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Background: While early-life cytokine profiles have been linked to

neurodevelopmental outcomes in preterm infants, their prognostic value is

limited by clinical instability and inflammatory comorbidities in the immediate

postnatal period. This study explores cytokine levels measured during a more

stable developmental window—near term-equivalent age [postmenstrual age

(PMA) 34–38 weeks]—and their association with neurodevelopmental outcomes.

Methods: We prospectively enrolled 35 preterm infants (birth weight, 500–

1,500 g). Serum cytokine levels were measured at PMA 34, 36, and 38 weeks.

Neurodevelopment was assessed at 12 months’ corrected age using

standardized tools (BSID-III). Infants were classified into neurodevelopmental

impairment (NDI) and non-NDI groups. Cytokine levels and their changes

were compared between groups.

Results: Elevated IFN-γ levels at PMA 34 weeks were associated with a higher risk

of NDI. Conversely, higher levels of Eotaxin-2, IL-2, IL-11, IL-16, MIP-1δ, PDGF-

BB, TIMP-2, and TNF-β at PMA 36–38 weeks were observed more frequently in

the non-NDI group. The trends also differed: increased IL-17 and decreased

Eotaxin-1, Eotaxin-2, IL-7, IL-16, MIP-1α, MIP-1β, PDGF-BB, and TIMP-2

between PMA 34–36 weeks, and further declines in ICAM-1, IL-7, MIP-1α, and

MIP-1β by PMA 38 weeks were associated with adverse outcomes. All

identified biomarkers demonstrated good discriminatory ability, particularly

changes in Eotaxin-2 between PMA 34 and 36 weeks and PDGF-BB between

PMA 34 and 38 weeks.

Conclusions: Serum cytokine levels and their trajectories during PMA 34–38

weeks may serve as potential biomarkers for identifying preterm infants at risk

of neurodevelopmental impairment. Further studies with larger cohorts are

needed to clarify their interplay with preterm morbidities.
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Highlights

• Near-term cytokines help identify preterm infants at

neurodevelopment risk.

• Most cytokines predict good neurodevelopment; only IFN-γ and

IL-17 predict poor outcomes.

• Both cytokine levels and their changes may predict outcomes in

preterm infants.

• Preterm comorbidities impact biomarker levels at near-

term age.

Introduction

Premature infants are at an increased risk of developing

varying degrees of neurodevelopmental impairment (NDI) (1, 2).

In these infants, fetal growth restriction has been identified as an

independent risk factor (3). Studies suggest correlations between

specific blood biomarkers and neurodevelopmental outcomes in

infants. For instance, elevated levels of proinflammatory

cytokines, including interleukin (IL)-1β, IL-8, IL-9, tumor

necrosis factor (TNF)-α, and regulated upon activation, normal

T cell expressed and secreted (RANTES), along with decreased

levels of anti-inflammatory cytokines, such as IL-2 and IL-3,

within the first day after birth, have shown good sensitivity and

specificity in predicting cerebral palsy (CP) in late preterm and

term infants (4). Another cohort study conducted on 1,067

extremely low birth weight (≤1,000 g) infants found that IL-8

levels were elevated during the initial four days and remained

higher in infants who subsequently developed CP (5).

However, some studies also have provided different insights,

suggesting that cytokines in early postnatal age may not

effectively predict neurologic outcomes. A study that collected

cord blood samples at birth from 400 neonates found no

association between elevated levels of cord serum IL-6,

C-Reactive Protein (CRP), and Myeloperoxidase (MPO) at birth

and poor neurodevelopmental outcomes (6). In a nested case-

control study of 615 preterm infants with a gestational age (GA)

between 24 and 31 6/7 weeks, cord serum IL-8, IL-1β, and TNF-

α levels were not associated with subsequent CP or

neurodevelopmental delay at the 2-year follow-up (7).

Additionally, a study that measured cytokines on average 2.4

days postnatally in 271 very preterm infants born before 32

weeks GA found no associations between 11 cytokines [IL-1, −2,

−4, −5, −6, −8, −10, and −12; granulocyte–macrophage colony-

stimulating factor (GMCSF); interferon (IFN)-γ; and TNF-α] and

later diagnosis of CP (8).

Conflicting research results may be attributed to the fact that

preterm infants often face significant clinical instability during the

initial weeks of life. This period may be affected by various

pathological insults that can alter their physiological condition. As

a result, cytokines in the early postnatal period may not provide

strong neurological prognostic indicators. Limited studies have

hinted that the relationship between various blood biomarkers and

neurodevelopmental outcomes may vary depending on the specific

postnatal time points and the types of specimens evaluated.

A large cohort study of 1,506 premature infants born at a GA of

less than 28 weeks found that serum biomarkers such as CRP, IL-

8, and intercellular adhesion molecule-1 (ICAM-1), measured on

postnatal days 21 and 28, were associated with mental or

psychomotor developmental impairments in these infants (9). In

another study of 51 term infants, higher serum levels of IL-1β at

six months of age predicted decreased motor skill performance at

30 months of age (10).

Therefore, we investigated cytokine concentrations at

postmenstrual ages (PMA) of 34, 36, and 38 weeks—a period

considered to represent near term-equivalent age and

characterized by relatively stable clinical conditions—to explore

potential associations between these biomarkers and

neurodevelopmental outcomes.

Methods

Study participants

This prospective cohort study was conducted in the neonatal

intensive care units of our hospital between December 1, 2019,

and June 30, 2022. Preterm infants with birth weights between

500 g and 1,500 g were enrolled after written informed consent

was obtained from their parents. Exclusion criteria included

major congenital anomalies, such as chromosomal abnormalities

or central nervous system malformations. Infants were also

excluded from the final analysis if they died before serum

cytokine sampling, had incomplete medical records, or lacked

neurodevelopmental assessment data. The study was approved by

the Institutional Review Board of our hospital (approval number:

201902088A3).

Data collection

Demographic data were retrospectively collected from electronic

medical records, including maternal characteristics [e.g., mother’s

age, pregnancy complications such as gestational diabetes mellitus

(GDM), premature rupture of membranes (PROM), pre-

eclampsia/eclampsia], infant baseline information (e.g., GA, birth

weight, APGAR scores), and clinical outcomes (e.g., severe

intraventricular hemorrhage (IVH), hemodynamically significant

patent ductus arteriosus (HsPDA), necrotizing enterocolitis (NEC),

Grade II/III bronchopulmonary dysplasia (BPD). Severe IVH was

defined as IVH grade ≥3 on intracranial ultrasound. HsPDA was

defined as cases requiring medical or surgical ligation. BPD was

diagnosed basing on the 2019 Jensen definition (11). Interventions,

including postnatal use of intravenous or inhaled steroids and

exclusive breast milk feeding, were included in the analysis.

Nutritional status was assessed by examining changes in Z-scores

from birth to discharge. For infants discharged at a PMA of less

than 50 weeks, the Fenton Growth Chart (2013) was used (12),

while the 2006 WHO Growth Standards were applied for those

discharged at 50 weeks or later (13).
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Neurodevelopment assessment

The Bayley Scales of Infant and Toddler Development, Third

Edition (BSID-III) were used to assess neurodevelopmental

condition at 12 months of corrected age (14). The BSID-III

includes domains for cognitive (91 items), language (97 items),

motor (138 items), social-emotional (35 items), and adaptive

behavior (241 items). Only the first three domains were included

in the analysis. Neurodevelopmental impairment (NDI) was

defined as a BSID-III score <70 in any of the motor, cognitive,

or language domains at 12 months of corrected age. Infants were

classified into NDI and non-NDI groups.

Cytokines analysis

Blood samples were collected three times: at 34 weeks PMA,

36 weeks PMA, and 38 weeks PMA, with a 2-week interval

between collections. After reviewing the cytokines reported to

correlate with neurodevelopment in preterm infants, we selected

a commercially available multiplex assay (Quantibody® Human

Inflammation Array 3; RayBiotech, Peachtree Corners, GA,

USA) to analyze serum cytokine levels at each time point. This

assay quantifies 40 cytokines, including B-lymphocyte

chemoattractant (BLC), eotaxin-1, eotaxin-2, granulocyte

colony-stimulating factor (GCSF), GMCSF, I-309, ICAM-1,

IFN-γ, IFN-1α, IFN-1β, IL-1Rα, IL-2, IL-4, IL-5, IL-6, IL-6R,

IL-7, IL-8, IL-10, IL-11, IL-12p40, IL-12p70, IL-13, IL-15, IL-

16, IL-17, monocyte chemoattractant protein (MCP)-1,

macrophage colony-stimulating factor (MCSF), monokine

induced by IFN-γ (MIG), macrophage inflammatory protein

(MIP)-1α, MIP-1β, MIP-1δ, platelet-derived growth factor-BB

(PDGF-BB), RANTES, tissue inhibitor of metalloproteinase

(TIMP)-1, TIMP-2, TNF-α, TNF-β, TNF receptor (TNFR)-1,

and TNFR-2, including several previously reported to be

significant. Serum cytokine levels at each time point, as well as

the cytokine changes between each interval, were compared

between two groups.

Statistical analysis

In comparing demographic variables, a Chi-square test was

used to assess differences between categorical variables, and the

independent Student’s t-test was applied to analyze continuous,

normally distributed variables, which are presented as means and

standard deviations (SDs). Serum cytokine levels at each time

point and cytokine changes between intervals were compared

using the nonparametric Mann–Whitney U-test between two

groups. The area under the ROC curve (AUC) was calculated for

significant biomarkers. The generalized estimating equations

approach was used to identify factors associated with changes in

serum cytokine levels. A significant difference was considered for

p-values less than 0.05. Statistical analyses were performed using

IBM SPSS Statistics (version 27.0, Armonk, NY: IBM Corp).

Results

A total of 50 premature infants were enrolled in this study.

Fifteen infants were excluded for the following reasons: four had

incomplete medical records, one expired before the

neurodevelopmental assessment, one experienced an out-of-

hospital cardiac arrest after discharge, and nine lacked a

12-month BSID-III score. Thirty-five preterm infants were

included in the final analysis, with 26 in the non-NDI group and

9 in the NDI group (Figure 1). The characteristics of these two

groups were presented in Table 1. There were no significant

differences in maternal and infant characteristics between the

two groups.

When analyzing the serum cytokine levels at each time point, we

identified 9 cytokines with significant differences between the two

groups, potentially linked to neurodevelopmental outcomes, as

shown in Table 2. Higher serum levels of IFN-γ were observed in

the NDI group at 34 weeks PMA, suggesting a potentially

detrimental effect on neurodevelopment. Conversely, the non-NDI

group exhibited higher serum levels of eight other cytokines—

Eotaxin-2, IL-2, IL-11, IL-16, MIP-1δ, PDGF-BB, TIMP-2,

TNF-β—at 36 weeks PMA or 38 weeks PMA, indicating a

potentially favorable effect. The levels of all 40 cytokines at each

time point were compared and summarized in Supplementary

Table 1. No significant differences were observed for the other 31

cytokines at any time point between the two groups.

Subsequently, we investigated the changes in serum cytokine

levels between each time point and identified 10 cytokine

changes associated with neurodevelopmental outcomes, which

were summarized in Table 3. Elevated IL-17 levels, as well as

decreased Eotaxin-1, Eotaxin-2, IL-7, IL-16, MIP-1α, MIP-1β,

PDGF-BB, and TIMP-2 levels between PMA 34 and PMA 36

weeks, correlated with poor neurodevelopmental outcomes.

Besides, decreased in ICAM-1, IL-7, IL-16, MIP-1α, and MIP-1β

levels between PMA 34 and PMA 38 weeks was associated with

poor neurodevelopmental outcomes. The comparisons of

cytokine level changes across all 40 cytokines in each interval

were listed in Supplementary Table 2.

The AUC for each significant biomarker was summarized in

Table 4. Biomarkers with a detrimental effect indicating NDI

showed an AUC of 0.752 for IFN-γ at PMA 34 weeks and an

AUC of 0.744 for the change in IL-17 from PMA 34 weeks to 36

weeks. Biomarkers with a favorable effect also demonstrated good

discriminatory ability, with all AUC values above 0.7. Notably,

the change in Eotaxin-2 between PMA 34 and 36 weeks had an

AUC of 0.833, and PDGF-BB between PMA 34 and 38 weeks

had an AUC of 0.821.

To assess the possible factors contributing to cytokine changes

during this period, a generalized estimating equations approach

was applied, and the results were summarized in Table 5. From

PMA 34 weeks to 36 weeks, infants with severe IVH showed

increased levels of IL-2, IL-7, and IL-11, while HsPDA was

associated with increased levels of IL-11 and PDGF-BB. On the

other hand, NEC was associated with decreased levels of

Eotaxin-1, Eotaxin-2, IL-2, IL-16, MIP-1β, and PDGF-BB, and

GA was associated with decreased levels of ICAM-1. From PMA
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36 weeks to 38 weeks, only HsPDA was associated with increased

levels of IL-11, while infants with LOS showed decreased levels

of Eotaxin-1, IL-2, and IL-11. Additionally, NEC was associated

with decreased levels of Eotaxin-1, Eotaxin-2, IL-2, IL-16, PDGF-

BB, and TIMP-2, BPD with decreased MIP-1β levels, and GA

with decreased levels of Eotaxin-1, MIP-1β, and ICAM-1. The

detailed results of the generalized estimating equations are listed

in Supplementary Table 3.

Discussion

The primary aim of this study was to identify potential

biomarkers during a relatively stable period that could predict

neurodevelopmental outcomes in preterm infants. Both single

time-point cytokine levels and changes over specific intervals

may serve as potential predictors. Most biomarkers identified

during this phase were associated with favorable outcomes and

showed good discriminatory ability, particularly changes in

Eotaxin-2 from PMA 34 to 36 weeks (AUC 0.833) and PDGF-

BB from PMA 34 to 38 weeks (AUC 0.821). In contrast, higher

serum IFN-γ at PMA 34 weeks and greater increases in IL-17

from PMA 34 to 36 weeks were linked to adverse outcomes, with

AUCs of 0.752 and 0.744. These findings highlight the potential

clinical utility of cytokine profiling during PMA 34–38 weeks for

identifying infants at risk of neurodevelopmental impairment.

Biomarkers associated with detrimental
effects

IFN-γ is a pro-inflammatory cytokine, and its role in

neurodevelopment remains controversial. Some studies suggest that

IFN-γ contributes to neuroinflammation and neurodegeneration in

mouse models (15), with its absence enhancing cognitive

performance through increased hippocampal plasticity (16).

Conversely, other research has shown that IFN-γ can promote

neurogenesis (17). IL-17, primarily secreted by T helper 17 (Th17)

cells, is another inflammatory cytokine implicated in various

chronic inflammatory neurological disorders (18). Lu et al. reviewed

the role of neuroinflammation in neurological and psychiatric

conditions and found IL-17 to be associated with several disorders,

including autism spectrum disorder (ASD), Alzheimer’s disease

(AD), depression, and epilepsy (19). In one study, neonatal mice

exposed to sevoflurane showed increased IL-17A expression in the

hippocampus; deletion or inhibition of IL-17A attenuated

FIGURE 1

Flowchart of the study design, participant selection, and final inclusion.
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sevoflurane-induced cognitive impairment by reducing hippocampal

neuroinflammation (20). Although previous reviews have not

reported associations between IFN-γ or IL-17 and

neurodevelopmental outcomes in preterm infants (10, 21, 22), the

elevated levels observed in our study may influence

neurodevelopment based on their known physiological roles.

Biomarkers with favorable effects
consistent with previous findings

In our study, higher serum levels of IL-2, IL-7, IL-11, MIP-1α,

MIP-1β, MIP-1δ, PDGF-BB, TIMP-2, and TNF-β were positively

associated with better neurodevelopmental outcomes. These

findings are consistent with previous research on these cytokines

in other neurological disorders. IL-2 is known to regulate T-cell

proliferation, particularly regulatory T cells (23, 24), thereby

modulating inflammatory responses. In a mouse model of

traumatic brain injury, IL-2 complex treatment was shown to

alleviate inflammation and reduce blood-brain barrier disruption

(25). Additionally, elevated levels of TNF-β and IL-2 have been

reported at school age in children with a history of neonatal

encephalopathy (26). IL-7 is a cytokine involved in B and T cell

development (27), and plays a role in restoring immune function

following illness (28). Although previous reviews have not

established a direct link between IL-7 and neurodevelopment, IL-7

has demonstrated neurotrophic properties and may play an

important role in neural development (29). IL-11, an anti-

inflammatory cytokine in the IL-6 family (30), has shown

neuroprotective effects in animal studies. In rat models,

recombinant human IL-11 (rhIL-11) has been found to protect

against cerebral ischemia-reperfusion injury (31) and exert anti-

apoptotic effects in neonatal hypoxic-ischemic brain injury (32).

TABLE 1 Maternal and infant characteristics between infants with and
without neurodevelopmental impairment.

Demographic data Non-NDI
(N = 26)

NDI
(N = 9)

P

Maternal characteristics

Mother’s age, years (mean ± SD) 33 ± 5 35 ± 5 0.459

Pre-eclampsia or eclampsia, n (%) 3 (11.5) 2 (22.2) 0.586

Prom >18 hr, n (%) 1 (3.8) 0 1.000

Gdm, n (%) 0 1 (11.1) 0.257

Antenatal MgSO4, n (%) 22 (84.6) 8 (88.9) 1.000

Antenatal steroids, n (%) 25 (96.2) 9 (100) 1.000

Perinatal antibiotics, n (%) 18 (69.2) 7 (77.8) 1.000

Infant characteristics

Gestational age, weeks (mean ± SD) 27 ± 2 27 ± 3 0.920

Birth weight, g (mean ± SD) 933 ± 278 912 ± 285 0.849

Male, n (%) 14 (53.8) 6 (66.7) 0.700

Multiple birth, n (%) 8 (80.8) 1 (11.1) 0.391

Cesarean section, n (%) 19 (73.1) 7 (77.8) 1.000

APGAR score 1 min, (mean ± SD) 6 ± 1 4 ± 3 0.051

APGAR score 5 minutes, (mean ± SD) 8 ± 1 7 ± 2 0.076

Early-onset sepsis, n (%) 1 (3.8) 0 1.000

Late-onset sepsis, n (%) 3 (11.5) 4 (44.4) 0.055

IVH ≧ grade 3, n (%) 2 (7.7) 1 (11.1) 1.000

Necrotizing enterocolitisa, n (%) 1 (3.8) 0 1.000

HsPDA, n (%) 18 (69.2) 3 (33.3) 0.112

Bronchopulmonary dysplasiab, n (%) 23 (88.5) 9 (100) 1.000

Use of intravenous steroids, n (%) 2 (7.7) 0 1.000

Use of inhalation steroids, n (%) 11 (42.3) 3 (33.3) 0.712

Exclusive breast milk use, n (%) 7 (26.9) 2 (22.2) 1.000

△Z-score change from birth to discharge,

(mean ± SD)

−1.00 ± 0.88 −1.63 ± 1.28 0.11

Values are presented as mean ± standard deviation or number (%).

GDM, gestational diabetes mellitus; HsPDA, hemodynamic significant patent ductus

arteriosus, defined as requiring medical or surgical ligation; IVH, intraventricular

hemorrhage; NDI: neurodevelopment impairment; PROM, premature rupture of membrane.
aBell stage ≥IIa.
b2019 Jensen definition ≥grade II.

TABLE 2 Cytokine levels with significant differences at each time point between infants with and without neurodevelopmental impairment.

Cytokines
(pg/ml)

PMA 34 weeks P PMA 36 weeks P PMA 38 weeks P

Non-NDI NDI Non-NDI NDI Non-NDI NDI

Detrimental

IFN-γ 1.59 (0.00, 6.48) 4.44 (0.42, 9.04) 0.025 1.28 (0.00, 78.62) 2.15 (0.00, 98.75) 0.255 2.06 (0.00, 331.09) 2.17 (0.00, 166.73) 0.565

Favorable

Eotaxin-2 301.47 (33.10,

515.85)

325.99 (46.13,

690.73)

0.697 336.28 (52.43,

624.08)

130.49 (58.34,

388.64)

0.023 322.28 (81.82,

669.78)

191.54 (136.15,

437.53)

0.224

IL-2 19.11 (0.12, 72.41) 13.82 (0.00, 54.36) 0.516 19.90 (4.03, 46.06) 8.28 (0.00, 29.98) 0.086 21.49 (5.19, 140.18) 14.04 (1.44, 22.42) 0.042

IL-11 96.67 (0.00, 374.27) 75.01 (0.00, 192.15) 0.670 62.04 (0.00, 756.31) 59.56 (0.00, 164.19) 0.725 86.40 (0.00, 543.21) 17.82 (0.00, 187.47) 0.028

IL-16 189.92 (5.98,

1,099.50)

509.29 (45.53,

1,142.25)

0.239 389.70 (13.82,

1,023.00)

50.82 (8.40, 409.72) 0.034 350.62 (12.17,

1,179.41)

56.13 (11.32,

965.40)

0.079

MIP-1δ 301.27 (187.43,

496.58)

256.74 (169.40,

302.41)

0.079 282.19 (154.84,

455.66)

262.04 (112.50,

344.14)

0.073 316.77 (143.57,

474.35)

246.99 (147.89,

295.22)

0.018

PDGF-BB 17,393.53 (1,472.78,

22,385.23)

17,210.16 (4,235.79,

24,451.61)

0.643 17,368.56 (6,700.26,

23,205.80)

11,014.52 (2,059.40,

20,522.66)

0.025 17,843.52 (8,301.64,

24,273.24)

15,539.39 (3,049.97,

22,588.55)

0.119

TIMP-2 5,079.46 (2,130.64,

6,519.09)

4,732.85 (3,828.42,

6,505.92)

0.670 5,456.47 (3,771.14,

6,688.59)

4,124.53 (3,593.22,

5,773.04)

0.051 5,558.79 (3,491.90,

6,786.18)

4,675.14 (3,766.40,

5,882.53)

0.042

TNF-β 452.87 (13.22,

1,385.33)

451.39 (0.00,

1,026.14)

0.616 398.10 (0.00,

1,087.44)

142.41 (0.00,

550.87)

0.031 402.58 (57.76,

2,003.58)

303.76 (74.85,

1,162.25)

0.382

Bold values in the table indicate statistical significance.
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MIP-1α, MIP-1β, and MIP-1δ are chemokines that play

essential roles in regulating leukocyte trafficking and modulating

inflammatory responses (33, 34). MIP-1α, primarily secreted by

macrophages, is crucial for recruiting inflammatory cells and has

been implicated in various inflammatory diseases (35). In a study

analyzing neonatal blood spot samples, lower levels of MIP-1α

were associated with both ASD and developmental delays, while

reduced MIP-1δ levels were specifically linked to developmental

delays (36). However, another study assessing the inflammatory

profiles of school-age children born extremely preterm (GA < 28

weeks) found no significant differences in MIP-1α or MIP-1β

levels between children with motor, cognitive, or behavioral

impairments and their unaffected peers (37).

PDGF-BB is a member of the platelet-derived growth factor

(PDGF) family and is known for its roles in neuroprotection and

cell survival (38). It has been shown to prevent neuronal

apoptosis following ischemic neuronal injury (39, 40) and to

promote the proliferation, differentiation, and migration of

neuronal progenitor cells (41).

TIMPs are endogenous inhibitors of matrix metalloproteinases.

Upregulation of TIMP-2 has been associated with neuronal

proliferation and differentiation (42). Research also indicates that

TIMP-2 can inhibit microglial activation, suggesting its

neuroprotective potential. These findings suggest that TIMP-2

may be a therapeutic target for neuroinflammatory disorders

(42). TNF is a family of proinflammatory cytokines involved in

TABLE 3 Significant changes in cytokine levels at each time interval between infants with and without neurodevelopmental impairment.

Cytokines
(pg/ml)

PMA 34 weeks to PMA 36
weeks

P PMA 36 weeks to PMA 38
weeks

P PMA 34 weeks to PMA 38
weeks

P

Non-NDI NDI Non-NDI NDI Non-NDI NDI

Detrimental

IL-17 −0.54 (−49.62,

44.58)

4.30 (−6.39, 21.55) 0.031 0.73 (−44.26,

73.60)

−0.74 (−11.12,

23.66)

0.255 0.54 (−49.73,

67.63)

0.00 (−2.86, 33.83) 0.956

Favorable

Eotaxin-1 38.65 (−213.34,

334.51)

−119.21 (−409.37,

74.67)

0.009 −14.28 (−254.04,

341.17)

30.37 (−184.13,

214.3)

0.362 11.97 (−468.38,

371.14)

−60.46 (−589.30,

48.16)

0.056

Eotaxin-2 55.26 (−221.93,

291.60)

−101.61 (−437.87,

19.79)

0.002 1.00 (−172.19,

340.09)

26.74 (−120.04,

347.29)

0.305 19.58 (−181.32,

578.05)

−90.58 (−477.94,

95.24)

0.079

ICAM-1 −17.02 (−962.25,

1,357.59)

−252.85 (−1,236.46,

300.49)

0.119 −67.34 (−1,058.45,

1,718.56)

−137.64

(−1,005.44, 427.65)

0.781 −69.09 (−1,069.27,

756.30)

−399.92 (−808.81,

151.82)

0.010

IL-7 20.59 (−147.68,

301.48)

−23.40 (−126.01,

2.40)

0.020 15.97 (−108.42,

158.79)

5.08 (−54.80,

240.85)

0.956 19.71 (−88.17,

243.35)

−23.01 (−93.00,

171.33)

0.046

IL-16 13.12 (−746.42,

991.24)

−114.10 (−1,098.75,

124.71)

0.038 −4.00 (−604.31,

1,133.38)

5.31 (−78.58,

555.68)

0.565 60.18 (−1,024.98,

1,106.11)

−181.60 (−1,076.70,

680.39)

0.056

MIP-1α 2.64 (−143.82,

267.24)

−36.32 (−329.90,

13.44)

0.038 7.53 (−83.80,

979.56)

4.65 (−38.12,

212.40)

0.697 10.11 (−90.15,

835.74)

−50.30 (−292.52,

225.84)

0.031

MIP-1β −4.13 (−55.47,

21.14)

−17.60 (−101.79,

1.06)

0.007 1.05 (−17.78,

194.45)

3.06 (−15.56,

49.53)

0.810 3.37 (−47.12,

172.56)

−16.68 (−82.45,

7.26)

0.011

PDGF-BB 1,684.09

(−10,464.61,

13,902.01)

−351,149

(−11,691.39,

754.14)

0.004 702.33 (−6,360.10,

10,301.67)

1,568.61

(−3,308.42,

14,759.51)

0.446 1,306.09

(−8,018.05,

12,897.32)

−3,028.39

(−10,927.76,

14,054.45)

0.056

TIMP-2 90.80 (−743.86,

3,959.80)

−383.73 (−1,050.79,

1,040.19)

0.042 232.24 (−2,332.42,

2,859.74)

173.18 (−174.05,

737.77)

0.926 413.94 (−1,332.68,

4,330.47)

−126.46 (−1,196.50,

898.53)

0.239

Bold values in the table indicate statistical significance.

TABLE 4 Area under the ROC curve (AUC) for detrimental cytokines
predicting poor neurodevelopmental outcomes and favorable
cytokines predicting absence of neurodevelopmental impairment.

Cytokines
(pg/ml)

Time or interval AUC P value

Neurodevelopmental impairment

IFN-γ PMA 34 weeks 0.752 0.026

IL-17 PMA 34 weeks to PMA 36 weeks 0.744 0.031

Absence of neurodevelopmental impairment

Eotaxin-2 PMA 36 weeks 0.756 0.024

IL-16 PMA 36 weeks 0.739 0.035

PDGF-BB PMA 36 weeks 0.752 0.026

TNF-β PMA 36 weeks 0.744 0.031

IL-2 PMA 38 weeks 0.731 0.042

IL-11 PMA 38 weeks 0.746 0.030

MIP-1δ PMA 38 weeks 0.765 0.019

TIMP-2 PMA 38 weeks 0.731 0.042

Eotaxin-1 PMA 34 weeks to PMA 36 weeks 0.791 0.010

Eotaxin-2 PMA 34 weeks to PMA 36 weeks 0.833 0.003

IL-7 PMA 34 weeks to PMA 36 weeks 0.761 0.021

IL-16 PMA 34 weeks to PMA 36 weeks 0.735 0.038

MIP-1α PMA 34 weeks to PMA 36 weeks 0.735 0.038

MIP-1β PMA 34 weeks to PMA 36 weeks 0.799 0.008

PDGF-BB PMA 34 weeks to PMA 36 weeks 0.821 0.005

TIMP-2 PMA 34 weeks to PMA 36 weeks 0.731 0.042

ICAM-1 PMA 34 weeks to PMA 38 weeks 0.786 0.011

IL-7 PMA 34 weeks to PMA 38 weeks 0.726 0.045

MIP-1α PMA 34 weeks to PMA 38 weeks 0.744 0.031

MIP-1β PMA 34 weeks to PMA 38 weeks 0.782 0.013
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immune defense and capable of inducing cell death and

neurodegeneration. While TNF-α has been associated with

adverse neurodevelopmental outcomes (21), the role of TNF-β is

less well documented. Nevertheless, TNF-β may exert protective

effects (43) and has been found to be elevated at school age in

children with a history of neonatal encephalopathy (26).

Biomarkers with favorable effects different
from previous findings

In our study, higher serum levels of Eotaxin-1, Eotaxin-2, ICAM-

1, and IL-16 were observed in the non-NDI group, suggesting a

potential protective effect on neurodevelopmental outcomes in

preterm infants. However, these findings are not consistent with

prior reports on these cytokines in the context of other

neurological disorders. Eotaxins, part of the C-C motif chemokine

family, are potent chemoattractants for eosinophils and play key

roles in innate immunity. This group includes Eotaxin-1 [also

known as C-C motif chemokine ligand (CCL)11], Eotaxin-2

(CCL24), and Eotaxin-3 (CCL26) (44). Eotaxin-1 and Eotaxin-2

are inflammatory chemokines involved in eosinophil recruitment

and the Th2-mediated immune response (45). Elevated serum and

cerebrospinal fluid levels of Eotaxin-1 and Eotaxin-2 have been

reported in adults with various neurodegenerative diseases (44).

ICAM-1 plays a central role in immune responses by facilitating

leukocyte trafficking into inflamed tissues and regulating blood-

brain barrier integrity (46, 47). Elevated intrathecal, but not serum,

levels of soluble ICAM-1 have been reported in inflammatory

neurological conditions such as viral meningoencephalitis and

bacterial meningitis (46). Additionally, sustained elevation of

inflammation-related proteins, including ICAM-1, during the first

postnatal month in extremely preterm infants has been associated

with increased risk of cognitive impairment at 10 years of age (48).

IL-16 is a proinflammatory cytokine expressed in the brain under

inflammatory conditions, as shown in rat models (49). Elevated

cord blood IL-16 levels have also been linked to severely abnormal

neurodevelopmental outcomes at three years of age in infants with

perinatal asphyxia and hypoxic-ischemic encephalopathy (50).

We identified several biomarkers associated with either favorable

or detrimental effects on the neurodevelopmental outcomes of

preterm infants. Some biomarkers had not been previously reported

in neonatal groups, and we referred to results from studies

conducted in adults or animal models to interpret these findings.

However, certain biomarkers with favorable effects were not

mechanistically consistent. Although previous studies have linked

Eotaxin-1, Eotaxin-2, ICAM-1, and IL-16 to neuroinflammation

and adverse neurological outcomes in other populations, our

findings suggest a potential protective role in preterm infants. This

discrepancy may reflect developmental stage–specific or context-

dependent functions of these cytokines. For instance, during early

brain development, certain inflammatory mediators may support

neurovascular maturation, immune regulation, or tissue remodeling

rather than cause injury (51, 52).

Another critical point in explaining the association between

these biomarkers and neurodevelopment is that the development

of the human immune system and central nervous system is a

continuous and dynamic process, characterized by various

changes throughout infancy and childhood, and may vary among

individuals due to different external stimuli (53, 54). For

instance, extremely preterm infants born before 28 weeks, who

have not undergone the third-trimester adaptation processes to

tolerate maternal and self-antigens, exhibit different responses to

inflammatory insults (55). Additionally, at different times after

birth, varying cytokine responses to bacterial lipopolysaccharide

stimulation were observed (56). This may explain why certain

biomarkers previously reported to be significant at different

postnatal time periods in other studies did not yield significant

results in our research. Similar findings were reported in one

review study, which demonstrated that biomarkers significantly

associated with neurodevelopmental outcomes varied across

different postnatal time periods (21). Furthermore, due to the

different developmental statuses of the central nervous and

immune systems across infancy, childhood, and adulthood,

referencing studies conducted in adults or animal models to

explain these associations may not always be suitable.

TABLE 5 Summary of the association between an infant’s gestational age
and comorbidities with changes in serum cytokine levels between PMA 34
weeks and PMA 38 weeks analyzed using generalized
estimating equations.

Time/Infant
factors

Cytokine
increased

P

value
Cytokine
decreased

P

value

PMA 34 weeks to PMA 36 weeks

Late-onset sepsis No associations found

Severe IVH ≧ grade 3 IL-2 0.024

IL-7 0.001

IL-11 0.027

Necrotizing

enterocolitis

Eotaxin-1 0.030

Eotaxin-2 0.034

IL-2 0.013

IL-16 0.001

MIP-1β <0.001

PDGF-BB 0.015

Hemodynamically

significant PDA

IL-11 0.023

PDGF-BB 0.029

Bronchopulmonary

dysplasia

No associations found

Gestational age, weeks ICAM-1 0.003

PMA 36 weeks to PMA 38 weeks

Late-onset sepsis Eotaxin-1 0.023

IL-2 0.032

IL-11 0.001

Severe IVH ≧ grade 3 No associations found

Necrotizing

enterocolitis

Eotaxin-1 0.016

IL-2 0.018

IL-16 0.029

PDGF-BB 0.018

TIMP-2 0.015

Hemodynamically

significant PDA

IL-11 <0.001

Bronchopulmonary

dysplasia

MIP-1β 0.036

Gestational age, weeks Eotaxin-1 0.016

MIP-1β 0.007

ICAM-1 0.002
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Associations between preterm
comorbidities and biomarkers

In our study, we also found that preterm comorbidities were

associated with changes in cytokine levels between PMA 34 and 38

weeks, despite the fact that most of these conditions— such as

NEC, HsPDA and severe IVH—typically develop during the first

month of life. Indeed, several biomarkers have been reported to be

associated with these comorbidities. Cytokines including IL-1β, IL-

6, IL-8, IL-18, and TNF-α have been implicated in the

pathophysiology of preterm IVH (57, 58). Higher serum levels of

IL-6 on day 1 (59) and IL-8 on days 1, 7, and 14 after birth (60)

have been linked to an increased risk of IVH. Similarly, elevated

levels of inflammatory cytokines such as TNF-α, IL-1, IL-6, IL-8,

IL-10, MCP-1/CCL2, and MIP-1α have been associated with the

persistence of PDA (61, 62).

NEC is a well-recognized condition marked by a robust

inflammatory response and is a significant risk factor for adverse

neurodevelopmental outcomes. Infants with NEC exhibit elevated

levels of inflammatory cytokines, including IL-1β, IL-6, IL-8, IL-10,

MCP-1/CCL2, and MIP-1β/CCL3, along with decreased levels of

anti-inflammatory cytokines such as TGF-β and IL-2 (63). Notably,

approximately 40% of infants with NEC develop NDI (64), and the

severity of intestinal injury has been shown to correlate with an

increased risk of NDI (65). The pathogenesis of NDI in the context

of NEC is believed to involve gut–brain axis interactions. Specifically,

microbial dysbiosis and intestinal injury can trigger systemic

inflammation and the release of pro-inflammatory cytokines such as

TNF-α, IL-1β, and IL-6, which may cross the immature blood–brain

barrier and contribute to neuroinflammation, ultimately disrupting

normal brain development (66–68). Neonatal sepsis is another well-

established risk factor for adverse neurodevelopmental outcomes

(69–72). Potential pathogenic mechanisms include systemic

inflammation, cytokine dysregulation, and subsequent white matter

injury. Elevated serum levels of several pro-inflammatory cytokines

—such as IL-6, IL-8, IL-10, IL-1β, TNF-α, and MCP-1—have been

associated with neonatal sepsis (73–75). During the acute phase of

sepsis, pro-inflammatory cytokines such as TNF-α and IL-6

predominate, whereas the post-acute phase is characterized by

increased levels of anti-inflammatory cytokines, including IL-10 (74).

BPD is a common morbidity in preterm infants. Numerous

serum biomarkers have been confirmed to be associated with the

subsequent development of BPD (76). Higher levels of

proinflammatory, profibrotic and angiogenic cytokines (IL-6, IL-8,

IL-10, MCP-1) within the first 5 days after birth have been linked

to the later development of moderate to severe BPD (77). Another

study analyzed biomarkers before 21 days of age and found that

significant biomarkers varied when measured at different time

points (78). The study concluded that abnormalities in the

transition from innate immune response to adaptive immune

response may be related to the occurrence of BPD. Survivors with

neonatal BPD are at a higher risk of developing NDI (79, 80).

One possible explanation is that preterm infants are generally

sicker and more prone to nutritional problems, which may disrupt

brain development. Another potential reason is the frequent and

prolonged periods of hypoxemia, which can directly cause brain

injury (80). Studies investigating the association between BPD,

cytokines, and NDI are limited. However, it is theoretically

plausible that persistent systemic inflammatory reactions or the

effects of inflammatory biomarkers could contribute to NDI.

Further research is needed to better understand these relationships.

As discussed above, changes in biomarkers associated with

preterm comorbidities have been linked to neurodevelopmental

outcomes. However, most existing studies have focused on earlier

life stages—primarily within the first month after birth or during

the acute phase of illness. In contrast, our study explores the

potential long-term effects of comorbidities on biomarkers during

a later and more stable period—between 34 and 38 weeks PMA—

to assess the relationships among comorbidities, biomarkers, and

neurodevelopmental outcomes. Importantly, our analysis focused

on identifying biomarkers during this period that may reflect the

long-term impact of preterm complications, rather than assessing

how a single disease alters biomarker levels. This individual-

centered approach emphasizes which biomarkers are associated

with neurodevelopmental outcomes and explores their connections

to common preterm morbidities, providing new insights into how

these conditions may influence brain development.

Another potential confounding factor affecting

neurodevelopment is the use of antenatal magnesium sulfate

(MgSO₄) and antenatal corticosteroid therapy (ACS). Antenatal

MgSO4 is known to provide neuroprotection in preterm births

(81–83). Proposed mechanisms include promoting hemodynamic

stability, preventing excitotoxic injury, stabilizing neurons, and

exerting antioxidant effects (84, 85). Additionally, its anti-

inflammatory properties have been reported, helping to reduce

proinflammatory cytokines such as IL-1β and TNF-α (86). ACS,

administered for threatened preterm birth, accelerates fetal lung

maturation and has been proven to reduce mortality, as well as the

risk of RDS and IVH (87). However, its impact on long-term

neurodevelopmental outcomes remains uncertain. A meta-analysis

found that ACS reduced the risk of neurodevelopmental

impairment only in extremely preterm births, whereas in late-

preterm and full-term births, ACS was associated with an increased

risk of neurocognitive disorders (88). Lower cord blood levels of

IL-6 have been observed in very low birth weight preterm infants

after ACS administration (89). However, its influence on cytokines

associated with neurodevelopmental outcomes remains poorly

understood. One study reported reduced cord blood levels of

neurotrophin-3 (NT-3) in late-preterm infants who received ACS,

which could potentially affect neuronal growth, differentiation, and

survival (90). Conversely, another study found no significant

differences in cord blood concentrations of pro-inflammatory, anti-

inflammatory, or neurotrophic cytokines after ACS administration,

despite trends toward attenuation of the inflammatory response

(91). In our study, however, neither MgSO₄ nor ACS use was

significantly associated with neurodevelopmental outcomes.

Limitations

This study has several limitations. First, the relatively small

sample size is a key limitation; although 50 cases were initially
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enrolled, only 35 were included in the final analysis. Although

additional details regarding the reasons for exclusion have been

provided, the potential selection bias resulting from the exclusion

of 15 out of 50 infants (30%) remains a notable concern. Future

studies with larger cohorts are needed to validate and extend these

findings. Second, although the BSID-III assessment at 24 months

of age is most predictive for neurodevelopment, the assessments

were only available at 12 months of age due to the study timeline,

as most participants had not yet completed the 24-month follow-

up. Longitudinal data will be important to evaluate the long-term

impact of these biomarkers on neurodevelopmental outcomes. As

aforementioned, many studies have focused on cytokines measured

at birth or during the early postnatal stage. Cytokines during this

period provide valuable insights into the inflammatory processes in

preterm infants. However, due to the limitations of our study

design, measurements at birth or during the early postnatal period

were not included, preventing us from comparing the differences

and changes in cytokines between the early stage and the relatively

stable later stage. Lastly, although we identified several biomarkers

with significant associations, we were unable to fully elucidate the

complex network through which these biomarkers influence

neurodevelopment. Further research is needed to clarify the

mechanistic roles of individual biomarkers and to explore their

potential interactions.

Conclusions

Our study suggests that biomarkers measured at PMA 34–38

weeks, including both absolute cytokine levels and their

trajectories, may help identify preterm infants at risk for

neurodevelopmental impairment. While most biomarkers were

associated with favorable outcomes, IFN-γ and IL-17 correlated

with adverse neurodevelopmental outcomes. All identified

biomarkers demonstrated good discriminatory ability.

Additionally, several common neonatal comorbidities

significantly influenced cytokine levels, underscoring the complex

interplay between systemic inflammation, clinical complications,

and neurodevelopment.
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