC scores. (B) CARS scores. Red: pre-FMT; Blue: post-FMT; The data were tested
using Wilcoxon rank-sum test.

TABLE 2 The incidence of common comorbid symptoms in children with
ASD before FMT treatment and the improvement rate after treatment.

Symptom Incidence | Improvement
rate
Sleep disturbances 73.7% 42.9%
Difficulty initiating sleep 64.3% -
Early morning awakening 42.9% -
Gastrointestinal symptoms 52.6% 100.0%
Constipation 50.0% -
Emotional problems 89.5% 47.4%
Irritability/aggression 82.4% -
Hyperarousal 52.9% -
Attention deficit hyperactivity disorder 100.0% 42.1%
(ADHD)

Relating (r=0.52, p<0.05), and Body/Object Use (r=0.48,
P <0.05) domains (Figure 6B).

Discussion

This study employed a streamlined FMT protocol consisting of
three days of bowel preparation followed by six days of
The
improvements in core behavioral symptoms, as evidenced by a

transplantation. intervention  resulted in  notable

14.6% reduction in CARS scores, and a marked alleviation of
in children with ASD.
Interestingly, the changes in the ABC scores did not reach a

gastrointestinal (GI) comorbidities
statistically significance. We hypothesize that the lack of
statistical significance could be partly attributed to the limited
statistical power resulting from our small sample size. In
addition, as a parent-reported checklist, the ABC is inherently
subjective, which may introduce variability and affect the
sensitivity of the measurement in detecting subtle behavioral
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changes over the study period. Additionally,
alterations in gut microbiota composition were observed.

Microbiota diversity analysis revealed distinct dysbiotic features

significant

in the ASD group, including a significant reduction in a-diversity
and clear separation in B-diversity compared to healthy controls
—findings consistent with prior reports by Kang and Ding et al
(51, 52). Following the FMT treatment, the microbial profiles of
ASD children gradually shifted toward those of healthy donors.
This shift was characterized by increased relative abundances of
Firmicutes and Bacteroidetes and decreased Proteobacteria at the
phylum level. Increased Ruminococcaceae and Lachnospiraceae,
and decreased Enterobacteriaceae at the family level. And
increased Prevotella, Faecalibacterium, Agathobacter, and Dorea,
with a reduction in Escherichia-Shigella at the genus level. These
compositional changes were correlated with clinical improvements.

Among these, Prevotella—a key genus involved in dietary fiber
degradation and vitamin Bl metabolism—showed a positive
correlation between its post-FMT increase and improved social
behaviors (22). Faecalibacterium, particularly F. prausnitzii,
known for its butyrate production and anti-inflammatory
properties, was associated with relief of constipation symptoms,
corroborating findings by He et al. (53). The genus Dorea may
also contribute to maintaining mucosal barrier integrity by
modulating Treg/Th17 cell balance (54, 55). Furthermore, the
observed reduction in Escherichia-Shigella may help ameliorate
neurotransmitter imbalances by decreasing aberrant gamma-
aminobutyric acid (GABA) synthesis—a phenomenon supported
by previous studies
following FMT (43, 56).

Interestingly, the post-FMT decrease in Bifidobacterium

demonstrating GABA normalization

abundance contradicted expectations, as this genus is generally
considered beneficial. This unexpected finding may be explained
by the “distant attack, close defense” colonization model
proposed by Qin et al (57). According to this model, close
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phylogenetic similarity between donor and recipient strains—such
as in this study using pediatric donors and pediatric recipients—
may lead to niche competition and colonization resistance,
thereby hindering donor strain establishment. This highlights the
need for future research to incorporate metagenomic analyses of
donor-recipient strain compatibility to optimize FMT outcomes.
The dynamics of Agathobacter abundance revealed a
paradoxical pattern. Specifically, its abundance demonstrates a
positive correlation with the scores on the ABC and CARS scales.
However, following fecal microbiota transplantation (FMT)
treatment, there is an observed increase in the abundance of
this genus, yet a significant reduction in the scale scores occurs.
This apparent contradiction may reflect the genus’s complex
metabolic capacity. While Agathobacter is a known butyrate
producer with anti-inflammatory effects, some strains can also
generate metabolites such as succinate, which modulates
immunity (58, 59). In the ASD gut environment, succinate may
stimulate serotonin (5-HT) production by enterochromaffin
cells. Elevated peripheral 5-HT levels have been positively
associated with stereotyped behaviors in ASD (60, 61).
Furthermore, genetic ablation of intestinal 5-HT synthesis in
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animal models has been shown to significantly reduce autism-
like behaviors (62). Thus, the net clinical effect of Agathobacter
may depend on the balance between its beneficial metabolites
(e.g., butyrate) and its neuroactive byproducts (e.g., those
promoting 5-HT synthesis).

In summary, this study demonstrates that a simplified FMT
protocol can effectively alleviate both core behavioral symptoms
(CARS scores) and GI comorbidities in children with ASD, with
100% of participants reporting GI symptom improvement. These
findings provide preliminary clinical evidence supporting the
therapeutic potential of FMT in this population.

However, several limitations must be acknowledged. First, the
sample size was relatively small, which may limit the statistical
power and generalizability of the findings. Second, the behavioral
and GI assessment tools used lacked standardization. Future
studies should incorporate internationally validated instruments,
such as the Gastrointestinal Symptom Rating Scale (GSRS),
Children’s Sleep Habits Questionnaire (CSHQ), and Social
Scale (SRS), to enhance comparability and
objectivity. Third, the study did not include metabolomic analyses,

Responsiveness

precluding direct validation of gut-brain axis mechanisms through
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key microbial metabolites such as butyrate and 5-HT. Besides, due to
the lack of a double-blind, randomized controlled trial (RCT) makes
it difficult to definitively confirm the therapeutic efficacy of FMT and
to rule out potential placebo effects. Lastly, although pediatric donors
were used, the absence of an adult donor control group limited the
ability to directly assess age-specific microbial advantages. Future
research should expand sample sizes, integrate metagenomics and
metabolomics approaches, and further elucidate microbiota-gut—
Randomized controlled trials should
explore the clinical value of age-matched pediatric donor

brain interactions. also
microbiota, thereby laying the groundwork for developing a

dedicated pediatric microbiota donor bank.

Conclusion

This study provides preliminary evidence that a simplified
pediatric FMT protocol can improve behavioral symptoms and
in children with ASD. The
intervention led to measurable changes in gut microbiota

gastrointestinal comorbidities

composition, some of which were positively correlated with

symptom improvement. Key taxa such as Prevotella,

Faecalibacterium, and Dorea may contribute to therapeutic
effects
neurotransmitter regulation. The results underscore the potential

via immune modulation, barrier maintenance, and
of age-matched donor microbiota in enhancing colonization
compatibility and clinical efficacy. However, larger-scale, multi-
omics studies and randomized controlled trials are needed to
confirm these findings and inform the development of safe,

standardized pediatric FMT protocols.
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