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Atopic dermatitis is a common inflammatory skin disease with rapidly expanding 

worldwide prevalence. Increasingly, cases of severe and early-onset dermatitis 

have been identified and found to be due to underlying monogenic mutations, 

leading to immune dysregulation. These conditions, called primary atopic 

disorders, have become an area of extensive study over the last 30 years. 

Simultaneously, our understanding of the human microbiome has steadily 

grown, and there is clear evidence that dysbiosis plays a major role in atopic 

dermatitis, not only in severity of disease and as a potential trigger but also 

offering clues for targeted treatment strategies. Unfortunately, despite our 

growing understanding of the cutaneous microbiome and the expanding 

availability of genetic testing allowing for diagnosis of primary atopic 

disorders, there remains very limited understanding regarding the 

microbiomics changes that underlie these disorders. Here we review the 

current research regarding atopic dermatitis in the setting of primary atopic 

disorders, understanding regarding primary atopic disorders and associated 

cutaneous dysbiosis, and identify specific gaps in knowledge.
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Introduction

Atopic dermatitis (AD) is an increasingly common, chronic, in�ammatory skin 

disease characterized by epidermal barrier breakdown and dysregulated in�ammation, 

predominantly via Th2-mediated in�ammatory pathways. The resulting pruritic, 

eczematous lesions are the prototypical early manifestation of the so-called atopic 

march, the progressive development of AD followed by development of other atopic 

diseases, such as allergic rhinitis, food allergy, asthma, and eosinophilic esophagitis (1). 

Recent studies suggest that halting the progression of AD may reduce future systemic 

allergic sensitization to antigens—although evidence remains limited on the effect this 

may have on the atopic march (1–4). Given the rising worldwide prevalence of atopic 

diseases (5), early identification and management of AD has become increasingly critical.

As the focus on AD management has grown, significant progress has been made in 

understanding the correlation between dysregulation of the skin barrier and changes in 
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the skin microbiome. Enhanced skin colonization by 

Staphylococcus aureus and resultant enzyme and superantigen 

production has been the best characterized change in the 

microbiome of patients with AD (6). However, numerous other 

cutaneous bacterial, fungal, and viral taxa have been identified 

and studied in the pathogenesis of AD (7). Notably, loss of 

certain commensal skin bacteria, in particular S. epidermidis and 

S. hominis, has also been associated with increased AD severity 

(8, 9). Recent studies have shown that commensal microbes may 

have antipathogenic effects via direct pathogen-inhibiting 

molecules (10–13) and via modulation of the cutaneous barrier 

(10, 14, 15). Given the microbiome’s likely role in the 

pathogenesis of AD, the effects of specific AD treatments on the 

skin microbiome have also been studied extensively to better 

elucidate the pathogenesis of this disease and to develop more 

targeted treatment options (6). The relationship between the 

microbiome and skin health is not just skin deep, however, and 

multiple researcher groups have identified a so-called gut-skin 

axis, where changes in the gut microbiome may lead to changes 

in skin health (16–19). These findings imply a microbiome- 

immune axis, where changes in the human microbiome— 

regardless of skin location—may lead to increased 

immune dysregulation.

Given that the changing prevalence of AD cannot be explained 

by genetic shifts alone (18), there has been an increased interest in 

the effects of environmental changes leading to a propensity for 

AD development (18, 20). The list of environmental factors 

affecting AD development is vast and includes pollutants, rural 

vs. urban living, allergens, medications, and microbial exposures 

(including to antibiotic-resistant pathogens) (18, 21, 22). In 

recent decades, cases of very early onset, severe, and unique 

presentations of AD have also been identified. These cases have 

led to the characterization of a group of inborn errors of 

immunity typically presenting with early and severe AD, termed 

primary atopic disorders (PADs) (23). PADs are defined as 

monogenic diseases presenting with significant allergy and/or 

atopy as characteristic features, frequently manifesting with an 

eczematous dermatitis (23). Most PADs have been characterized 

within the last 30 years (24). Apart from highly prevalent loss- 

of-function (LOF) variants in FLG, which codes for the crucial 

epidermal barrier protein filaggrin, most PADs result in 

significant immune dysfunction with high risk for severe 

infections (23–26). Categorization of these disorders is not 

standardized given significant functional and symptomatic 

overlap, and new PADs are rapidly being discovered. 

Additionally, it appears likely that environmental exposures may 

further modulate clinical onset of PADs (22, 27), leading to 

variability in presentations. Given the importance of early 

treatment of these immune compromised patients, early 

diagnosis is paramount.

While the skin microbiome in AD has been extensively 

researched, there is very limited available literature regarding 

differences in the skin microbiome of patients with PADs. This 

is in contrast to the gut microbiome in primary 

immunodeficiencies, which has been evaluated in much greater 

detail (17, 28). Treatments modifying the gut microbiome in 

patients with PADs have also been studied (17, 28, 29).

The available data reviewed in the following sections suggests 

that immune dysfunction in PADs significantly in�uences the 

cutaneous microbiome. In Figure 1, we review the factors that 

in�uence AD and associated cutaneous microbiome alterations, 

including in this unique patient population. Later, we will 

discuss the current understanding of the difference in the skin 

microbiome in patients with the most extensively studied PADs, 

FIGURE 1 

Simplified representation of interactions between microbes, cutaneous immunity, and primary atopic disorders. Commensal microbes play a major 

role in cutaneous immune function via inhibition of potential pathogens and regulation of certain immune functions. Appropriate immune responses 

help foster a healthy microbiome, which conversely fosters appropriate immune responses. Disruption in normal cutaneous immunity (e.g., via 

environmental exposures or primary atopic disorders) leads to microbiome changes which promote pathogenic microbes, which can further 

inhibit the normal microbiome and normal immune function.
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along with a general review of these PADs and of diseases that 

mimic PAD pathology.

Skin microbiome in AD

We have been aware in recent years of the important role that 

commensal microorganisms play in normal immune function. 

The healthy skin microbiome consists of a diverse community 

of bacteria, fungi, and viruses, responsible for impeding the 

growth of pathogens, presumably through competition and both 

direct and indirect antimicrobial effects. Bacteria make up the 

majority of commensal microbes, with Corynebacterium, 

Cutibacterium, Micrococcus, Staphylococcus, Streptococcus, 

Betaproteobacteria, and Gammaproteobacteria being the most 

common (30). Malassezia spp., in particular M. globosa and 

M. restricta, are the most prevalent fungal colonizers (31). Skin 

microbial diversity varies by body location, the type of skin, skin 

moisture, patient age, and patient ethnicity, with healthy 

children displaying especially diverse microbiota as compared to 

adults (6, 30).

In patients with AD, skin microbial composition differs 

compared to controls with over-representation predominantly of 

S. aureus, although a definitive causal relationship has not been 

clearly defined. In disease �ares, diversity appears to shift towards 

less varied communities with an increased proportion of 

S. aureus in the skin compared to after �ares are resolved; a 

similar difference is noted between lesional and non-lesional skin 

in patients with AD (30, 32). Conversely, increased proportions 

of certain Staphylococcus species (such as S. epidermidis and 

S. hominis) and other common commensal bacteria 

(Streptococcus, Corynebacteria, and Propionibacterium) have been 

associated with reduced AD rates and severity (33). Many of 

these commensal organisms have been found to directly and 

indirectly protect host skin via multiple mechanisms, such as 

secretion of lantibiotics or promoting antimicrobial peptides such 

as β-defensins which may suppress S. aureus (6, 9). In patients 

with AD, the majority of S. aureus strains produce superantigens, 

such as staphylococcal enterotoxin B, which can further exaggerate 

Th2 in�ammatory responses and exacerbate AD (2, 9, 34). Other 

studies have focused on differences in fungal communities (31, 35), 

noting relative enrichment of certain Malassezia spp. (M. dermatis, 

M. sloofiae, and M. sympodalis) in AD. These studies have been 

difficult to consistently replicate due to variance between lesional 

and non-lesional skin, differences in skin sampling sites, microbial 

changes with patient age, and differences in disease activity; all of 

these factors in�uence the skin microbiome (30). In addition, 

evidence suggests that there are differences in virulence factors 

between certain strains of S. aureus, with those found on active 

AD lesions inducing skin in�ammation in mouse models, more-so 

than S. aureus from healthy human skin (34).

Lastly, environmental exposures have a major effect on the 

skin microbiome, affecting microbial diversity and quantity 

(22, 36–38). The environmental factors affecting the skin 

microbiome are similar to those associated with AD, such as 

medication exposures, rural vs. urban environments, climate 

changes, pollutants, and allergens. Specifically, these 

environmental exposures appear to greatly affect the abundance 

of pathogenic microbes (in particular, S. aureus and pathogenic 

fungi), and changes in commensal microbial taxa (22, 38).

Effects of treatments on the skin 
microbiome

With advances in skin microbiome research, we have begun to 

understand the effects that targeted therapeutic strategies may 

have on the skin microbiome. Numerous studies have evaluated 

the effects of treatments in patients with AD on the skin 

microbiome and S. aureus in particular, excellently summarized 

by Demessant-Flavigny et al. and Huang et al. (6, 39). As a 

whole, multiple studies evaluating both indirect (emollients, 

anti-in�ammatory topicals, monoclonal antibodies) and direct 

antibacterials (including antiseptics, topical and systemic 

antibiotics, and S. aureus-specific therapies including anti-S. 

aureus endolysin and bacteriotherapy) have shown beneficial 

changes in S. aureus populations and increases in commensal 

bacteria (6, 33, 39–44). Of the monoclonal antibodies approved 

for AD treatment, the microbiome-modulating effects of the 

interleukin (IL)-4 receptor alpha antagonist dupilumab and IL- 

13 antagonist tralokinumab have both been evaluated (43–46). 

Of the three studies evaluating dupilumab and one study 

evaluating tralokinumab, all excluded pediatric patients, and all 

showed improvement in cutaneous dysbiosis, reduction in 

S. aureus abundance, and increases in S. epidermidis and 

S. hominis. While Janus Kinase (JAK) inhibitors were recently 

approved for treatment of AD, there is thus far limited 

understanding of the effects these therapies may have on the 

skin microbiome (47).

Cutaneous probiotics (live microbes) and direct cutaneous 

microbial transplantation has been explored, with variable 

efficacy in clinical studies (9, 21, 39). However, the use of 

postbiotic therapies (beneficial non-live metabolic byproducts of 

probiotic microbes) has shown promising results in clinical 

studies with lower theoretical risk than probiotics (48), which 

may be a concern in patients with certain PADs. Notably, a 

number of trials using oral probiotics have shown improvement 

in AD with treatment (16), further solidifying the gut-skin axis.

Primary atopic disorders

As noted previously, PADs encompass a large group of 

monogenic defects leading to significant allergic and/or atopic 

diseases, with eczematous dermatitis as a common presenting 

feature. To date, there have been at least 48 single-gene defects 

identified as PADs, most of which are associated with 

underlying immune dysregulation (23). Many PADs can have 

catastrophic implications for patients, frequently requiring early 

and aggressive treatment, including potential hematopoietic stem 

cell transplantation, making early identification and expanded 

treatment strategies increasingly important. Standardized 
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categorizations of PADs have not been established, although 

certain groupings are commonly used (Table 1). Very broadly, 

the immune dysregulation of these disorders leads to variable 

combinations of: (1) propensity for Th2 pathways, either via 

direct upregulation or loss of downregulation (2) dysfunctional 

T-regulatory (Treg) cell pathways, leading to loss of self- 

tolerance and (3) direct loss of epidermal barrier function (49).

In the following sections, we will discuss the most studied PADs 

to date, their clinical presentations, distinguishing features, 

associated dermatologic findings, and current understanding of 

their effects on the host cutaneous microbiome (Table 2). When 

available, we will review PAD-specific AD treatment evidence in 

the respective disorder section. A detailed review of the current 

knowledge regarding gut microbiome changes in patients with 

PADs, among other inborn errors of immunity, has been recently 

published by Hazime et al. (17) and will not be reviewed in 

detail here.

Filaggrin deficiency

LOF variants of the gene FLG, which encodes filament 

aggregating protein (filaggrin), cause the most common PAD 

(50, 51). FLG LOF mutations with variable degrees of function 

follow a semi-dominant inheritance pattern, with homozygous 

or compound heterozygous genotypes conferring increased risk 

TABLE 1 Select PADs with dermatitis as a characteristic feature.

Disease or syndrome 
name

Gene Clinical features

Filaggrin deficiency FLG Severe AD, ↑ IgE

Hyperimmunoglobulin E Syndromes (HIES) and Similar Clinical Phenotypes

Autosomal dominant-HIES/ 

STAT3-HIES

STAT3 (LOF) Severe dermatitis, ↑ IgE, eosinophilia, recurrent skin abscesses, CMC, recurrent pneumonia, 

bone fragility, scoliosis, joint hyperextensibility, retained primary teeth, dysmorphic facial 

features

AR-HIES/DIDS DOCK8 Severe AD, ↑ IgE, eosinophilia, food allergy, CMC, cutaneous infections (esp. molluscum, 

papilloma virus, herpes simplex), malignancy, autoimmunity

Variant STAT3-HIES/AR 

GP130 deficiency

IL6ST Similar to STAT3-HIES, destructive lung disease, +/- neurodevelopmental delay

Variant STAT3-HIES/AR IL-6 

receptor deficiency

IL6R Similar to STAT3-HIES, typically without skeletal abnormalities

Variant STAT3-HIES/HIES3 ZNF341 Similar to STAT3-HIES

ERBIN deficiency ERBB2IP Similar to STAT3-HIES

STAT5b deficiency STAT5b (LOF) ↑ IgE, postnatal growth impairment, growth hormone insensitivity 

Can have IPEX-like presentation

STAT6 gain-of-function STAT6 (GOF) ↑IgE, severe atopy, ↑ risk for hematologic malignancy

TYK2 deficiency TYK2 Similar to STAT3-HIES in some cases; ↑ susceptibility to intracellular bacteria (mycobacteria), 

viral infection

PGM3 deficiency PGM3 ↑IgE, severe atopy, ↑ rate of bone marrow failure, skeletal dysplasia, neurodevelopmental 

delay

Wiskott-Aldrich syndrome (WAS) and Similar Clinical Phenotypes

WAS WAS Severe AD, thrombocytopenia with small platelets, recurrent infections (bacterial, viral), 

hematologic malignancy, autoimmunity, bloody diarrhea

WAS 2/WIP deficiency WIPF1 Severe AD, thrombocytopenia with small platelets, recurrent infections (bacterial, viral), 

bloody diarrhea

ARPC1B deficiency ARPC1B Similar to WAS, milder

CBM complex-associated diseases

CADINS CARD11 General atopy, ↑ IgE, eosinophilia, respiratory and cutaneous viral infections

CARD14 deficiency CARD14 General atopy, recurrent respiratory and cutaneous pyogenic and viral infections

MALT1 deficiency MALT1 Similar to CADINS with ↑ risk of IBD

Additional PADs

Netherton syndrome SPINK5 Congenital ichthyosis, “bamboo hair”, ↑ IgE, ↑ risk of enteropathy, failure to thrive

IPEX syndrome FOXP3 Severe eczematous dermatitis, ↑ IgE, ↑ IgA, recurrent severe infections, autoimmune 

enteropathy, polyendocrinopathy

RLTPR deficiency CARMIL2 General atopy, recurrent respiratory and cutaneous infections, malignancy, and EBV- 

associated lymphoproliferative disease

Severe Combined Immunodeficiency (SCID) Phenotypes

Omenn syndrome Multiple genes: RAG1, RAG2, IL7RA, 

ZAP70, ADA, DCLRE1c, RMRP, CHD7

Very early onset eczematous dermatitis (<2 months), erythroderma, combined 

immunodeficiency, eosinophilia

Other clinical features and causative genes are summarized here. PADs are grouped by their general clinical features and diseases they may mimic. PADs that do not cause dermatitis as a 

prominent feature are not included here. PAD, primary atopic disorder; AD, atopic dermatitis; AR, autosomal recessive; LOF, loss of function; GOF, gain of function; IL, interleukin; CMC, 

chronic mucocutaneous candidiasis; WIP, WAS/WASL interacting protein; IPEX, immunodysregulation polyendocrinopathy enteropathy X-linked; CBM, caspase recruitment domain 

(CARD) proteins, B-cell CLL/Lymphoma 10 (BCL20), and mucosa-associated lymphoid tissue lymphoma translocation protein 1 paracaspase (MALT1); CADINS, CARD11-associated 

atopy with dominant interference of NF-κB signaling; EBV, Epstein–Barr virus.
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of AD and an early presentation of AD (within the first months of 

infancy) (52, 53). While FLG LOF is not specifically associated 

with immune deficiency, skin barrier breakdown in these 

patients can lead to increased cutaneous infections and immune 

dysregulation. The AD affecting these patients may also be 

treatment-resistant. Although filaggrin deficiency is the most 

common PAD, the availability of diagnostic genetic testing is 

limited due to challenges of sequencing this gene (54).

Patients with filaggrin deficiency have underlying changes in 

their cutaneous microbiome—notably, an increased prevalence 

of S. aureus and Malassezia colonization, with overall reduced 

microbial diversity compared to wild type controls (7, 55). 

Patients with filaggrin deficiency may have a predilection for 

more pathogenic S. aureus strains with higher biofilm forming 

propensity (6, 55). In addition, there may be less lesional vs. 

non-lesional skin divergence in these patients, and earlier onset 

of dysbiosis (7, 47, 55).

Hyperimmunoglobulin E syndromes

Hyperimmunoglobulin E syndromes (HIES) were originally 

defined as two primary variants, each with mutations in a 

different gene: an autosomal dominant variant caused by loss of 

function of the signal transducer and activator of transcription 

(STAT) 3 gene, STAT3, and an autosomal recessive variant due 

to loss of function of the dedicator of cytokinesis 8 gene, 

DOCK8. Over time, numerous genotypes with similar clinical 

phenotypes have been identified; HIES has thus become 

somewhat of a misnomer as many PADs may present with very 

elevated IgE levels (25, 26). For example, filaggrin deficiency, 

which is not commonly considered an inborn error of 

immunity, is also associated with high levels of IgE due to AD 

(25, 26). Thus, while we will use the term HIES here to define a 

set of diseases characterized by very elevated IgE levels, elevated 

IgE levels can be seen in many patients with AD without an 

overt PAD due to many factors, including but not limited to the 

increased Th2 skew associated with AD and induction of IgE 

production by environmental factors such as S. aureus 

colonization (18, 56).

STAT3-HIES

The most common form of HIES continues to be dominant- 

negative STAT3 (STAT3-HIES, or autosomal dominant HIES) 

mutations, previously called “Job’s Syndrome”. STAT3 plays a key 

role in the differentiation of Th17 cells, with downstream 

downregulation of Th2 pathways (57). This disease is 

characterized predominantly by elevated IgE, eosinophilia, severe 

eczematous dermatitis as early as the first month of life, recurrent 

skin abscesses without the typical in�ammatory signs (warmth, 

erythema, or tenderness; “cold abscesses”), recurrent cyst-forming 

pneumonias, and chronic mucocutaneous candidiasis (CMC) 

(25, 26). The eczematous dermatitis of STAT3-HIES tends to be 

severe and does not necessarily meet strict clinical criteria for AD 

(25, 58, 59). While STAT3-HIES-associated dermatitis is generally 

treatment-resistant, dupilumab appears to be effective in treating 

dermatitis in these patients (60–62).

Other atopic features are less common in patients with 

STAT3-HIES compared to wild-type patients with AD (59). 

Multiple extracutaneous findings, including retained primary 

TABLE 2 Summary of PADs with available cutaneous microbiome data.

Disease Gene Skin microbiome Characteristic cutaneous infections

Normal skin (6, 55) Wild 

type

• Wide diversity

• Uncommon colonization with S. aureus (10%–20%)

Atopic dermatitis (6, 9, 55) Wild 

type

• ↑ S. aureus, certain Malassezia spp., and Candida colonization

• ↓ common commensal microbiomes, including other 

Staphylococcus spp.

• S. aureus, Candida

Filaggrin deficiency (6, 55) FLG • ↑ S. aureus, certain Malassezia spp., and Candida colonization

• ↑ S. aureus biofilm propensity, pathogenicity

• Non-lesional skin is similar to lesional skin of patients with AD

• S. aureus, Candida

STAT3-HIES (63–65) STAT3 • Colonization by Serratia marcescens, S. aureus, Corynebacterium 

spp., Candida spp., and Aspergillus spp.

• S. aureus strains display ↑ virulence genes and antibiotic resistance

• S. aureus and S. haemolyticus enriched

• Recurrent “cold” abscesses associated with 

S. aureus, Candida (CMC)

• Cutaneous viral infections are less common than 

in DIDS

DIDS (63, 68, 70) DOCK8 • Similar to STAT3-HIES, with ↑ viral colonization (Papillomaviridae, 

Polyomaviridae, and Poxviridae predominance)

• Limited data on bacterial populations

• Cutaneous viral infections, especially MC, HSV, 

and HPV

• Otherwise, similar to STAT3-HIES

Wiskott-Aldrich syndrome (63) WAS • Limited data in eczematous patients

• ↑ bacterial community diversity (retroauricular crease only)

• Cutaneous viral infections, bacterial cellulitis and 

abscesses, S. aureus predominant

Netherton syndrome (87) SPINK5 • ↓ microbial diversity

• ↑ in S. aureus, S. epidermidis, Strep agalactiae

• ↑ S. aureus bacterial virulence peptides and proteases (PSMα, 

Staphopain A and B)

• Cutaneous bacterial infections, gastrointestinal 

infections, rare invasive infections

Summary of PADs with data available regarding cutaneous microbiome changes, compared to wild type controls. PADs without available literature were not included. LOF, loss of function; 

HIES, hyperimmunoglobulin E syndrome; AD, atopic dermatitis; CMC, chronic mucocutaneous candidiasis; DIDS, DOCK8 immunodeficiency syndrome; MC, molluscum contagiosum; 

HSV, herpes simplex virus; VZV, varicella zoster virus; HPV, human papillomavirus; PSMα, phenol-soluble modulin alpha.
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teeth, minimally traumatic bone fractures, characteristic facial 

features, and scoliosis, may be present later in life (25).

STAT3-HIES appears to affect the cutaneous microbiome 

(63–65). In general, the skin of these patients shows decreased 

microbial diversity, loss of some commensal strains, and 

increase in certain pathogenic bacterial and fungal strains 

(63–65). The strains of S. aureus affecting these patients tend to 

be more likely to express methicillin resistance, Panton- 

Valentine Leukocidin (PVL), and staphylococcal enterotoxins 

K and Q (SEK and SEQ, respectively) (60, 61, 64). PVL is a 

pore-forming cytotoxin associated with methicillin resistance, 

while SEK and SEQ are non-classical staphylococcal 

superantigens rarely expressed in wild-type patients with AD 

(64). While overall S. aureus presence was not increased in most 

patients—likely due to widespread use of S. aureus-targeting 

therapies—the strains present did appear more pathogenic. 

Other Staphylococcus species, including S. epidermidis and S. 

haemolyticus, were enriched in these patients. Fungal 

colonization with relatively increased Candida and Aspergillus 

spp. abundance was noted, likely due to the deficiency of Th17 

cells observed in STAT3-HIES. Interestingly, these patients were 

noted to have novel skin colonization with Serratia species 

(specifically S. marcescens), with increased variance between 

patients with STAT3-HIES compared to controls. In addition to 

Serratia species, Acinetobacter species also seem to have an 

increased prevalence in these patients, while commensal 

Corynebacterium spp. were less prevalent, loss of which may 

further inhibit host immune responses to Candida spp. and S. 

aureus (60, 61, 65).

DOCK8 deficiency

LOF mutations in DOCK8 are the next most common HIES 

and follow an autosomal recessive pattern, often termed DOCK8 

immunodeficiency syndrome (DIDS) or autosomal recessive 

HIES. We will use DIDS to distinguish it from other autosomal 

recessive HIES variants. Patients with DIDS have markedly 

impaired T-cell differentiation and function, leading to 

significant immune dysregulation (26, 66).

Like STAT3-HIES, patients with DIDS have the classic features 

of high IgE, eosinophilia, severe AD, skin infections (abscess), and 

CMC, but are distinguished by an increased propensity for 

cutaneous viral infections and increased risk for autoimmunity 

and malignancy (67). These cutaneous viral infections include 

infections with molluscum contagiosum (MC), herpes simplex 

virus (HSV), and human papillomaviruses (HPV) and may be 

treatment-resistant (25, 66, 68).

Additionally, DIDS-associated eczematous dermatitis is more 

consistent with typical AD compared to the eczematous 

dermatitis of STAT3-HIES (26, 59, 66). Musculoskeletal and 

dental abnormalities are rare as compared to STAT3-HIES 

(25, 26). The increased malignancies observed are primarily 

lymphomas and cutaneous squamous cell carcinomas (59).

DIDS-associated cutaneous dysbiosis has been analyzed in 

multiple studies. Generally, the bacterial pathogens are similar to 

those found in patients with STAT3-HIES (63), with a notable 

difference in the cutaneous virome (63, 68). Patients with DIDS 

have profoundly elevated relative abundances of certain 

eukaryotic viruses in the skin, with Papillomaviridae, 

Polyomaviridae, and Poxviridae being the most predominant 

(68). This is consistent with the typical clinical features of 

resistant cutaneous infections with MC and HPV in these patients.

Similar to STAT3-HIES, patients with DIDS frequently have 

treatment-resistant AD, and the efficacy of dupilumab in this 

population has been described in limited case reports 

demonstrating efficacy of dupilumab treatment (61, 62, 69). 

Notably, dupilumab appears to benefit both the AD and reduce 

skin infections in these patients. More recently, Che et al. 

followed 24 patients with DIDS through hematopoietic stem cell 

transplantation (HSCT), showing that HSCT had dramatic 

effects not only on the cutaneous microbiome of these patients, 

but functionally resolved the skin disease of many of these 

patients (70). These patients showed normalization of their skin 

microbiomes closer to healthy controls, regaining site-specific 

patterns, and dramatic reductions in S. aureus and 

viral abundance.

STAT3-HIES phenocopies

Mutations in other genes can present phenotypically like 

STAT3-HIES, as these variants affect proteins crucial to the 

STAT3 signaling pathway. Normal IL-6 signaling is transduced 

in large part via STAT3. Autosomal recessive variants of the IL- 

6 receptor gene, IL6R, present similarly to STAT3-HIES but lack 

the skeletal abnormalities (25, 26, 71). Variants of the IL-6 

Cytokine Family Signal Transducer gene, IL6ST, which has both 

autosomal dominant and autosomal recessive LOF variants, have 

phenotypes that resemble that of STAT3-HIES but are 

associated with neurodevelopmental delay, destructive lung 

disease, and bronchiectasis (72, 73). ZNF341 (zinc finger protein 

341) encodes a transcription factor involved in the STAT3 

signaling pathway; LOF variants of ZNF341 cause a syndrome 

phenotypically identical to STAT3-HIES by impacting DNA 

binding by ZNF341 (26). Finally, individuals with ERBIN 

deficiency due to autosomal dominant ERBB2IP LOF present 

very similarly to patients with STAT3-HIES but with fewer 

infections. The protein ERBIN forms a complex with STAT3 to 

facilitate STAT3 signaling (23, 24, 26).

Other variants of HIES

Mutations of other STAT and STAT-related genes have also 

been implicated in early childhood dermatitis and elevated IgE, 

including LOF mutations of STAT5b and gain-of-function 

(GOF) mutations of STAT6 (23, 24, 74). STAT5b is required for 

the response of naïve T cells to IL-2, triggering production of 

the IL-4Rα subunit (75), and STAT6 is required for 

differentiation of Th2 cells (74, 75). Notably, STAT5b LOF 

mutations are associated with a unique phenotype of postnatal 
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growth impairment due to growth hormone insensitivity. 

Autosomal recessive TYK2 deficiency has also been described 

with a HIES-like clinical phenotype in some affected patients, 

associated with increased susceptibility to viral, intracellular 

bacterial, and mycobacterial infections (25, 76).

Autosomal recessive hypomorphic mutations in the 

phosphoglucomutase 3 gene PGM3 can lead to a clinical SCID 

phenotype with features of HIES, with elevated IgE, 

severe atopy, systemic bacterial infections, disseminated 

Herpesvirus infections, neurologic impairment, and increased 

autoimmunity (25).

Wiskott-Aldrich syndrome and similar 
syndromes

Mutations in the Wiskott-Aldrich syndrome gene, WAS, 

which codes for WAS protein (WASp), can lead to an 

eponymous X-linked immunodeficiency called Wiskott-Aldrich 

syndrome (WAS) (26, 77). WASp is a key protein in the signal 

transduction and actin polymerization pathways of 

hematopoietic cells, and certain variants can lead to combined 

immune deficiency, thrombocytopenia with small platelets, and 

eczematous dermatitis, often within the first month of life (77). 

The eczematous dermatitis of WAS affects the majority of 

patients and generally meets clinical criteria for AD but can be 

abnormally severe, widespread, and often difficult to treat (59). 

Along with AD, complications of thrombocytopenia are often 

one of the first clinical presenting features (25, 26, 67, 77).

Patients with WAS may have aberrant regulatory T cell (Treg) 

function, which is likely largely responsible for the increased rate 

of autoimmunity in this population (77, 78). There is a notably 

increased rate of hematologic malignancy as well. Other 

mutations in WAS may lead to less severe phenotypes, such as 

X-linked thrombocytopenia, which lack infectious and 

dermatologic complications (77).

There is very little known regarding changes in the 

microbiome of patients with WAS. The only available study on 

skin microbiome dysbiosis in humans to date (63) included 

patients that did not have the severe eczematous phenotype, 

with significantly lower SCORAD (Scoring Atopic Dermatitis) 

scores and with lower IgE levels than included patients with 

AD, STAT3-HIES, and DIDS. These patients had microbial 

colonization generally more similar to healthy controls than to 

those of other PADs (specifically, STAT3-HIES or DOCK8 

deficiency), suggesting the possibility of confounding due to the 

difference in their specific disease phenotype. However, a mouse 

model of WAS (79) did note significant dysbiosis with a relative 

abundance of certain genera (Streptococcus and Helicobacter) 

and novel colonization not detected in wild-type mice. Some of 

these changes began as early as the first week of life. 

Fortunately, treatment of WAS with both gene therapy and 

hematopoietic stem cell therapy have been reported to be 

effective in improving AD in these patients (80, 81).

Multiple other PADs may present similarly to WAS without 

WASp deficiency. Loss of function variants of WIPF1 

(WAS/WASL interacting protein family member 1) can lead to 

an autosomal recessive variant of WAS called WAS 2, with a 

similar clinical presentation (23, 75). A somewhat milder variant 

of a WAS-like syndrome may also present secondary to ARPC1B 

LOF, with more mild thrombocytopenia but otherwise similar 

clinical phenotype (26).

CBM complex-associated disorders

Caspase recruitment domain (CARD) proteins, B-cell CLL/ 

Lymphoma 10 (BCL10), and mucosa-associated lymphoid tissue 

lymphoma translocation protein 1 paracaspase (MALT1), 

interact to form what is known as the CARD-BCL10-MALT1 

(CBM) complex (25, 75, 82). The CBM complex regulates 

activation of NF-κB pathways, facilitating T cell receptor signal 

transduction, loss of which leads to the Th2 phenotype. 

Mutations in the genes encoding these proteins lead to so-called 

“CBM-opathies” (25).

CARD11 and CARD14 dominant-negative mutations can both 

lead to severe atopy, recurrent viral respiratory and cutaneous 

infections, with CARD11 showing a more Th2-skewed immune 

response (25, 26, 82). Patients with CARD11 LOF frequently 

have treatment-resistant AD, although both dupilumab and 

omalizumab have been reported to be effective as treatments (83).

MALT1 LOF has a similar phenotype, with an increase in 

gastrointestinal infections and loss of self-tolerance, predisposing 

to in�ammatory bowel disease (25, 26). Use of hematopoietic 

stem cell transplant has been reported to also treat the AD of 

patients with MALT1 LOF (84, 85).

Netherton syndrome

Mutations in the serine protease inhibitor Kazal type 4 gene 

(SPINK5) lead to a loss of function of the protein 

lymphoepithelial Kazal-type-related protease inhibitor (LEKTI-1) 

(86). Loss of LEKTI-1 leads to increased protease activity, 

thereby increasing skin barrier damage and epidermal 

in�ammation. This monogenic, autosomal recessive disease is 

called Netherton syndrome or Comèl-Netherton syndrome and 

is characterized by congenital ichthyosiform erythroderma and 

severe eczematous dermatitis, classic hair shaft abnormalities 

(trichorrhexis invaginata or “bamboo hair”), potential failure to 

thrive, and the development of significant atopic disease. Skin 

infections in this population are very common (86).

The lesional skin in patients with Netherton syndrome is 

dominated by S. aureus and S. epidermidis, isolates of which are 

both able to promote skin in�ammation in mouse models (87). 

The secreted virulence peptides and proteases of these S. aureus 

isolates have also been associated with an increased frequency of 

childhood skin infections (87). Notably, patients with Netherton 

syndrome do not seem to have severe underlying systemic 

immune deficiency, meaning their immune dysregulation and 

recurrent skin infections are more likely to be related to severe 

barrier dysfunction (88).
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Other monogenic disorders

Immune dysregulation polyendocrinopathy enteropathy 

X-linked (IPEX) syndrome, caused by LOF of FOXP3, leads to 

significant Treg dysfunction. This leads to a PAD characterized 

by elevated IgE levels, eczema, eosinophilia, autoimmune 

enteropathy, autoimmune endocrinopathies, and severe 

infections (25, 26, 59). Diseases with IPEX syndrome-like 

presentations include CD25 deficiency, which is autosomal 

recessive with chronic viral, fungal, and bacterial infections, and 

the previously reviewed STAT5b deficiency, distinguished by 

growth-hormone insensitive dwarfism (25, 26).

RLTPR deficiency, caused by autosomal recessive mutations of 

CARMIL2, leads to an atopic phenotype characterized by 

recurrent infections, malignancy, and Epstein–Barr virus- 

associated lymphoproliferative disease (25, 26).

Severe combined immunodeficiency (SCID) 
and similar presentations

Many patients with SCID and SCID-like diseases may present 

early in life with severe eczematous dermatitis, severe 

immunodeficiency, and autoimmunity. These are features of 

Omenn syndrome (most commonly due to mutations in RAG1 

or RAG2) and more mildly of adenosine deaminase severe 

combined immunodeficiency (ADA-SCID) (26, 89). However, 

this presentation may be seen with other SCID genotypes, 

including mutations in IL7RA, ZAP70, IL2RA, DCLRE1C, 

RMRP, and severe pathogenic variants of CHD7 (25, 26, 89). 

Many of these patients, particularly those with Omenn 

syndrome, have early onset eczematous dermatitis, presenting as 

early as birth. These patients will frequently present with 

dermatitis that does not technically meet classification criteria 

for AD and is often treatment-resistant (25, 26).

The skin and gut microbiome in patients with hypomorphic 

RAG mutations has been described in detail by Blaustein et al., 

although none of these patients were reported to have severe 

eczematous dermatitis as can be seen in patients with Omenn 

syndrome (90). Regardless, this study showed significant changes 

in baseline gut and skin microbiomes compared to healthy 

controls with loss of body site specificity, increased inter- 

individual variation, and colonization with microbes (including 

bacteria, fungi, and viruses) not previously described on 

human skin.

Discussion and conclusions

Early presentation of severe atopy, often presenting as severe 

eczematous dermatitis, is a clear warning sign for underlying 

immune dysregulation and should raise concern for underlying 

immune deficiencies or PAD. While our understanding of the 

existence and clinical importance of PADs has grown, significant 

knowledge gaps regarding PADs persist.

Even in patients without PAD, AD is a complex disease caused 

by the interaction of immune dysfunction, skin barrier disruption, 

and microbiome changes, and is highly associated with increased 

risk for future atopic diseases. Our understanding of the effects of 

microbiome-immune system crosstalk has rapidly expanded in 

recent years, especially in the context of atopy. Despite our 

improved understanding of the alterations in the microbiome in 

patients with AD, little is known regarding cutaneous 

microbiomes in patients with PADs, despite the growing 

recognition of PADs as a group. This knowledge gap affects 

both patients with and without PADs—the specific immune 

dysfunction highlighted by each PAD provides clinicians with 

important information regarding the specific roles of individual 

components of cutaneous immunity. Understanding which 

unique pathogens affect patients with specific PADs may further 

unlock understanding of the virulence factors these pathogens 

may produce and the importance of certain commensal 

microbes in the human cutaneous microbiome. In the future, 

this research may unlock avenues of treatment for patients with 

and without PAD, with the eventual goal of preventing AD 

onset entirely as we better understand the factors at play in this 

complex disease.

To date, only filaggrin deficiency, STAT3-HIES, DIDS, 

Netherton syndrome, and WAS have had their underlying 

cutaneous dysbiosis studied. However, the available literature 

regarding the cutaneous microbiomes of patients with WAS 

predominantly describes patients without the severe eczematous 

phenotype that is most characteristic of most patients with WAS 

(63). The other PADs reviewed in Table 1 (with the exception 

of filaggrin deficiency) have little known regarding the 

cutaneous microbiome changes which may or may not be 

unique to these disorders, and more studies replicating prior 

research and focused on patients with other PADs are 

clearly needed.

Unfortunately, PADs present a group of diseases that are 

exceptionally difficult to study due to small patient populations, 

generally young patients, extensive heterogeneity among patient 

presentations, and environmental factors, all of which lead to 

limitations in microbiome research findings. AD itself has high 

variability with age, as does the cutaneous microbiome, making 

research conducted on adult populations difficult to apply to 

most patients with PADs, which typically present and are 

diagnosed at a young age. Given the relative rarity of these 

patients, careful monitoring, documentation, and sample 

collection (when possible) will be crucial to facilitate 

future research.

Additionally, a number of potential biomarkers have been 

identified in recent years for earlier recognition of AD to 

facilitate more aggressive recognition and treatment. Stratum 

corneum lipids and certain cytokines have already been 

identified as early biomarkers for AD onset and severity (91, 

92), yet few clinically viable microbial-derived biomarkers have 

been identified to date. Currently, there is strong evidence for 

early cutaneous microbiome changes as a risk factor for 

development of AD (93, 94), although utility for testing prior to 

AD-onset remains limited. Nasal and gut S. aureus colonization 
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has been observed in patients with AD, but the clinical use of this 

measure is uncertain as S. aureus presence is ubiquitous in 

patients with AD and measures of S. aureus quantity and 

propensity for biofilm formation are limited (95, 96). Skin 

microbiota shifts have been repeatedly identified with AD 

treatment (39, 40, 44, 95, 97), suggesting a role for microbiome- 

based assays (either direct microbial population testing or 

measuring microbe-derived metabolites) as future biomarkers 

for treatment response. While this research remains in its 

infancy, future clinical application options will present 

additional diagnostic and monitoring parameters clinicians can 

utilize to help patients. Improved understanding of the 

differences noted in patients with PADs, such as colonization 

with unusual cutaneous microbes, may provide further 

diagnostic clues for an underlying PAD.

Patients with PADs continue to present clinical challenges for 

treating providers and understanding their unique traits may 

greatly impact treatment courses. With the advent and 

availability of advanced genetic testing, we anticipate more 

patients being identified, earlier recognition of disease, more 

targeted treatments (including bacteriotherapy, biologics, and 

small molecules), and improved outcomes for patients with 

PADs in the future.
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