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The neonatal oxycardiorespirogram (OCRG) captures synchronized, multi- 

channel recordings of respiratory patterns, heart rate variability, 

transcutaneous oxygen tension, and relative skin perfusion in neonates. As a 

non-invasive, point-of-care modality, OCRG is routinely used to assess 

cardiorespiratory stability in high-risk infants, particularly preterm neonates at 

risk for apnea, bradycardia, and desaturation. These events can persist beyond 

hospital discharge, elevating morbidity and mortality, yet no standardized tool 

reliably predicts which infants will experience clinically significant post- 

discharge episodes. Although OCRG is established in clinical practice, its rich 

time-series data remains largely underutilized for predictive modeling. In 

contrast, machine learning methods have achieved strong performance in 

related neonatal monitoring tasks - such as apnea detection, sepsis 

prediction, sleep staging, and extubation readiness - by integrating 

multimodal biosignals and temporal modeling strategies. These advances 

highlight the opportunity to apply machine learning analytics and 

explainability methods to OCRG data, enabling the discovery of physiological 

patterns, refining risk stratification, and informing individualized interventions 

such as the timing of caffeine withdrawal, initiation of home monitoring, or 

discharge planning. Given the multimodal and sequential structure of OCRGs, 

time-series-based machine learning, including both shallow and deep 

learning approaches, represents particularly promising analytic strategies for 

future applications. This mini-review synthesizes current gaps in OCRG-based 

analytics, examines transferable lessons from existing machine learning 

applications in neonatal biosignals, and outlines a translational roadmap for 

evolving OCRG from a descriptive monitoring tool into a predictive platform 

for precision neonatal care.
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Introduction

Cardiorespiratory instability in neonates, particularly preterm 

infants, remains a major challenge in neonatal intensive care units 

(NICUs) (1). Continuous, precise monitoring is essential not only 

for acute clinical decision-making, but also for discharge planning 

and long-term prognostication (2). The oxycardiorespirogram 

(OCRG) provides a non-invasive, point-of-care method to assess 

overall cardiorespiratory stability by capturing the dynamic interplay 

between respiratory effort, oxygenation, and cardiac activity in real 

time. By multi-channel recording of respiratory patterns, oxygen 

saturation, and heart rate variability, OCRG provides a more 

integrated physiological assessment than single-parameter 

monitoring, potentially enhancing the detection of subtle instabilities.

Wang et al. (3) illustrated that multi-channel OCRG can serve 

as a practical alternative to polysomnography for guiding 

respiratory support in complex neonatal cases, particularly in 

infants with recurrent apneic episodes during both sleep and 

wakefulness. Despite its clinical utility, OCRG-derived data 

remain conspicuously absent from current machine learning, 

including shallow and deep learning applications.

This underutilization contrasts sharply with parallel advances 

in neonatal monitoring. Numerous studies over the past decade 

have successfully applied machine learning to neonatal images, 

genetic profiles, electronic health records, and standard vital 

signs. Recent work has leveraged biosignals such as respiratory 

rate, heart rate, or their variability to predict sepsis (4), sleep 

stage transitions (5, 6), and weaning readiness from mechanical 

ventilation (7). The detection of apnea of prematurity (AOP) 

-affecting over 50% of preterm infants (8) - has also been 

enhanced by algorithmic approaches. Varisco et al. (9) 

demonstrated that AOP often occurs in clusters with distinctive 

breathing patterns that can be computationally recognized, 

enabling improved early-warning systems.

These advances highlight the feasibility and clinical potential 

of machine learning in neonatal monitoring. However, its 

application to OCRG remains largely unexplored. Several factors 

contribute to this gap, including motion artifacts, limited and 

heterogeneous datasets, and the absence of standardized 

annotation protocols. Moreover, many existing neonatal 

machine learning models lack explainability (XAI), a critical 

barrier to clinician trust and regulatory acceptance (10).

This mini-review examines the clinical relevance of OCRG for 

neonatal cardiorespiratory diagnostics, outlines the current 

evidence gap regarding machine learning integration, and discusses 

how combining OCRG with machine learning and XAI could 

transform it from a descriptive monitoring tool into a predictive 

and decision-supportive asset in professional neonatal care.

Unlocking the predictive power of 
oxycardiorespirograms: clinical 
context and gaps

Cardiorespiratory instability due to central apnea is a hallmark 

complication in preterm neonates. Infants born before 37 weeks of 

gestation are at elevated risk, with nearly universal occurrence of 

apnea episodes among those born before 28 weeks (11). These 

events, often accompanied by bradycardia and oxygen 

desaturation (apnea–bradycardia syndrome), primarily re?ect 

immaturity of central autonomic control. While extremely 

preterm infants receive caffeine citrate to stimulate respiratory 

drive and reduce hypoxemic episodes as the current standard- 

of-care, late preterm and term neonates require differential 

evaluation for obstructive, infectious, or neurological causes. 

Caffeine, currently the most commonly prescribed drug in 

NICUs, reduces central apnea, shortens the duration of invasive 

ventilation, and improves long-term neurodevelopmental 

outcomes (12). However, the optimal timing for caffeine 

discontinuation remains a subject of ongoing scientific debate, 

as premature withdrawal increases the risk of recurrent apnea 

and post-discharge cardiorespiratory events. In contrast, 

unnecessary prolongation can delay discharge and increase 

healthcare costs (11). Due to the lack of a standardized 

predictive test for apnea persistence, discharge readiness is often 

based on bedside observation and short-term monitoring.

Based on our tertiary neonatal care experience, multi-channel 

oxycardiorespirography is routinely applied to support decision- 

making regarding caffeine weaning and discharge readiness. 

OCRG serves as a practical complement to standardized 

laboratory-based polysomnography (11), which remains the gold 

standard for detailed sleep and respiratory assessment but is 

typically reserved for specialized diagnostic settings due to its 

complexity, resource intensity, and focus on comprehensive 

sleep studies rather than routine bedside monitoring. Capturing 

respiratory waveform and rate, instantaneous heart rate, and 

transcutaneous oxygen tension over four to eight hours, OCRG 

provides a time-resolved, multi-dimensional profile of 

cardiorespiratory function during both sleep and wakefulness.

In current clinical work?ows, OCRG recordings are typically 

processed into summarized reports using proprietary software, 

allowing clinicians to review essential findings efficiently. While 

this approach supports timely decision-making, the resulting 

data reduction limits access to the high-resolution time-series 

signals, where subtle physiological dynamics may reside. This 

highlights the opportunity for advanced analytical approaches to 

augment existing OCRG work?ows. By leveraging full-resolution 

time-series data, machine learning techniques can move beyond 

summary metrics to identify latent temporal and cross-channel 

patterns, quantify physiological variability, and derive predictive 

markers relevant to apnea recurrence, discharge readiness, and 

individualized management strategies.

ML-driven approaches to neonatal 
biosignals: building blocks for OCRG 
innovation

Machine learning (ML) applications have advanced 

substantially in neonatal biosignal analysis, offering predictive 

insights across several physiological domains (8). Numerous 

studies have demonstrated the value of ML for outcomes such 
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as apnea detection, sepsis prediction, sleep state classification, and 

extubation readiness, often by leveraging high-frequency or 

multimodal data streams from standard NICU monitoring. 

Kallonen et al. (4) showed that convolutional neural networks 

trained on high-frequency electrocardiography (ECG), 

respiratory impedance, and photoplethysmography could predict 

late-onset sepsis up to 44 h before clinical suspicion, 

highlighting the benefit of transforming temporal physiological 

signals into spectral representations. Koolen et al. (5) and 

Ghimatgar et al. (6) successfully classified neonatal sleep states 

using electroencephalography (EEG) based inputs, using support 

vector machines or recurrent networks, and post-processing 

with hidden Markov models, achieving accuracies around 80%– 

82%. These approaches show good performance for shallow 

learning and deep learning models. Additionally, they highlight 

that the usage of average features already achieves good 

accuracy. Fraiwan et al. (13) extended the sleep classification 

approach to multi-class sleep staging (awake, quiet, active sleep), 

achieving up to 95% accuracy with long short-term memory 

networks. Facing this high increase in accuracy compared to the 

other studies, they demonstrated the benefit of following a deep 

learning approach by using the raw signal as input, rather than 

aggregated features.

ML has also improved decision support for respiratory care. 

Shalish et al. (7) applied support vector machines to 

cardiorespiratory signals [ECG, chest and abdominal movement, 

oxygen saturation (SpO2), plethysmography] to predict 

extubation success, achieving 80% identification rates. Similarly, 

Varisco et al. (9) utilized features from ECG, chest impedance, 

and SpO2, employing logistic regression and ensemble models to 

predict apnea, with AUROCs ranging from 0.88 to 0.9. These 

studies emphasize that multimodal inputs and temporal 

modeling capture neonatal physiology more effectively than 

isolated parameters.

In most neonatal ML studies, high-frequency biosignals were 

not analyzed in their raw form. Instead, handcrafted feature 

extraction and spectral transformations were commonly 

employed to enhance model performance, particularly for 

shallow ML approaches. In contrast, deep learning methods 

increasingly allow more direct use of complex time-series data. 

These methodological strategies provide a framework for 

processing OCRG data while preserving time dependencies and 

the synchronized, multimodal nature of ORCG. To align 

analytic strategies more closely with these characteristics, we 

next outline specific time-series-based machine learning 

approaches that may be particularly relevant for OCRG.

OCRG data characteristics and 
time-series analysis

A unique feature of OCRG recordings is their structure as 

synchronized, multimodal time series, combining respiratory 

waveforms, oxygenation, and cardiac variability across different 

temporal scales. This multimodal composition creates both 

challenges, such as heterogeneity, noise, and artifacts, and 

opportunities, as temporal dependencies and cross-signal 

coupling can be directly exploited for prediction.

Using machine learning to analyse multivariate time series 

data is considered one of the major challenges across domains 

(14, 15). For time series classification tasks, shallow learning 

techniques such as HIVE-COTE (16), TS-CHIEF (17), and 

ROCKET (18) have been state-of-the-art for many years. More 

recently, deep learning methods as ResNet (19) and 

InceptionTime (20) have begun to match or outperform these 

architectures, especially when trained on univariate time series 

data. Another notable deep learning approach is the Multivariate 

Time Series Transformer (21), based on the transformer 

architecture (22), which outperformed ROCKET on various 

datasets and shows high efficiency, even with fewer training 

samples. Recent work in multivariate time series increasingly 

leverages transformer-based architectures (22) or graph neural 

networks (23), surpassing foundational techniques such as 

RNNs and CNNs (15).

Beyond unimodal models, multimodal fusion strategies (early, 

late, or attention-based) are particularly promising for OCRG, as 

they can dynamically weight the contribution of different signals 

depending on the clinical context. To date, no published studies 

have applied these methods specifically to OCRG. This gap 

constitutes a limitation of our review but also highlights the 

translational potential for advancing neonatal time series analytics.

Discussion: opportunities and 
translational potential

The neonatal OCRG captures a rich, multivariate profile of 

cardiorespiratory physiology, spanning respiratory waveforms 

and rate, heart rate variability, transcutaneous oxygen tension, 

and relative perfusion over extended monitoring periods. 

Although routinely used to guide clinical decisions - such as 

determining readiness for caffeine weaning, need for respiratory 

support, or hospital discharge - OCRG recordings, which 

typically span four to eight hours, are condensed into 

summarized reports for clinician review. This necessary 

simplification enables timely decisions but leaves much of the 

high-resolution temporal information underexplored. In 

contrast, other neonatal biosignals, including ECG, 

photoplethysmography, respiratory impedance, and EEG, have 

successfully been integrated into ML work?ows to predict 

outcomes such as sepsis, sleep state transitions, apnea of 

prematurity, and extubation success (10). These advances 

indicate that OCRG, as a unified biosignal modality, is ideally 

positioned for similar ML-driven innovations.

A key opportunity lies in analyzing OCRG data beyond the 

summary metrics currently used in practice. The raw, high- 

frequency time series may contain latent temporal and cross- 

channel patterns, such as complex desaturation dynamics or 

heart rate-respiration coupling, that could refine risk prediction 

and thus support clinical decision making. As outlined above, 

OCRGs share the characteristics of complex multivariate time 

series, making them suitable for the architectures already used 
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for multivariate time series classification or forecasting in other 

domains. Importantly, combining OCRG data with clinical 

variables such as gestational age, ventilation history, or 

neurological comorbidities has the potential to enhance model 

generalizability and clinical applicability. To further ensure 

clinical applicability and improve interpretability and trust, XAI 

(24) must be embedded into OCRG-based models. Techniques 

such as SHapley Additive exPlanations (SHAP) (25) and 

Integrated Gradients (26) calculate quantitative contributions of 

individual features (e.g., recurrent desaturation patterns or 

bradycardia episodes) to a model’s prediction. Visualizing these 

values allows comparison between features deemed important by 

the model and those considered clinically relevant by human 

experts, thereby improving transparency and interpretability.

Applying ML and XAI to OCRG can therefore transform this 

modality from a descriptive monitoring tool into a predictive 

platform for neonatal care. Such integration could streamline 

discharge planning by predicting apnea recurrence risk, reduce 

unnecessary hospitalization by better timing of caffeine 

withdrawal, and improve individualized management of 

cardiorespiratory instability. The success of ML approaches in 

sepsis detection, sleep staging, and extubation modeling provides 

a methodological foundation, but OCRG’s unique combination 

of synchronized biosignals offers distinct potential for advancing 

precision neonatal care.

Future progress will depend on creating standardized, 

annotated OCRG datasets, developing robust preprocessing 

pipelines, and prospectively validating predictive models across 

diverse neonatal populations. In addition, learning the ORCG 

data with different model architectures designed to solve time- 

series analysis, such as ROCKET, ResNet, transformer models, 

or graph neural networks, should be examined to identify the 

architecture yielding optimal performance under clinical 

constraints. Embedding explainability techniques will be 

essential to ensure transparency, regulatory acceptance, and 

clinician trust. By aligning OCRG-specific data characteristics 

with these methodological advances, future research can move 

beyond proof-of-concept and develop clinically actionable 

prediction tools.
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