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atopic disorders, and the
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Atopic dermatitis is a common inflammatory skin disease with rapidly expanding
worldwide prevalence. Increasingly, cases of severe and early-onset dermatitis
have been identified and found to be due to underlying monogenic mutations,
leading to immune dysregulation. These conditions, called primary atopic
disorders, have become an area of extensive study over the last 30 years.
Simultaneously, our understanding of the human microbiome has steadily
grown, and there is clear evidence that dysbiosis plays a major role in atopic
dermatitis, not only in severity of disease and as a potential trigger but also
offering clues for targeted treatment strategies. Unfortunately, despite our
growing understanding of the cutaneous microbiome and the expanding
availability of genetic testing allowing for diagnosis of primary atopic
disorders, there remains very limited understanding regarding the
microbiomics changes that underlie these disorders. Here we review the
current research regarding atopic dermatitis in the setting of primary atopic
disorders, understanding regarding primary atopic disorders and associated
cutaneous dysbiosis, and identify specific gaps in knowledge.

KEYWORDS
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Introduction

Atopic dermatitis (AD) is an increasingly common, chronic, inflammatory skin
disease characterized by epidermal barrier breakdown and dysregulated inflammation,
predominantly via Th2-mediated inflammatory pathways. The resulting pruritic,
eczematous lesions are the prototypical early manifestation of the so-called atopic
march, the progressive development of AD followed by development of other atopic
diseases, such as allergic rhinitis, food allergy, asthma, and eosinophilic esophagitis (1).
Recent studies suggest that halting the progression of AD may reduce future systemic
allergic sensitization to antigens—although evidence remains limited on the effect this
may have on the atopic march (1-4). Given the rising worldwide prevalence of atopic
diseases (5), early identification and management of AD has become increasingly critical.

As the focus on AD management has grown, significant progress has been made in
understanding the correlation between dysregulation of the skin barrier and changes in
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the skin microbiome. Enhanced skin colonization by
Staphylococcus aureus and resultant enzyme and superantigen
production has been the best characterized change in the
microbiome of patients with AD (6). However, numerous other
cutaneous bacterial, fungal, and viral taxa have been identified
and studied in the pathogenesis of AD (7). Notably, loss of
certain commensal skin bacteria, in particular S. epidermidis and
S. hominis, has also been associated with increased AD severity
(8, 9). Recent studies have shown that commensal microbes may
have antipathogenic effects via direct pathogen-inhibiting
molecules (10-13) and via modulation of the cutaneous barrier
(10, 14,

pathogenesis of AD, the effects of specific AD treatments on the

15). Given the microbiome’s likely role in the

skin microbiome have also been studied extensively to better
elucidate the pathogenesis of this disease and to develop more
targeted treatment options (6). The relationship between the
microbiome and skin health is not just skin deep, however, and
multiple researcher groups have identified a so-called gut-skin
axis, where changes in the gut microbiome may lead to changes
in skin health (16-19). These findings imply a microbiome-
immune axis, where changes in the human microbiome—
of lead

immune dysregulation.

regardless skin  location—may to  increased

Given that the changing prevalence of AD cannot be explained
by genetic shifts alone (18), there has been an increased interest in
the effects of environmental changes leading to a propensity for
AD development (18, 20). The list of environmental factors
affecting AD development is vast and includes pollutants, rural
vs. urban living, allergens, medications, and microbial exposures
(including to antibiotic-resistant pathogens) (18, 21, 22). In
recent decades, cases of very early onset, severe, and unique

presentations of AD have also been identified. These cases have

10.3389/fped.2025.1670623

led to the characterization of a group of inborn errors of
immunity typically presenting with early and severe AD, termed
primary atopic disorders (PADs) (23). PADs are defined as
monogenic diseases presenting with significant allergy and/or
atopy as characteristic features, frequently manifesting with an
eczematous dermatitis (23). Most PADs have been characterized
within the last 30 years (24). Apart from highly prevalent loss-
of-function (LOF) variants in FLG, which codes for the crucial
epidermal barrier protein filaggrin, most PADs result in
significant immune dysfunction with high risk for severe
infections (23-26). Categorization of these disorders is not
standardized given significant functional and symptomatic
and new PADs
Additionally, it appears likely that environmental exposures may
further modulate clinical onset of PADs (22, 27), leading to
variability in presentations. Given the importance of early
of these
diagnosis is paramount.

overlap, are rapidly being discovered.

treatment immune compromised patients, early

While the skin microbiome in AD has been extensively
researched, there is very limited available literature regarding
differences in the skin microbiome of patients with PADs. This
i the primary
immunodeficiencies, which has been evaluated in much greater

is in contrast to gut microbiome in
detail (17, 28). Treatments modifying the gut microbiome in
patients with PADs have also been studied (17, 28, 29).

The available data reviewed in the following sections suggests
that immune dysfunction in PADs significantly influences the
cutaneous microbiome. In Figure 1, we review the factors that
influence AD and associated cutaneous microbiome alterations,
including in this unique patient population. Later, we will
discuss the current understanding of the difference in the skin

microbiome in patients with the most extensively studied PADs,
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Simplified representation of interactions between microbes, cutaneous immunity, and primary atopic disorders. Commensal microbes play a major
role in cutaneous immune function via inhibition of potential pathogens and regulation of certain immune functions. Appropriate immune responses
help foster a healthy microbiome, which conversely fosters appropriate immune responses. Disruption in normal cutaneous immunity (e.g., via
environmental exposures or primary atopic disorders) leads to microbiome changes which promote pathogenic microbes, which can further
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along with a general review of these PADs and of diseases that
mimic PAD pathology.

Skin microbiome in AD

We have been aware in recent years of the important role that
commensal microorganisms play in normal immune function.
The healthy skin microbiome consists of a diverse community
of bacteria, fungi, and viruses, responsible for impeding the
growth of pathogens, presumably through competition and both
direct and indirect antimicrobial effects. Bacteria make up the
microbes,

majority of commensal with  Corynebacterium,

Cutibacterium,  Micrococcus, — Staphylococcus,  Streptococcus,
Betaproteobacteria, and Gammaproteobacteria being the most
common (30). Malassezia spp., in particular M. globosa and
M. restricta, are the most prevalent fungal colonizers (31). Skin
microbial diversity varies by body location, the type of skin, skin
moisture, patient age, and patient ethnicity, with healthy
children displaying especially diverse microbiota as compared to
adults (6, 30).

In patients with AD, skin microbial composition differs
compared to controls with over-representation predominantly of
S. aureus, although a definitive causal relationship has not been
clearly defined. In disease flares, diversity appears to shift towards
less varied communities with an increased proportion of
S. aureus in the skin compared to after flares are resolved; a
similar difference is noted between lesional and non-lesional skin
in patients with AD (30, 32). Conversely, increased proportions
of certain Staphylococcus species (such as S. epidermidis and
S.  hominis) and other common commensal bacteria
(Streptococcus, Corynebacteria, and Propionibacterium) have been
associated with reduced AD rates and severity (33). Many of
these commensal organisms have been found to directly and
indirectly protect host skin via multiple mechanisms, such as
secretion of lantibiotics or promoting antimicrobial peptides such
as B-defensins which may suppress S. aureus (6, 9). In patients
with AD, the majority of S. aureus strains produce superantigens,
such as staphylococcal enterotoxin B, which can further exaggerate
Th2 inflammatory responses and exacerbate AD (2, 9, 34). Other
studies have focused on differences in fungal communities (31, 35),
noting relative enrichment of certain Malassezia spp. (M. dermatis,
M. sloofiae, and M. sympodalis) in AD. These studies have been
difficult to consistently replicate due to variance between lesional
and non-lesional skin, differences in skin sampling sites, microbial
changes with patient age, and differences in disease activity; all of
these factors influence the skin microbiome (30). In addition,
evidence suggests that there are differences in virulence factors
between certain strains of S. aureus, with those found on active
AD lesions inducing skin inflammation in mouse models, more-so
than S. aureus from healthy human skin (34).

Lastly, environmental exposures have a major effect on the
skin microbiome, affecting microbial diversity and quantity
(22, 36-38). The environmental factors affecting the skin
microbiome are similar to those associated with AD, such as

medication exposures, rural vs. urban environments, climate
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these
environmental exposures appear to greatly affect the abundance

changes, pollutants, and allergens. Specifically,
of pathogenic microbes (in particular, S. aureus and pathogenic

fungi), and changes in commensal microbial taxa (22, 38).

Effects of treatments on the skin
microbiome

With advances in skin microbiome research, we have begun to
understand the effects that targeted therapeutic strategies may
have on the skin microbiome. Numerous studies have evaluated
the effects of treatments in patients with AD on the skin
microbiome and S. aureus in particular, excellently summarized
by Demessant-Flavigny et al. and Huang et al. (6, 39). As a
whole, multiple studies evaluating both indirect (emollients,
anti-inflammatory topicals, monoclonal antibodies) and direct
antibacterials (including antiseptics, topical and systemic
antibiotics, and S. aureus-specific therapies including anti-S.
aureus endolysin and bacteriotherapy) have shown beneficial
changes in S. aureus populations and increases in commensal
bacteria (6, 33, 39-44). Of the monoclonal antibodies approved
for AD treatment, the microbiome-modulating effects of the
interleukin (IL)-4 receptor alpha antagonist dupilumab and IL-
13 antagonist tralokinumab have both been evaluated (43-46).
Of the three studies evaluating dupilumab and one study
evaluating tralokinumab, all excluded pediatric patients, and all
showed improvement in cutaneous dysbiosis, reduction in
S. aureus abundance, and increases in S. epidermidis and
S. hominis. While Janus Kinase (JAK) inhibitors were recently
approved for treatment of AD, there is thus far limited
understanding of the effects these therapies may have on the
skin microbiome (47).

Cutaneous probiotics (live microbes) and direct cutaneous
microbial transplantation has been explored, with variable
efficacy in clinical studies (9, 21, 39). However, the use of
postbiotic therapies (beneficial non-live metabolic byproducts of
probiotic microbes) has shown promising results in clinical
studies with lower theoretical risk than probiotics (48), which
may be a concern in patients with certain PADs. Notably, a
number of trials using oral probiotics have shown improvement

in AD with treatment (16), further solidifying the gut-skin axis.

Primary atopic disorders

As noted previously, PADs encompass a large group of
monogenic defects leading to significant allergic and/or atopic
diseases, with eczematous dermatitis as a common presenting
feature. To date, there have been at least 48 single-gene defects
identified as PADs,
underlying immune dysregulation (23). Many PADs can have

most of which are associated with

catastrophic implications for patients, frequently requiring early
and aggressive treatment, including potential hematopoietic stem
cell transplantation, making early identification and expanded
treatment  strategies Standardized

increasingly —important.
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categorizations of PADs have not been established, although
certain groupings are commonly used (Table 1). Very broadly,
the immune dysregulation of these disorders leads to variable
combinations of: (1) propensity for Th2 pathways, either via
direct upregulation or loss of downregulation (2) dysfunctional
T-regulatory (Treg) cell pathways, leading to loss of self-
tolerance and (3) direct loss of epidermal barrier function (49).
In the following sections, we will discuss the most studied PADs
to date, their clinical presentations, distinguishing features,
associated dermatologic findings, and current understanding of
their effects on the host cutaneous microbiome (Table 2). When
available, we will review PAD-specific AD treatment evidence in
the respective disorder section. A detailed review of the current

10.3389/fped.2025.1670623

knowledge regarding gut microbiome changes in patients with
PADs, among other inborn errors of immunity, has been recently
published by Hazime et al. (17) and will not be reviewed in
detail here.

Filaggrin deficiency

LOF variants of the gene FLG, which encodes filament
aggregating protein (filaggrin), cause the most common PAD
(50, 51). FLG LOF mutations with variable degrees of function
follow a semi-dominant inheritance pattern, with homozygous
or compound heterozygous genotypes conferring increased risk

TABLE 1 Select PADs with dermatitis as a characteristic feature.

Clinical features

Disease or syndrome

name
Filaggrin deficiency FLG

Severe AD, 1 IgE

Hyperimmunoglobulin E Syndromes (HIES) and Similar Clinical Phenotypes
STAT3 (LOF)

Autosomal dominant-HIES/ Severe dermatitis, 7 IgE, eosinophilia, recurrent skin abscesses, CMC, recurrent pneumonia,

STAT3-HIES bone fragility, scoliosis, joint hyperextensibility, retained primary teeth, dysmorphic facial
features

AR-HIES/DIDS DOCK8 Severe AD, 1 IgE, eosinophilia, food allergy, CMC, cutaneous infections (esp. molluscum,
papilloma virus, herpes simplex), malignancy, autoimmunity

Variant STAT3-HIES/AR IL6ST Similar to STAT3-HIES, destructive lung disease, +/- neurodevelopmental delay

GP130 deficiency

Variant STAT3-HIES/AR IL-6 | IL6R Similar to STAT3-HIES, typically without skeletal abnormalities

receptor deficiency

Variant STAT3-HIES/HIES3 ZNF341 Similar to STAT3-HIES

ERBIN deficiency ERBB2IP Similar to STAT3-HIES

STAT5b deficiency STAT5b (LOF) 1 IgE, postnatal growth impairment, growth hormone insensitivity

Can have IPEX-like presentation

STAT6 gain-of-function STAT6 (GOF) 11gE, severe atopy, 1 risk for hematologic malignancy

TYK2 deficiency TYK2 Similar to STAT3-HIES in some cases; 1 susceptibility to intracellular bacteria (mycobacteria),
viral infection
PGM3 deficiency PGM3 1IgE, severe atopy, 1 rate of bone marrow failure, skeletal dysplasia, neurodevelopmental

delay

Wiskott-Aldrich syndrome (WAS) and Similar Clinical Phenotypes

WAS WAS Severe AD, thrombocytopenia with small platelets, recurrent infections (bacterial, viral),
hematologic malignancy, autoimmunity, bloody diarrhea

WAS 2/WIP deficiency WIPF1 Severe AD, thrombocytopenia with small platelets, recurrent infections (bacterial, viral),
bloody diarrhea

ARPCIB deficiency ARPCIB Similar to WAS, milder

CBM complex-associated diseases

CADINS CARD11 General atopy, 1 IgE, eosinophilia, respiratory and cutaneous viral infections

CARD14 deficiency CARD14 General atopy, recurrent respiratory and cutaneous pyogenic and viral infections

MALT1 deficiency MALTI Similar to CADINS with 1 risk of IBD

Additional PADs

Netherton syndrome SPINK5 Congenital ichthyosis, “bamboo hair”, 1 IgE, 1 risk of enteropathy, failure to thrive

IPEX syndrome FOXP3 Severe eczematous dermatitis, T IgE, 1 IgA, recurrent severe infections, autoimmune
enteropathy, polyendocrinopathy

RLTPR deficiency CARMIL2 General atopy, recurrent respiratory and cutaneous infections, malignancy, and EBV-

associated lymphoproliferative disease

Severe Combined Immunodeficiency (SCID) Phenotypes
Multiple genes: RAGI, RAG2, IL7RA,
ZAP70, ADA, DCLREIc, RMRP, CHD7

Omenn syndrome Very early onset eczematous dermatitis (<2 months), erythroderma, combined

immunodeficiency, eosinophilia

Other clinical features and causative genes are summarized here. PADs are grouped by their general clinical features and diseases they may mimic. PADs that do not cause dermatitis as a
prominent feature are not included here. PAD, primary atopic disorder; AD, atopic dermatitis; AR, autosomal recessive; LOF, loss of function; GOF, gain of function; IL, interleukin; CMC,
chronic mucocutaneous candidiasis; WIP, WAS/WASL interacting protein; IPEX, immunodysregulation polyendocrinopathy enteropathy X-linked; CBM, caspase recruitment domain
(CARD) proteins, B-cell CLL/Lymphoma 10 (BCL20), and mucosa-associated lymphoid tissue lymphoma translocation protein 1 paracaspase (MALT1); CADINS, CARD11-associated
atopy with dominant interference of NF-kB signaling; EBV, Epstein-Barr virus.
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TABLE 2 Summary of PADs with available cutaneous microbiome data.

‘ Disease Gene Skin microbiome Characteristic cutaneous infections

10.3389/fped.2025.1670623

S. aureus, Candida

S. aureus, Candida

Recurrent “cold” abscesses associated with

S. aureus, Candida (CMC)

Cutaneous viral infections are less common than
in DIDS

Cutaneous viral infections, especially MC, HSV,
and HPV
Otherwise, similar to STAT3-HIES

Cutaneous viral infections, bacterial cellulitis and

Normal skin (6, 55) wild o Wide diversity
type « Uncommon colonization with S. aureus (10%-20%)
Atopic dermatitis (6, 9, 55) Wwild o 1 S. aureus, certain Malassezia spp., and Candida colonization
type e | common commensal microbiomes, including other
Staphylococcus spp.
Filaggrin deficiency (6, 55) FLG o 1 8. aureus, certain Malassezia spp., and Candida colonization
o 1 S. aureus biofilm propensity, pathogenicity
« Non-lesional skin is similar to lesional skin of patients with AD
STAT3-HIES (63-65) STAT3 |« Colonization by Serratia marcescens, S. aureus, Corynebacterium
spp., Candida spp., and Aspergillus spp.
o S aureus strains display 1 virulence genes and antibiotic resistance
o S aureus and S. haemolyticus enriched
DIDS (63, 68, 70) DOCK8 |« Similar to STAT3-HIES, with 1 viral colonization (Papillomaviridae,
Polyomaviridae, and Poxviridae predominance)
o Limited data on bacterial populations
Wiskott-Aldrich syndrome (63) | WAS o Limited data in eczematous patients
o 1 bacterial community diversity (retroauricular crease only)
Netherton syndrome (87) SPINK5 |« | microbial diversity

o 1in S. aureus, S. epidermidis, Strep agalactiae

abscesses, S. aureus predominant

« Cutaneous bacterial infections, gastrointestinal
infections, rare invasive infections

o 1 S. aureus bacterial virulence peptides and proteases (PSMa,

Staphopain A and B)

Summary of PADs with data available regarding cutaneous microbiome changes, compared to wild type controls. PADs without available literature were not included. LOF, loss of function;
HIES, hyperimmunoglobulin E syndrome; AD, atopic dermatitis; CMC, chronic mucocutaneous candidiasis; DIDS, DOCK8 immunodeficiency syndrome; MC, molluscum contagiosum;
HSV, herpes simplex virus; VZV, varicella zoster virus; HPV, human papillomavirus; PSMa, phenol-soluble modulin alpha.

of AD and an early presentation of AD (within the first months of
infancy) (52, 53). While FLG LOF is not specifically associated
with immune deficiency, skin barrier breakdown in these
patients can lead to increased cutaneous infections and immune
dysregulation. The AD affecting these patients may also be
treatment-resistant. Although filaggrin deficiency is the most
common PAD, the availability of diagnostic genetic testing is
limited due to challenges of sequencing this gene (54).

Patients with filaggrin deficiency have underlying changes in
their cutaneous microbiome—notably, an increased prevalence
of S. aureus and Malassezia colonization, with overall reduced
microbial diversity compared to wild type controls (7, 55).
Patients with filaggrin deficiency may have a predilection for
more pathogenic S. aureus strains with higher biofilm forming
propensity (6, 55). In addition, there may be less lesional vs.
non-lesional skin divergence in these patients, and earlier onset
of dysbiosis (7, 47, 55).

Hyperimmunoglobulin E syndromes

Hyperimmunoglobulin E syndromes (HIES) were originally
defined as two primary variants, each with mutations in a
different gene: an autosomal dominant variant caused by loss of
function of the signal transducer and activator of transcription
(STAT) 3 gene, STAT3, and an autosomal recessive variant due
to loss of function of the dedicator of cytokinesis 8 gene,
DOCKS8. Over time, numerous genotypes with similar clinical
phenotypes have been identified; HIES has thus become
somewhat of a misnomer as many PADs may present with very
elevated IgE levels (25, 26). For example, filaggrin deficiency,

Frontiers in Pediatrics

which is not commonly considered an inborn error of
immunity, is also associated with high levels of IgE due to AD
(25, 26). Thus, while we will use the term HIES here to define a
set of diseases characterized by very elevated IgE levels, elevated
IgE levels can be seen in many patients with AD without an
overt PAD due to many factors, including but not limited to the
increased Th2 skew associated with AD and induction of IgE
factors such as S.

production by environmental aureus

colonization (18, 56).

STAT3-HIES

The most common form of HIES continues to be dominant-
negative STAT3 (STAT3-HIES, or autosomal dominant HIES)
mutations, previously called “Job’s Syndrome”. STAT3 plays a key
role in the differentiation of Thl7 cells, with downstream
of Th2 pathways (57). This
characterized predominantly by elevated IgE, eosinophilia, severe

downregulation disease is
eczematous dermatitis as early as the first month of life, recurrent
skin abscesses without the typical inflammatory signs (warmth,
erythema, or tenderness; “cold abscesses”), recurrent cyst-forming
pneumonias, and chronic mucocutaneous candidiasis (CMC)
(25, 26). The eczematous dermatitis of STAT3-HIES tends to be
severe and does not necessarily meet strict clinical criteria for AD
(25, 58, 59). While STAT3-HIES-associated dermatitis is generally
treatment-resistant, dupilumab appears to be effective in treating
dermatitis in these patients (60-62).

Other atopic features are less common in patients with
STAT3-HIES compared to wild-type patients with AD (59).
Multiple extracutaneous findings, including retained primary

frontiersin.org



Abidov and Bayer

teeth, minimally traumatic bone fractures, characteristic facial
features, and scoliosis, may be present later in life (25).
STAT3-HIES appears to affect the cutaneous microbiome
(63-65). In general, the skin of these patients shows decreased
microbial diversity, loss of some commensal strains, and
increase in certain pathogenic bacterial and fungal strains
(63-65). The strains of S. aureus affecting these patients tend to
be more likely to express methicillin resistance, Panton-
Valentine Leukocidin (PVL), and staphylococcal enterotoxins
K and Q (SEK and SEQ, respectively) (60, 61, 64). PVL is a
pore-forming cytotoxin associated with methicillin resistance,
SEK and SEQ are

superantigens rarely expressed in wild-type patients with AD

while non-classical  staphylococcal
(64). While overall S. aureus presence was not increased in most
patients—likely due to widespread use of S. aureus-targeting
therapies—the strains present did appear more pathogenic.
Other Staphylococcus species, including S. epidermidis and S.
these patients.

colonization with relatively increased Candida and Aspergillus

haemolyticus, were enriched in Fungal
spp. abundance was noted, likely due to the deficiency of Th17
cells observed in STAT3-HIES. Interestingly, these patients were
noted to have novel skin colonization with Serratia species
(specifically S. marcescens), with increased variance between
patients with STAT3-HIES compared to controls. In addition to
Serratia species, Acinetobacter species also seem to have an
increased prevalence in these patients, while commensal
Corynebacterium spp. were less prevalent, loss of which may
further inhibit host immune responses to Candida spp. and S.

aureus (60, 61, 65).

DOCKS deficiency

LOF mutations in DOCKS are the next most common HIES
and follow an autosomal recessive pattern, often termed DOCKS8
immunodeficiency syndrome (DIDS) or autosomal recessive
HIES. We will use DIDS to distinguish it from other autosomal
recessive HIES variants. Patients with DIDS have markedly
impaired T-cell differentiation and function, leading to
significant immune dysregulation (26, 66).

Like STAT3-HIES, patients with DIDS have the classic features
of high IgE, eosinophilia, severe AD, skin infections (abscess), and
CMC, but are distinguished by an increased propensity for
cutaneous viral infections and increased risk for autoimmunity
and malignancy (67). These cutaneous viral infections include
infections with molluscum contagiosum (MC), herpes simplex
virus (HSV), and human papillomaviruses (HPV) and may be
treatment-resistant (25, 66, 68).

Additionally, DIDS-associated eczematous dermatitis is more
consistent with typical AD compared to the eczematous
dermatitis of STAT3-HIES (26, 59, 66). Musculoskeletal and
dental abnormalities are rare as compared to STAT3-HIES
(25, 26). The increased malignancies observed are primarily
lymphomas and cutaneous squamous cell carcinomas (59).

DIDS-associated cutaneous dysbiosis has been analyzed in

multiple studies. Generally, the bacterial pathogens are similar to
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those found in patients with STAT3-HIES (63), with a notable
difference in the cutaneous virome (63, 68). Patients with DIDS
relative abundances of certain
skin,

Polyomaviridae, and Poxviridae being the most predominant

have profoundly elevated

eukaryotic viruses in the with  Papillomaviridae,
(68). This is consistent with the typical clinical features of
resistant cutaneous infections with MC and HPV in these patients.

Similar to STAT3-HIES, patients with DIDS frequently have
treatment-resistant AD, and the efficacy of dupilumab in this
population has been described in limited case reports
demonstrating efficacy of dupilumab treatment (61, 62, 69).
Notably, dupilumab appears to benefit both the AD and reduce
skin infections in these patients. More recently, Che et al.
followed 24 patients with DIDS through hematopoietic stem cell
transplantation (HSCT), showing that HSCT had dramatic
effects not only on the cutaneous microbiome of these patients,
but functionally resolved the skin disease of many of these
patients (70). These patients showed normalization of their skin
microbiomes closer to healthy controls, regaining site-specific
reductions in S. aureus and

patterns, and dramatic

viral abundance.

STAT3-HIES phenocopies

Mutations in other genes can present phenotypically like
STAT3-HIES, as these variants affect proteins crucial to the
STATS3 signaling pathway. Normal IL-6 signaling is transduced
in large part via STAT3. Autosomal recessive variants of the IL-
6 receptor gene, IL6R, present similarly to STAT3-HIES but lack
the skeletal abnormalities (25, 26, 71). Variants of the IL-6
Cytokine Family Signal Transducer gene, IL6ST, which has both
autosomal dominant and autosomal recessive LOF variants, have
that of STAT3-HIES but are
associated with neurodevelopmental delay, destructive lung
disease, and bronchiectasis (72, 73). ZNF341 (zinc finger protein

phenotypes that resemble

341) encodes a transcription factor involved in the STAT3
signaling pathway; LOF variants of ZNF341 cause a syndrome
phenotypically identical to STAT3-HIES by impacting DNA
binding by ZNF341 (26). Finally, individuals with ERBIN
deficiency due to autosomal dominant ERBB2IP LOF present
very similarly to patients with STAT3-HIES but with fewer
infections. The protein ERBIN forms a complex with STAT3 to
facilitate STAT3 signaling (23, 24, 26).

Other variants of HIES

Mutations of other STAT and STAT-related genes have also
been implicated in early childhood dermatitis and elevated IgE,
including LOF mutations of STAT5b and gain-of-function
(GOF) mutations of STAT6 (23, 24, 74). STAT5b is required for
the response of naive T cells to IL-2, triggering production of
the IL-4Ra subunit (75), and STAT6 is required for
differentiation of Th2 cells (74, 75). Notably, STAT5b LOF
mutations are associated with a unique phenotype of postnatal
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growth impairment due to growth hormone insensitivity.
Autosomal recessive TYK2 deficiency has also been described
with a HIES-like clinical phenotype in some affected patients,
associated with increased susceptibility to viral, intracellular
bacterial, and mycobacterial infections (25, 76).

Autosomal recessive hypomorphic mutations in the
phosphoglucomutase 3 gene PGM3 can lead to a clinical SCID
of HIES, with IgE,

bacterial infections, disseminated

phenotype with features elevated

atopy,

Herpesvirus infections, neurologic impairment, and increased

severe systemic

autoimmunity (25).

Wiskott-Aldrich syndrome and similar
syndromes

Mutations in the Wiskott-Aldrich syndrome gene, WAS,
which codes for WAS protein (WASp), can lead to an
eponymous X-linked immunodeficiency called Wiskott-Aldrich
syndrome (WAS) (26, 77). WASp is a key protein in the signal
transduction and actin  polymerization pathways of
hematopoietic cells, and certain variants can lead to combined
immune deficiency, thrombocytopenia with small platelets, and
eczematous dermatitis, often within the first month of life (77).
The eczematous dermatitis of WAS affects the majority of
patients and generally meets clinical criteria for AD but can be
abnormally severe, widespread, and often difficult to treat (59).
Along with AD, complications of thrombocytopenia are often
one of the first clinical presenting features (25, 26, 67, 77).

Patients with WAS may have aberrant regulatory T cell (Treg)
function, which is likely largely responsible for the increased rate
of autoimmunity in this population (77, 78). There is a notably
increased rate of hematologic malignancy as well. Other
mutations in WAS may lead to less severe phenotypes, such as
X-linked which  lack

dermatologic complications (77).

thrombocytopenia, infectious and

There is very little known regarding changes in the
microbiome of patients with WAS. The only available study on
skin microbiome dysbiosis in humans to date (63) included
patients that did not have the severe eczematous phenotype,
with significantly lower SCORAD (Scoring Atopic Dermatitis)
scores and with lower IgE levels than included patients with
AD, STAT3-HIES, and DIDS. These patients had microbial
colonization generally more similar to healthy controls than to
those of other PADs (specifically, STAT3-HIES or DOCKS
deficiency), suggesting the possibility of confounding due to the
difference in their specific disease phenotype. However, a mouse
model of WAS (79) did note significant dysbiosis with a relative
abundance of certain genera (Streptococcus and Helicobacter)
and novel colonization not detected in wild-type mice. Some of
these changes began as early as the first week of life.
Fortunately, treatment of WAS with both gene therapy and
hematopoietic stem cell therapy have been reported to be
effective in improving AD in these patients (80, 81).

Multiple other PADs may present similarly to WAS without

WASp deficiency. Loss of function variants of WIPFI

Frontiers in Pediatrics

10.3389/fped.2025.1670623

(WAS/WASL interacting protein family member 1) can lead to
an autosomal recessive variant of WAS called WAS 2, with a
similar clinical presentation (23, 75). A somewhat milder variant
of a WAS-like syndrome may also present secondary to ARPCIB
LOF, with more mild thrombocytopenia but otherwise similar
clinical phenotype (26).

CBM complex-associated disorders

Caspase recruitment domain (CARD) proteins, B-cell CLL/
Lymphoma 10 (BCL10), and mucosa-associated lymphoid tissue
lymphoma translocation protein 1 paracaspase (MALTIL),
interact to form what is known as the CARD-BCL10-MALT1
(CBM) complex (25, 75, 82). The CBM complex regulates
activation of NF-xB pathways, facilitating T cell receptor signal
transduction, loss of which leads to the Th2 phenotype.
Mutations in the genes encoding these proteins lead to so-called
“CBM-opathies” (25).

CARDI1 and CARDI4 dominant-negative mutations can both
lead to severe atopy, recurrent viral respiratory and cutaneous
infections, with CARDII showing a more Th2-skewed immune
response (25, 26, 82). Patients with CARDII LOF frequently
have treatment-resistant AD, although both dupilumab and
omalizumab have been reported to be effective as treatments (83).

MALTI LOF has a similar phenotype, with an increase in
gastrointestinal infections and loss of self-tolerance, predisposing
to inflammatory bowel disease (25, 26). Use of hematopoietic
stem cell transplant has been reported to also treat the AD of
patients with MALT1 LOF (84, 85).

Netherton syndrome

Mutations in the serine protease inhibitor Kazal type 4 gene
(SPINK5)
lymphoepithelial Kazal-type-related protease inhibitor (LEKTI-1)

lead to a loss of function of the protein
(86). Loss of LEKTI-1 leads to increased protease activity,
thereby

inflammation. This monogenic, autosomal recessive disease is

increasing skin barrier damage and epidermal
called Netherton syndrome or Comél-Netherton syndrome and
is characterized by congenital ichthyosiform erythroderma and
severe eczematous dermatitis, classic hair shaft abnormalities
(trichorrhexis invaginata or “bamboo hair”), potential failure to
thrive, and the development of significant atopic disease. Skin
infections in this population are very common (86).

The lesional skin in patients with Netherton syndrome is
dominated by S. aureus and S. epidermidis, isolates of which are
both able to promote skin inflammation in mouse models (87).
The secreted virulence peptides and proteases of these S. aureus
isolates have also been associated with an increased frequency of
childhood skin infections (87). Notably, patients with Netherton
syndrome do not seem to have severe underlying systemic
immune deficiency, meaning their immune dysregulation and
recurrent skin infections are more likely to be related to severe
barrier dysfunction (88).
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Other monogenic disorders

Immune dysregulation polyendocrinopathy enteropathy
X-linked (IPEX) syndrome, caused by LOF of FOXP3, leads to
significant Treg dysfunction. This leads to a PAD characterized
by elevated IgE levels, eczema, eosinophilia, autoimmune
enteropathy, autoimmune endocrinopathies, and
infections (25, 26, 59). Diseases with IPEX syndrome-like

presentations include CD25 deficiency, which is autosomal

severe

recessive with chronic viral, fungal, and bacterial infections, and
the previously reviewed STAT5b deficiency, distinguished by
growth-hormone insensitive dwarfism (25, 26).

RLTPR deficiency, caused by autosomal recessive mutations of
CARMIL2, leads to an atopic phenotype characterized by
recurrent infections, virus-

malignancy, and Epstein-Barr

associated lymphoproliferative disease (25, 26).

Severe combined immunodeficiency (SCID)
and similar presentations

Many patients with SCID and SCID-like diseases may present
life with
immunodeficiency, and autoimmunity. These are features of

early in severe eczematous dermatitis, severe
Omenn syndrome (most commonly due to mutations in RAGI
or RAG2) and more mildly of adenosine deaminase severe
combined immunodeficiency (ADA-SCID) (26, 89). However,
this presentation may be seen with other SCID genotypes,
including mutations in IL7RA, ZAP70, IL2RA, DCLREIC,
RMRP, and severe pathogenic variants of CHD7 (25, 26, 89).
Many of these patients, particularly those with Omenn
syndrome, have early onset eczematous dermatitis, presenting as
early as birth. These patients will frequently present with
dermatitis that does not technically meet classification criteria
for AD and is often treatment-resistant (25, 26).

The skin and gut microbiome in patients with hypomorphic
RAG mutations has been described in detail by Blaustein et al.,
although none of these patients were reported to have severe
eczematous dermatitis as can be seen in patients with Omenn
syndrome (90). Regardless, this study showed significant changes
in baseline gut and skin microbiomes compared to healthy
controls with loss of body site specificity, increased inter-
individual variation, and colonization with microbes (including
bacteria, fungi, and viruses) not previously described on

human skin.

Discussion and conclusions

Early presentation of severe atopy, often presenting as severe
eczematous dermatitis, is a clear warning sign for underlying
immune dysregulation and should raise concern for underlying
immune deficiencies or PAD. While our understanding of the
existence and clinical importance of PADs has grown, significant
knowledge gaps regarding PADs persist.
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Even in patients without PAD, AD is a complex disease caused
by the interaction of immune dysfunction, skin barrier disruption,
and microbiome changes, and is highly associated with increased
risk for future atopic diseases. Our understanding of the effects of
microbiome-immune system crosstalk has rapidly expanded in
recent years, especially in the context of atopy. Despite our
improved understanding of the alterations in the microbiome in
with AD, little is
microbiomes in patients with PADs, despite the growing

patients known regarding cutaneous
recognition of PADs as a group. This knowledge gap affects
both patients with and without PADs—the specific immune
dysfunction highlighted by each PAD provides clinicians with
important information regarding the specific roles of individual
components of cutaneous immunity. Understanding which
unique pathogens affect patients with specific PADs may further
unlock understanding of the virulence factors these pathogens
may produce and the importance of certain commensal
microbes in the human cutaneous microbiome. In the future,
this research may unlock avenues of treatment for patients with
and without PAD, with the eventual goal of preventing AD
onset entirely as we better understand the factors at play in this
complex disease.

To date, only filaggrin deficiency, STAT3-HIES, DIDS,
Netherton syndrome, and WAS have had their underlying
cutaneous dysbiosis studied. However, the available literature
regarding the cutaneous microbiomes of patients with WAS
predominantly describes patients without the severe eczematous
phenotype that is most characteristic of most patients with WAS
(63). The other PADs reviewed in Table 1 (with the exception
of filaggrin deficiency) have little known regarding the
cutaneous microbiome changes which may or may not be
unique to these disorders, and more studies replicating prior
research and focused on patients with other PADs are
clearly needed.

Unfortunately, PADs present a group of diseases that are
exceptionally difficult to study due to small patient populations,
generally young patients, extensive heterogeneity among patient
presentations, and environmental factors, all of which lead to
limitations in microbiome research findings. AD itself has high
variability with age, as does the cutaneous microbiome, making
research conducted on adult populations difficult to apply to
most patients with PADs, which typically present and are
diagnosed at a young age. Given the relative rarity of these
patients, careful
collection

monitoring, documentation, and sample

(when possible) will be crucial to facilitate
future research.

Additionally, a number of potential biomarkers have been
identified in recent years for earlier recognition of AD to
facilitate more aggressive recognition and treatment. Stratum
corneum lipids and certain cytokines have already been
identified as early biomarkers for AD onset and severity (91,
92), yet few clinically viable microbial-derived biomarkers have
been identified to date. Currently, there is strong evidence for
early cutaneous microbiome changes as a risk factor for
development of AD (93, 94), although utility for testing prior to

AD-onset remains limited. Nasal and gut S. aureus colonization
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has been observed in patients with AD, but the clinical use of this
measure is uncertain as S. aureus presence is ubiquitous in
patients with AD and measures of S. aureus quantity and
propensity for biofilm formation are limited (95, 96). Skin
microbiota shifts have been repeatedly identified with AD
treatment (39, 40, 44, 95, 97), suggesting a role for microbiome-
based assays (either direct microbial population testing or
measuring microbe-derived metabolites) as future biomarkers
for treatment response. While this research remains in its
infancy, future clinical application options will present
additional diagnostic and monitoring parameters clinicians can
utilize to help patients. Improved understanding of the
differences noted in patients with PADs, such as colonization
with unusual cutaneous microbes, may provide further
diagnostic clues for an underlying PAD.

Patients with PADs continue to present clinical challenges for
treating providers and understanding their unique traits may
With the advent and

availability of advanced genetic testing, we anticipate more

greatly impact treatment courses.

patients being identified, earlier recognition of disease, more
targeted treatments (including bacteriotherapy, biologics, and
small molecules), and improved outcomes for patients with
PADs in the future.
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