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The neonatal oxycardiorespirogram (OCRG) captures synchronized, multi-
channel recordings of respiratory patterns, heart rate variability,
transcutaneous oxygen tension, and relative skin perfusion in neonates. As a
non-invasive, point-of-care modality, OCRG is routinely used to assess
cardiorespiratory stability in high-risk infants, particularly preterm neonates at
risk for apnea, bradycardia, and desaturation. These events can persist beyond
hospital discharge, elevating morbidity and mortality, yet no standardized tool
reliably predicts which infants will experience clinically significant post-
discharge episodes. Although OCRG is established in clinical practice, its rich
time-series data remains largely underutilized for predictive modeling. In
contrast, machine learning methods have achieved strong performance in
related neonatal monitoring tasks - such as apnea detection, sepsis
prediction, sleep staging, and extubation readiness - by integrating
multimodal biosignals and temporal modeling strategies. These advances
highlight the opportunity to apply machine learning analytics and
explainability methods to OCRG data, enabling the discovery of physiological
patterns, refining risk stratification, and informing individualized interventions
such as the timing of caffeine withdrawal, initiation of home monitoring, or
discharge planning. Given the multimodal and sequential structure of OCRGs,
time-series-based machine learning, including both shallow and deep
learning approaches, represents particularly promising analytic strategies for
future applications. This mini-review synthesizes current gaps in OCRG-based
analytics, examines transferable lessons from existing machine learning
applications in neonatal biosignals, and outlines a translational roadmap for
evolving OCRG from a descriptive monitoring tool into a predictive platform
for precision neonatal care.
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Introduction

Cardiorespiratory instability in neonates, particularly preterm
infants, remains a major challenge in neonatal intensive care units
(NICUs) (1). Continuous, precise monitoring is essential not only
for acute clinical decision-making, but also for discharge planning
and long-term prognostication (2). The oxycardiorespirogram
(OCRG) provides a non-invasive, point-of-care method to assess
overall cardiorespiratory stability by capturing the dynamic interplay
between respiratory effort, oxygenation, and cardiac activity in real
time. By multi-channel recording of respiratory patterns, oxygen
saturation, and heart rate variabilityy, OCRG provides a more
than
monitoring, potentially enhancing the detection of subtle instabilities.

Wang et al. (3) illustrated that multi-channel OCRG can serve
as a practical alternative to polysomnography for guiding

integrated  physiological  assessment single-parameter

respiratory support in complex neonatal cases, particularly in
infants with recurrent apneic episodes during both sleep and
wakefulness. Despite its clinical utility, OCRG-derived data
remain conspicuously absent from current machine learning,
including shallow and deep learning applications.

This underutilization contrasts sharply with parallel advances
in neonatal monitoring. Numerous studies over the past decade
have successfully applied machine learning to neonatal images,
genetic profiles, electronic health records, and standard vital
signs. Recent work has leveraged biosignals such as respiratory
rate, heart rate, or their variability to predict sepsis (4), sleep
stage transitions (5, 6), and weaning readiness from mechanical
ventilation (7). The detection of apnea of prematurity (AOP)
-affecting over 50% of preterm infants (8) - has also been
Varisco et al. (9)
demonstrated that AOP often occurs in clusters with distinctive

enhanced by algorithmic approaches.

breathing patterns that can be computationally recognized,
enabling improved early-warning systems.

These advances highlight the feasibility and clinical potential
of machine learning in neonatal monitoring. However, its
application to OCRG remains largely unexplored. Several factors
contribute to this gap, including motion artifacts, limited and
and the
Moreover,

heterogeneous datasets, absence of standardized

annotation protocols. many existing neonatal
machine learning models lack explainability (XAI), a critical
barrier to clinician trust and regulatory acceptance (10).

This mini-review examines the clinical relevance of OCRG for
neonatal cardiorespiratory diagnostics, outlines the current
evidence gap regarding machine learning integration, and discusses
how combining OCRG with machine learning and XAI could
transform it from a descriptive monitoring tool into a predictive

and decision-supportive asset in professional neonatal care.

Unlocking the predictive power of
oxycardiorespirograms: clinical
context and gaps

Cardiorespiratory instability due to central apnea is a hallmark
complication in preterm neonates. Infants born before 37 weeks of
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gestation are at elevated risk, with nearly universal occurrence of
apnea episodes among those born before 28 weeks (11). These
events, often accompanied by bradycardia and oxygen
desaturation (apnea-bradycardia syndrome), primarily reflect
immaturity of central autonomic control. While extremely
preterm infants receive caffeine citrate to stimulate respiratory
drive and reduce hypoxemic episodes as the current standard-
of-care, late preterm and term neonates require differential
evaluation for obstructive, infectious, or neurological causes.
Caffeine, currently the most commonly prescribed drug in
NICUs, reduces central apnea, shortens the duration of invasive
ventilation, and improves long-term neurodevelopmental
outcomes (12). However, the optimal timing for caffeine
discontinuation remains a subject of ongoing scientific debate,
as premature withdrawal increases the risk of recurrent apnea
and post-discharge cardiorespiratory events. In contrast,
unnecessary prolongation can delay discharge and increase
healthcare costs (11). Due to the lack of a standardized
predictive test for apnea persistence, discharge readiness is often
based on bedside observation and short-term monitoring.

Based on our tertiary neonatal care experience, multi-channel
oxycardiorespirography is routinely applied to support decision-
making regarding caffeine weaning and discharge readiness.
OCRG serves as a practical complement to standardized
laboratory-based polysomnography (11), which remains the gold
standard for detailed sleep and respiratory assessment but is
typically reserved for specialized diagnostic settings due to its
complexity, resource intensity, and focus on comprehensive
sleep studies rather than routine bedside monitoring. Capturing
respiratory waveform and rate, instantaneous heart rate, and
transcutaneous oxygen tension over four to eight hours, OCRG
multi-dimensional

provides a time-resolved,

cardiorespiratory function during both sleep and wakefulness.

profile of

In current clinical workflows, OCRG recordings are typically
processed into summarized reports using proprietary software,
allowing clinicians to review essential findings efficiently. While
this approach supports timely decision-making, the resulting
data reduction limits access to the high-resolution time-series
signals, where subtle physiological dynamics may reside. This
highlights the opportunity for advanced analytical approaches to
augment existing OCRG workflows. By leveraging full-resolution
time-series data, machine learning techniques can move beyond
summary metrics to identify latent temporal and cross-channel
patterns, quantify physiological variability, and derive predictive
markers relevant to apnea recurrence, discharge readiness, and
individualized management strategies.

ML-driven approaches to neonatal
biosignals: building blocks for OCRG
innovation

advanced

Machine (ML) have

substantially in neonatal biosignal analysis, offering predictive

learning applications

insights across several physiological domains (8). Numerous
studies have demonstrated the value of ML for outcomes such
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as apnea detection, sepsis prediction, sleep state classification, and
extubation readiness, often by leveraging high-frequency or
multimodal data streams from standard NICU monitoring.
Kallonen et al. (4) showed that convolutional neural networks
(ECG),
respiratory impedance, and photoplethysmography could predict
up to 44h before
highlighting the benefit of transforming temporal physiological

trained on  high-frequency electrocardiography

late-onset  sepsis clinical suspicion,
signals into spectral representations. Koolen et al. (5) and
Ghimatgar et al. (6) successfully classified neonatal sleep states
using electroencephalography (EEG) based inputs, using support
vector machines or recurrent networks, and post-processing
with hidden Markov models, achieving accuracies around 80%-
82%. These approaches show good performance for shallow
learning and deep learning models. Additionally, they highlight
that the usage of average features already achieves good
accuracy. Fraiwan et al. (13) extended the sleep classification
approach to multi-class sleep staging (awake, quiet, active sleep),
achieving up to 95% accuracy with long short-term memory
networks. Facing this high increase in accuracy compared to the
other studies, they demonstrated the benefit of following a deep
learning approach by using the raw signal as input, rather than
aggregated features.

ML has also improved decision support for respiratory care.
Shalish et al. (7)
cardiorespiratory signals [ECG, chest and abdominal movement,
(SPOZ),
extubation success, achieving 80% identification rates. Similarly,

applied support vector machines to

oxygen saturation plethysmography] to predict
Varisco et al. (9) utilized features from ECG, chest impedance,
and SpO,, employing logistic regression and ensemble models to
predict apnea, with AUROCs ranging from 0.88 to 0.9. These
that

modeling capture neonatal physiology more effectively than

studies emphasize multimodal inputs and temporal
isolated parameters.

In most neonatal ML studies, high-frequency biosignals were
not analyzed in their raw form. Instead, handcrafted feature
extraction and spectral transformations were commonly
employed to enhance model performance, particularly for
shallow ML approaches. In contrast, deep learning methods
increasingly allow more direct use of complex time-series data.
These methodological strategies provide a framework for
processing OCRG data while preserving time dependencies and
the synchronized, multimodal nature of ORCG. To align
analytic strategies more closely with these characteristics, we
next outline time-series-based machine

specific learning

approaches that may be particularly relevant for OCRG.

OCRG data characteristics and
time-series analysis

A unique feature of OCRG recordings is their structure as
synchronized, multimodal time series, combining respiratory
waveforms, oxygenation, and cardiac variability across different
temporal scales. This multimodal composition creates both
challenges, such as heterogeneity, noise, and artifacts, and
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opportunities, as temporal dependencies and cross-signal
coupling can be directly exploited for prediction.

Using machine learning to analyse multivariate time series
data is considered one of the major challenges across domains
(14, 15). For time series classification tasks, shallow learning
techniques such as HIVE-COTE (16), TS-CHIEF (17), and
ROCKET (18) have been state-of-the-art for many years. More
ResNet (19) and

InceptionTime (20) have begun to match or outperform these

recently, deep learning methods as
architectures, especially when trained on univariate time series
data. Another notable deep learning approach is the Multivariate
Time Series Transformer (21), based on the transformer
architecture (22), which outperformed ROCKET on various
datasets and shows high efficiency, even with fewer training
samples. Recent work in multivariate time series increasingly
leverages transformer-based architectures (22) or graph neural
networks (23), surpassing foundational techniques such as
RNNs and CNNs (15).

Beyond unimodal models, multimodal fusion strategies (early,
late, or attention-based) are particularly promising for OCRG, as
they can dynamically weight the contribution of different signals
depending on the clinical context. To date, no published studies
have applied these methods specifically to OCRG. This gap
constitutes a limitation of our review but also highlights the
translational potential for advancing neonatal time series analytics.

Discussion: opportunities and
translational potential

The neonatal OCRG captures a rich, multivariate profile of
cardiorespiratory physiology, spanning respiratory waveforms
and rate, heart rate variability, transcutaneous oxygen tension,
and relative perfusion over extended monitoring periods.
Although routinely used to guide clinical decisions - such as
determining readiness for caffeine weaning, need for respiratory
support, or hospital discharge - OCRG recordings, which
typically span four to eight hours, are condensed into
summarized reports for clinician review. This necessary
simplification enables timely decisions but leaves much of the
high-resolution temporal information underexplored. In
ECG,
photoplethysmography, respiratory impedance, and EEG, have

successfully been integrated into ML workflows to predict

contrast, other neonatal biosignals, including

outcomes such as sepsis, sleep state transitions, apnea of
prematurity, (10).
indicate that OCRG, as a unified biosignal modality, is ideally
positioned for similar ML-driven innovations.

and extubation success These advances

A key opportunity lies in analyzing OCRG data beyond the
summary metrics currently used in practice. The raw, high-
frequency time series may contain latent temporal and cross-
channel patterns, such as complex desaturation dynamics or
heart rate-respiration coupling, that could refine risk prediction
and thus support clinical decision making. As outlined above,
OCRGs share the characteristics of complex multivariate time
series, making them suitable for the architectures already used
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for multivariate time series classification or forecasting in other
domains. Importantly, combining OCRG data with clinical
variables such as gestational age, ventilation history, or
neurological comorbidities has the potential to enhance model
generalizability and clinical applicability. To further ensure
clinical applicability and improve interpretability and trust, XAI
(24) must be embedded into OCRG-based models. Techniques
such as SHapley Additive exPlanations (SHAP) (25) and
Integrated Gradients (26) calculate quantitative contributions of
individual features (e.g., recurrent desaturation patterns or
bradycardia episodes) to a model’s prediction. Visualizing these
values allows comparison between features deemed important by
the model and those considered clinically relevant by human
experts, thereby improving transparency and interpretability.
Applying ML and XAI to OCRG can therefore transform this
modality from a descriptive monitoring tool into a predictive
platform for neonatal care. Such integration could streamline
discharge planning by predicting apnea recurrence risk, reduce
unnecessary hospitalization by better timing of caffeine
of

cardiorespiratory instability. The success of ML approaches in

withdrawal, and improve individualized management
sepsis detection, sleep staging, and extubation modeling provides
a methodological foundation, but OCRG’s unique combination
of synchronized biosignals offers distinct potential for advancing
precision neonatal care.

Future progress will depend on creating standardized,
annotated OCRG datasets, developing robust preprocessing
pipelines, and prospectively validating predictive models across
diverse neonatal populations. In addition, learning the ORCG
data with different model architectures designed to solve time-
series analysis, such as ROCKET, ResNet, transformer models,
or graph neural networks, should be examined to identify the
architecture yielding optimal under clinical
Embedding be

essential to ensure transparency, regulatory acceptance, and

performance

constraints. explainability techniques will
clinician trust. By aligning OCRG-specific data characteristics
with these methodological advances, future research can move
beyond proof-of-concept and develop clinically actionable

prediction tools.
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