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Background: Pediatric sepsis remains a leading cause of mortality in critically ill
children worldwide. Current approaches to sepsis prognosis rely on clinical
criteria and biomarkers with variable performance. This study aimed to
develop and validate time-to-event survival prediction models for pediatric
sepsis using survival analysis machine learning algorithms.

Methods: We conducted a retrospective cohort study of 223 pediatric sepsis
patients from a pediatric intensive care database (2010-2018). Five survival
analysis machine learning algorithms were evaluated: CoxPHSurvivalAnalysis,
HingelLossSurvivalSVM,  GradientBoostingSurvivalAnalysis, RandomSurvivalForest,
and ExtraSurvivalTrees. These algorithms predict survival time rather than binary
outcomes. Model performance was assessed using time-dependent area under
the curve (td-AUC), concordance index (c-index), Brier score, and calibration
curves. SHapley Additive exPlanations (SHAP) analysis was performed for model
interpretability, —and zero-crossing point analysis identified  clinically
actionable thresholds.

Results: Among 223 patients, 200 (89.7%) survived with median ICU stay of 12.2
days for survivors vs. 2.3 days for non-survivors. RandomSurvivalForest achieved
the highest performance with td-AUC of 0.97, while CoxPHSurvival and
HingelLossSurvivalSVM showed comparable c-indices of 0.87. SHAP analysis
identified calcium total and RDW as the strongest mortality predictors. Zero-
crossing point analysis established clinical thresholds: calcium total <1.10 mmol/L,
RDW >15.07%, sodium <131.68 mmol/L, and pH <7.32 were associated with
increased mortality risk, with U-shaped relationships observed for creatinine
and lymphocytes.

Conclusions: RandomSurvivalForest demonstrated superior time-to-event
prediction performance for pediatric sepsis. The survival analysis approach
provides dynamic risk assessment and precise timing for clinical interventions.
A web-based prediction calculator was developed to facilitate
clinical implementation.
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Introduction

Sepsis is one of the leading causes of morbidity and
mortality in critically ill children worldwide (1), killing
approximately 4,500 children annually in the United States
(2) and causing 25% mortality globally among those with
severe sepsis (3). Pediatric intensive care units experience
particularly high rates of sepsis due to the complex medical
conditions and invasive procedures that characterize critical
care (4, 5). Children with severe sepsis present unique
challenges for clinicians attempting to predict outcomes and
stratify  risk, especially when underlying conditions
(6-8).

approaches to sepsis diagnosis and prognosis rely on clinical

complicate  diagnosis and treatment Current
criteria and biomarkers like procalcitonin and C-reactive
protein, which demonstrate variable performance and limited
predictive accuracy (9-11). The complex pathophysiology of
sepsis, particularly in children with cardiac disease, makes it
difficult to identify high-risk patients

outcomes accurately (12, 13). Better survival prediction tools

and predict

are needed to help clinicians counsel families and make
treatment decisions.

Machine learning (ML) have emerged as promising tools for
improving sepsis outcome prediction and clinical decision-
making (14-16).
potential of various ML algorithms in predicting mortality
sepsis (17-19).
evaluated multiple ML models including random forest, light

Recent studies have demonstrated the

among pediatric patients Moore et al
gradient boosting machine, and Extreme Gradient Boosting
for predicting in-hospital mortality in children with Phoenix
sepsis, achieving area wunder the receiver operating
characteristic curves (AUROCs) ranging from 0.81 to 0.88,
with random forest showing the best performance (17). Kim
et al. developed the Pediatric Risk of Mortality Prediction
Tool (PROMPT) using a convolutional neural network, which
achieved AUROCs of 0.89-0.97 for mortality prediction 6-
60 h prior to death in critically ill children, outperforming
conventional severity scoring systems (18). Additionally,
Shimabukuro et al. conducted a randomized controlled trial
of a ML -based
demonstrating significant reductions in average length of stay
(from 13.0 to 10.3 days, p=0.042) and in-hospital mortality
(19). These

findings highlight the clinical utility of ML in sepsis

severe sepsis prediction algorithm,

(12.4 percentage point reduction, p=0.018)

management. However, very few studies have specifically
focused on using ML approaches to predict survival time and
survival status in children with severe sepsis.

In this study, we utilized data from a pediatric intensive care
unit database to develop survival prediction models for children
with severe sepsis. We compared several survival analysis
machine learning algorithms using time-dependent area under
the curve (td-AUC), concordance index (c-index), Brier score,
and calibration curves to identify the optimal model. The best-
performing model was interpreted using SHapley Additive
exPlanations (SHAP) analysis, and a web-based calculator was
developed for clinical application.
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Methods
Study population

We conducted a retrospective cohort study using data from
the Paediatric Intensive Care (PIC) database, including all
pediatric patients diagnosed with sepsis who were admitted to
intensive care units at the Children’s Hospital, Zhejiang
University School of Medicine between 2010 and 2018. Data
access was obtained following completion of the required CITI
training program (certification 64180628) and execution of the
data use agreement. Patients were included if they were <18
years at ICU admission, had a primary or secondary diagnosis
of sepsis according to International Pediatric Sepsis Consensus
Conference criteria, and had complete data for survival time and
vital status. We excluded patients with missing essential clinical
data, ICU stay <24 h, or incomplete admission data due to
transfer from other hospitals. The primary outcome was survival
time from ICU admission to death or hospital discharge.

Data extraction and preprocessing

The study cohort was derived from 12,881 patients in the PIC
database. After excluding 12,657 patients without a sepsis
diagnosis upon ICU admission, 224 patients with sepsis were
identified. One patient was further excluded due to extreme
laboratory values (RBC =327.07 x 10'%/L), resulting in a final
cohort of 223 participants (Figure 1). Clinical data were initially
extracted from the first measurements obtained within 24 h of

ICU admission, including demographic characteristics,
laboratory ~ measurements,  vital  signs, anthropometric
measurements, medication usage, and fluid balance data.

Variables with >30% missing values were removed, and
K-nearest neighbors (KNN) imputation was applied to handle
remaining missing values. The final dataset included age,
gender, hematological parameters (RBC, WBC, neutrophil
percentage, lymphocyte percentage, platelet count, hemoglobin,
RDW, hematocrit), biochemical markers (sodium, potassium,
calcium, chloride, ALT, creatinine), blood gas analysis (pH,
PCO,, PO,, lactate),
vasopressors), fluid balance data (liquid input and output), and
ICU length of stay. Survival time was calculated from ICU

medication usage (cephalosporins,

admission to death or hospital discharge.

Continuous variables were standardized using
“StandardScaler” package in Python. Variance inflation factor
(VIF) was calculated to detect multicollinearity, and variables
with VIF >10 were excluded (Supplementary Table S1).

Variable selection was performed using a multi-stage
univariate Cox analysis was

approach.  First, regression

conducted for all candidate variables to assess individual
associations with mortality. Variables with high correlation
(r>0.6) were identified, and the less statistically significant
variable from each correlated pair was removed to reduce

multicollinearity. Final variable selection prioritized statistically
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[ 12881 patients from PIC database ]
Exclusion Criteria:
P| Patients without a sepsis diagnosis upon ICU admission
v (n=12657).
[ 224 patients with sepsis diagnosis ]
Exclusion Criteria:
> Variables with >30% missing values were removed.
KNN imputation was applied to remaining missing values
\ 4 Extreme values (e.g., RBC=327.07*10"?) (n = 1).
[ 223 participants are included in the analysis ]
7o%| I 30%
Training data Test data
n = 156 n =67
) v
Construction of machine learning models:
CoxPHSurvival, RandomSurvivalForest,
GradientBoostingSurvival
HingeLossSurvivalSVM, ExtraSurvivalTrees
Evaluation of ML survival models:
td-AUC, Calibration curve, C-index, Brier score
" + )
Explanation of ML models:
SHAP waterfall plot,
SHAP decision plot,
SHAP feature importance,
SHAP summary plot,
SHAP LOWESS curve
Web-based calculator
- .
FIGURE 1
Study flowchart and machine learning pipeline for pediatric sepsis survival prediction. Patient selection from 12,881 PIC database records to 223
pediatric sepsis patients, followed by 7:3 training-testing split. Five survival analysis algorithms were evaluated using td-AUC, c-index, Brier score,
and calibration curves. The optimal model underwent SHAP analysis and web-based calculator development. PIC, Paediatric Intensive Care; td-
AUC, time-dependent area under the curve; SHAP, SHapley Additive exPlanations.

significant predictors (p<0.05) from univariate

supplemented by variables with the strongest effect sizes based

analysis,

on hazard ratios. The selected variables were then incorporated
into a multivariable Cox proportional hazards model, with
performance assessed using Harrell's concordance index.
Following this selection process, 15 variables were ultimately
included in the final model: Age, Gender, RDW, Lymphocytes,
Hemoglobin, pH, PO2, Sodium, CalciumTotal,

Chloride, Creatinine, Cephalosporins, Vasopressors, and Liquid

Lactate,

input. All variables underwent normality testing for survivors,
non-survivors, and the total cohort, with complete results
presented in Supplementary Table S4.

ML model construction and evaluation

The dataset was randomly split into training and testing sets
using a 7:3 ratio, with 156 patients allocated to the training set
and 67 patients to the testing set. Stratified sampling was
employed to ensure balanced distribution of survival outcomes
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between the two sets. Five survival analysis machine learning

algorithms were implemented and evaluated for survival
prediction, including CoxPHSurvivalAnalysis (a regularized Cox
proportional hazards model), HingeLossSurvivalSVM (Support
Vector Machine adapted for survival analysis using hinge loss
function), GradientBoostingSurvivalAnalysis (gradient boosting
algorithm for survival data), RandomSurvivalForest (ensemble
method extending random forests to survival analysis), and
ExtraSurvivalTrees (extremely randomized survival trees with
threshold

algorithm, comprehensive hyperparameter optimization was

additional randomness in selection). For each
performed using 10-fold cross-validation with grid search on the
training set. The hyperparameter search spaces included alpha,
n_iter, ties, and tol for CoxPHSurvivalAnalysis; alpha, solver
types,

iterations for HingeLossSurvivalSVM; number of estimators,

kernel functions, constraint pairs, and maximum

maximum depth, minimum samples for splitting and leaf nodes
the
GradientBoostingSurvivalAnalysis, RandomSurvivalForest, and
with

for tree-based  ensemble = methods  including

ExtraSurvivalTrees, ExtraSurvivalTrees  additionally
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optimizing maximum leaf nodes parameters (Supplementary
Table S2).

Model performance was evaluated using time-dependent
Area Under the Curve (td-AUC) calculated at multiple time
points to assess discriminative ability over time, concordance
index (C-index) to measure the probability that predicted
survival rankings align with observed survival times, Brier
score to evaluate prediction accuracy as a proper scoring rule
models, and calibration curves to

for survival assess

agreement between predicted and observed survival
probabilities. All models were implemented using the scikit-
survival library in Python 3.12, with optimal hyperparameters
selected based on the highest C-index achieved during cross-
validation on the training set, and final model evaluation
performed on the independent

testing set to assess

generalization performance.

SHAP analysis

To enhance model interpretability and understand feature
contributions, SHapley Additive exPlanations (SHAP) analysis
was  performed on the  best-performing  model
A KernelExplainer was initialized using K-means clustering with
50 cluster centers as background data to reduce computational
complexity while maintaining representative coverage of the
feature space. Feature importance was determined by calculating
the mean absolute SHAP values across all samples, and the top
8 most influential features were identified for detailed analysis.
Model interpretability was visualized through multiple SHAP
plots including waterfall plots to show individual prediction
explanations, summary plots to display feature importance
rankings, and partial dependence plots with LOWESS (Locally
Weighted Scatterplot Smoothing) regression to illustrate the
relationship between feature values and SHAP contributions.
Zero-crossing points were identified and marked to determine
optimal thresholds where features transition from protective to
harmful effects on survival outcomes.

Web-based calculator

For clinical applications, a web-based survival prediction
calculator was developed using the Gradio framework. The
interface accepts all model input variables including
demographic data, laboratory parameters, medication usage, and
fluid balance information. The trained model and preprocessing
scaler were integrated to provide real-time survival predictions
with probability curves for the first 7 days of ICU stay and
survival probabilities at key time points (1, 3, 5, and 7 days),
making the predictive model accessible for clinical decision
support (https://huggingface.co/spaces/MLlab00/sepsis). The tool
processes data locally without storing or recording any patient

information, ensuring privacy protection.
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Statistical analysis

Continuous variables were assessed for normality using the
Shapiro-Wilk test within each group. Normally distributed
continuous variables were presented as mean * standard
deviation (SD), while non-normally distributed continuous
variables were expressed as median (25th percentile, 75th
percentile). Categorical variables were expressed as frequency
and percentage (n, %). For group comparisons, independent
t-tests were used for normally distributed continuous data and
Mann-Whitney U tests for non-normally distributed continuous
data. Categorical variables were compared using Fisher’s exact
test or chi-square tests as appropriate. Statistical significance was
set at p<0.05. All statistical analyses were performed using

R version 4.4 and Python version 3.12.

Results
Baseline characteristics

A total of 223 pediatric patients with sepsis were included in
the final analysis, with 200 (89.7%) survivors and 23 (10.3%)
non-survivors. The baseline characteristics are presented in
Table 1. The median age was 0.1 (0.0, 0.2) years with no
significant difference between groups (p=0.145), and gender
distribution  was (60.5% p=10). Most
hematological and biochemical parameters showed no significant

similar male,
differences between survivors and non-survivors, except for red
cell distribution width (15.9 vs. 14.9, p=0.004), total calcium
levels (1.2 vs. 1.1 mmol/L, p=0.02), chloride levels (109.0 vs.
105.2 mmol/L, p =0.012), and pH values (7.4 vs. 7.3, p =0.005).

Notable differences were observed in lactate levels, which were
significantly higher in non-survivors (5.2 vs. 2.1 mmol/L,
p <0.001). Cephalosporin usage was more frequent in survivors
(38.0% vs. 13.0%, p =0.02), while vasopressor usage was more
frequent in non-survivors (56.5% vs. 31.0%, p = 0.026). Survivors
had significantly more liquid input (0.0 vs. 0.0 ml, p<0.001)
and longer ICU stays (12.2 vs. 2.3 days, p <0.001).

Survival machine learning model
performance evaluation

Five survival analysis machine learning algorithms were
evaluated and compared for their predictive performance. Time-
dependent AUC analysis revealed significant differences in
ability (Figure  2).
RandomSurvivalForest demonstrated superior performance with

discriminative across  models
the highest mean time-dependent AUC of 0.97, maintaining
consistently high discriminative ability across all time points
from day 2 to day 7. CoxphSurvival and HingeLossSurvivalSVM
showed comparable performance with mean AUCs of 0.94 and
0.92 respectively, both maintaining stable predictive accuracy

throughout the observation period. ExtraSurvivalTrees achieved
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TABLE 1 Baseline characteristics of patients.

10.3389/fped.2025.1688416

Variable Survivors Non-survivors Total
(N =200) (N =23) (N =223)
Age, years 0.1 (0.0, 0.2) 0.1 (0.1, 0.4) 0.1 (0.0, 0.2) 0.145
Gender, n (%) 1
Male 121 (60.5%) 14 (60.9%) 135 (60.5%)
Female 79 (39.5%) 9 (39.1%) 88 (39.5%)
RDW 15.9 (15.1, 17.2) 14.9 (13.7, 15.7) 15.8 (14.8, 17.1) 0.004
Lymphocytes, % 27.2 (18.8, 38.2) 27.2 (21.5, 48.0) 27.2 (19.1, 39.8) 0.286
Hemoglobin, g/L 116.2 (93.9, 135.3) 104.0 (90.2, 115.8) 113.5 (93.5, 135.0) 0.16
Lactate, mmol/L 2.1 (14, 3.5) 52 (2.4, 6.1) 2.2 (1.5, 3.7) <0.001
pH 7.4 (7.3,7.4) 7.3 (7.2, 7.4) 7.4 (7.3,7.4) 0.005
PO2, mmHg 102.7 (80.2, 125.0) 102.3 (74.6, 128.0) 102.5 (79.9, 125.0) 0.852
Sodium, mmol/L 136.0 (133.5, 139.0) 135.0 (130.2, 137.2) 136.0 (133.0, 139.0) 0.137
Calcium, mmol/L 12 (1.1, 1.2) 1.1 (1.0, 1.2) 12 (L1, 1.2) 0.02
Chloride, mmol/L 109.0 (105.5, 112.5) 105.2 (102.7, 109.1) 108.0 (105.2, 112.4) 0.012
Creatinine, pmol/L 55.5 (40.0, 79.2) 40.4 (31.0, 73.0) 55.0 (39.0, 79.0) 0.15
Cephalosporins, n (%) 76 (38.0%) 3 (13.0%) 79 (35.4%) 0.02
Vasopressors, 1 (%) 62 (31.0%) 13 (56.5%) 75 (33.6%) 0.026
Liquid input, ml 0.0 (0.0, 184.5) 0.0 (0.0, 0.0) 0.0 (0.0, 166.5) <0.001
ICU stay, days 12.2 (4.9, 25.7) 2.3 (1.6, 3.3) 11.0 (3.6, 21.9) <0.001
1.0
0.9
O
)
<
= 0.8
[}
T
[ =
[
Q.
@
07
[}
E
= —o— CoxphSurvival (mean AUC = 0.94)
0.6 —#— HingeLossSurvivalSVM (mean AUC = 0.92)
’ —&— GradientBoostingSurvival (mean AUC = 0.84)
—&— RandomSurvivalForest (mean AUC = 0.97)
—%— ExtraSurvivalTrees (mean AUC = 0.87)
0.5
2 3 4 5 6 7
Days from enrollment
FIGURE 2
Time-dependent area under the curve (td-AUC) comparison of five survival analysis machine learning algorithms. Performance of each model from
day 2 to day 7 after ICU enrollment. RandomSurvivalForest achieved the highest mean AUC of 0.97, followed by CoxphSurvival (0.94),
HingeLossSurvivalSVM (0.92), ExtraSurvivalTrees (0.87), and GradientBoostingSurvival (0.84).

a mean AUC of 0.87, while GradientBoostingSurvival exhibited
the lowest performance with a mean AUC of 0.84, showing
consistently lower discriminative ability compared to the other
models. Detailed time-dependent AUC values for each day are
presented in Supplementary Table S3.

Further evaluation using concordance indices and Brier

scores  confirmed  the  superior  performance  of

Frontiers in Pediatrics

RandomSurvivalForest  (Table 2). CoxPHSurvival and
HingeLossSurvivalSVM achieved the highest c-index of 0.87
(95% CI: 0.77-0.95 and 0.76-0.95, respectively), while
GradientBoostingSurvival, RandomSurvivalForest, and
ExtraSurvivalTrees showed comparable performance with c-
indices of 0.85 (95% CI: 0.64-0.95, 0.65-0.96, and 0.65-0.96,

respectively). Brier scores were consistently low across the
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evaluated models (ranging from 0.07 to 0.08), indicating good
overall prediction accuracy. Note that Brier score was not
HingeLossSurvivalSVM.  Calibration
showed varying performance across models (Figure 3), with

available for analysis
ExtraSurvivalTrees and RandomSurvivalForest demonstrating
excellent agreement between predicted and observed survival
probabilities, closely following the ideal diagonal line, while
CoxPHSurvival
suboptimal calibration with greater deviations from perfect

calibration. Based on the combination of highest time-

and  GradientBoostingSurvival ~ showed

TABLE 2 Discriminative ability and calibration of each model.

Models c-index (95% Brier score (95%

Cl)
0.07 (0.02-0.14)

Cl)
0.87 (0.77-0.95)
0.87 (0.76-0.95) /

CoxPHSurvival
HingeLossSurvivalSVM

GradientBoostingSurvival

0.85 (0.64-0.95) 0.08 (0.03-0.15)

10.3389/fped.2025.1688416

dependent AUC, highest c-index, and excellent calibration,
RandomSurvivalForest was selected as the optimal model for
subsequent SHAP analysis and clinical application.

SHAP model interpretation

SHAP the
RandomSurvivalForest model to enhance interpretability and

analysis was performed on optimal
identify key predictive features. Feature importance analysis
revealed that calcium total and RDW were the two most
influential variables, followed by creatinine, sodium, and
Other important included pH,
lymphocytes, PO2, chloride, (Supplementary

Figure S1A). The waterfall plot for a representative case

hemoglobin. predictors

and lactate
demonstrated how individual features contributed to the final
prediction, with pH providing the strongest risk contribution
(SHAP value: +0.82) and calcium total providing a protective

RandomSurvivalF t 0.85 (0.65-0.96 0.08 (0.03-0.15
ancom Tlrvwa ores ¢ ) ¢ ) effect (SHAP value: —0.32) for this specific patient (Figure 4A).
ExtraSurvivalTrees 0.85 (0.65-0.96) 0.08 (0.03-0.15)
Other notable contributors included RDW (+0.51), lactate
A CoxPHSurvival B GradientBoostingSurvival
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FIGURE 3
Calibration curves for four survival analysis machine learning algorithms. Each panel shows the agreement between predicted and observed survival
probabilities for (A) CoxPHSurvival, (B) GradientBoostingSurvival, (C) RandomSurvivalForest, and (D) ExtraSurvivalTrees. The dashed diagonal line
represents perfect calibration. ExtraSurvivalTrees demonstrated the best calibration performance with points closely following the ideal diagonal line.
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FIGURE 4
SHAP analysis of the randomSurvivalForest model. (A) Waterfall plot showing individual feature contributions for a representative patient case. pH
provides the strongest risk contribution (SHAP value +0.82), while calcium total provides a protective effect (SHAP value —0.32). Other notable
contributors include RDW (+0.51), lactate (+0.28), and hemoglobin (+0.17). (B) Summary plot displaying feature importance and value
distributions across all patients. Each point represents one patient, with colors indicating high (red) to low (blue) feature values. Calcium total and
RDW emerged as the most influential predictors, with complex patterns showing variable contributions across different patient populations.

(+0.28), and hemoglobin (+0.17), illustrating how multiple clinical
parameters collectively influenced this specific patient (Figure 4A).

The SHAP summary plot revealed complex patterns in feature
contributions across the patient cohort (Figure 4B). While calcium
total levels generally showed protective effects with negative SHAP
values, there was considerable variability across patients. Similarly,
RDW,
demonstrated overlapping distributions of positive and negative

creatinine, sodium, and other continuous variables

Frontiers in Pediatrics 07

SHAP values, indicating that the relationship between these
features and mortality risk varies significantly across different
patients and clinical contexts. This complexity suggests that the
interactions between variables and non-linear relationships may
play crucial roles in mortality prediction, warranting further
detailed analysis of each variable’s specific contribution patterns
and threshold The
visualization (Supplementary Figure S1B) further illustrated the

effects in the model decision plot

frontiersin.org



Huang et al.

cumulative effect of all features on model predictions, showing
how different combinations of clinical variables led to varying
survival predictions across the patient population.

SHAP feature value plots with LOWESS regression identified
critical thresholds where SHAP contributions transition from
negative to positive values (Figure 5). For continuous variables,
zero-crossing points revealed clinically relevant cutoff values:
calcium total at 1.10 mmol/L (Figure 5A), RDW at 15.07%
(Figure 5B), creatinine showing dual thresholds at 42.0 umol/L
and 170.33 pumol/L (Figure 5C), sodium at 131.68 mmol/L
(Figure 5D), hemoglobin with dual thresholds at 91.75 g/L and
102.65 g/L (Figure 5E), pH at 7.32 (Figure 5F), lymphocytes with
dual thresholds at 10.11% and 43.39% (Figure 5G), and PO2 at
89.08 mmHg (Figure 5H). These thresholds demonstrate that
values below the cutoffs for calcium total, sodium, hemoglobin,
pH, and PO2 contribute to increased mortality risk, while RDW
values above 15.07% are associated with higher mortality risk.
The dual thresholds observed for creatinine and lymphocytes
suggest U-shaped relationships, indicating optimal physiological
ranges for survival outcomes in pediatric sepsis management.

Web-based survival prediction calculator

To facilitate clinical implementation, a user-friendly web-
based survival prediction calculator was developed and deployed

10.3389/fped.2025.1688416

using the optimal RandomSurvivalForest model (Supplementary
Figure S2). The calculator interface allows clinicians to input
patient-specific clinical parameters including demographic
information, laboratory values, medication usage, and fluid
balance data. Upon entering the required variables, the system
automatically generates personalized survival predictions with
probability estimates at key time points (Day 1: 100.0%, Day 3:
74.0%, Day 5: 74.0%, Day 7: 74.0% in the demonstrated case)
and displays a comprehensive survival probability curve for the
first 7 days of ICU stay. The calculator provides immediate risk
assessment and supports clinical decision-making by offering
quantitative survival estimates that can inform treatment

planning and family counseling in pediatric sepsis management.

Discussion

In this retrospective cohort study of 223 pediatric sepsis
patients, we found that RandomSurvivalForest achieved the best
predictive performance among five survival analysis algorithms,
with a time-dependent AUC of 0.97 and superior calibration
compared to other models. Our SHAP analysis identified
calcium total and RDW as the strongest predictors of mortality
risk, with complex threshold effects revealed through zero-
crossing point analysis. Specifically, calcium total levels below
1.10 mmol/L, RDW values above 15.07%, sodium levels below
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SHAP feature value plots with zero-crossing point analysis. (A) Calcium total showing a zero-crossing point at 1.10 mmol/L, where values below this
threshold contribute to increased mortality risk. (B) RDW demonstrates a zero-crossing point at 15.07%, with higher values associated with increased
mortality risk. (C) Creatinine shows zero-crossing points at 42.0 pmol/L and 170.33 umol/L, indicating a U-shaped relationship with mortality risk. (D)
Sodium exhibits a zero-crossing point at 131.68 mmol/L, with lower values contributing to increased mortality risk. (E) Hemoglobin demonstrates
zero-crossing points at 102.65 g/L and 91.75 g/L, showing complex threshold effects. (F) pH shows a zero-crossing point at 7.32, with acidosis
contributing to increased mortality risk. (G) Lymphocytes exhibit zero-crossing points at 10.11% and 43.39%, indicating optimal ranges for
survival. (H) PO2 shows a zero-crossing point at 89.08 mmHg, with lower values associated with increased mortality risk. The horizontal dashed
line represents SHAP value = 0, and vertical dashed lines mark the zero-crossing thresholds identified by LOWESS regression curves.
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131.68 mmol/L, and pH values below 7.32 were associated with
significantly increased mortality risk. The analysis also revealed
U-shaped relationships for creatinine (thresholds at 42.0 and
170.33 pmol/L) and lymphocytes (thresholds at 10.11% and
43.39%), indicating optimal physiological ranges for survival
outcomes. The web-based prediction calculator we developed
provides clinicians with immediate access to personalized
survival probabilities, potentially improving risk assessment and
treatment planning in pediatric intensive care settings.

Our study demonstrates superior predictive performance
compared to previous machine learning applications in pediatric
sepsis mortality prediction. While most existing studies have
focused on predicting mortality at fixed time points, our
approach represents the first application of survival analysis
algorithms in this population, providing dynamic risk
assessment over time rather than static predictions. Banerjee
et al. achieved an AUC of 0.82 using gene expression profiles
from 228 septic patients in PICU settings, while their external
validation showed variable performance (AUC: 0.72-0.96 across
different datasets) (20). Zhou et al. developed a CatBoost model
for sepsis-associated acute kidney injury patients with an AUC
of 0.83 (21), and Hsu et al. reported an AUC of 0.923 using
deep neural networks in neonatal sepsis (22). In contrast, our
RandomSurvivalForest model achieved a consistently higher
time-dependent AUC of 0.97 with excellent calibration across all
time points. This approach offers more precise timing for
clinical interventions compared to binary outcome predictions.

This study represents the first application of survival analysis
machine learning algorithms in pediatric sepsis, providing time-
to-event predictions rather than traditional binary outcomes.
We implemented SHAP interpretability analysis to explain
individual predictions and identify feature contributions, while
using LOWESS
established clinically actionable thresholds for biomarkers. Our

zero-crossing point analysis regression
approach included rigorous hyperparameter optimization with
10-fold cross-validation and comprehensive evaluation across
The

immediately deployable web-based prediction tool bridges the

multiple performance metrics. development of an

gap between research and clinical practice, providing frontline
clinicians with accessible predictive analytics for critically
ill children.

The limited number of non-survivors (n=23, 10.3%)

significantly constrains the precision of our model’s
performance estimates. This is exemplified by the wide
confidence interval of our C-index (0.87, 95% CI: 0.76-0.95),
indicating  substantial  uncertainty in  the model’s
discriminatory ability, with true performance potentially
ranging from barely better than random prediction to
excellent discrimination. Additionally, with an event-per-
ratio of 7.7 (below the 10-15
threshold), our model is susceptible to overfitting, which may
explain the high td-AUC of 0.96. The small sample size also

limits our statistical power to detect clinically meaningful risk

variable recommended

gradations, with a minimum detectable difference of

approximately 8%-10% in predicted mortality probability.
These limitations

collectively suggest that larger, more
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balanced cohorts are needed to establish reliable performance
estimates and clinical utility.

Our established thresholds for calcium levels provide
actionable clinical guidance. The calcium threshold of 1.1 mmol/
L suggests that hypocalcemia correction should be prioritized in
pediatric sepsis management. Calcium homeostasis is essential
for maintaining normal myocardial contraction/relaxation cycles,
and hypocalcemia has been associated with cardiovascular
dysfunction, acute kidney injury, coagulopathy, and increased
mortality in septic patients (23-25). Our findings are consistent
with previous studies in pediatric populations, where Zheng
et al. demonstrated that ionized calcium was an independent
predictor of poor prognosis in very low birth weight infants
with sepsis (OR: 0.283, 95% CI: 0.126-0.638, p=0.002) (23),
further supporting the critical role of calcium homeostasis in
pediatric sepsis outcomes.

The observational nature of our data precludes causal
inference due to confounding by indication, where treatment
decisions are influenced by patient severity and clinical
judgment (26, 27). To establish causal relationships, future
research should employ causal inference methodologies such as
target trial emulation, instrumental variable analysis, or
propensity score approaches that can better isolate treatment
effects from confounding factors. Only through rigorous causal
analysis can we determine whether interventions targeting these
modifiable

predictive associations into actionable clinical guidance for

factors can improve outcomes, transforming
pediatric sepsis management (28).

An important consideration in interpreting our findings is
the inherent heterogeneity of pediatric sepsis. Sepsis represents
a complex syndrome with diverse underlying etiologies,
varying host responses, and distinct clinical phenotypes that
may exhibit different prognostic patterns (29, 30). Our study
population encompassed patients with varied infection sources,
age ranges, and degrees of organ dysfunction, yet we applied a
unified predictive model without stratification by clinical
The thresholds

identified through SHAP analysis may not apply uniformly

subgroups or sepsis endotypes. clinical

across all sepsis phenotypes, as neonatal sepsis may
demonstrate different physiological responses compared to
older pediatric patients, and gram-positive vs. gram-negative
infections may present distinct biomarker patterns (31). Future
research should investigate model performance across specific
sepsis subgroups to enable development of more personalized
risk assessment tools and advance precision medicine in
pediatric sepsis care.

Several limitations should be acknowledged in this study. First,
this was a single-center retrospective study, which may limit the
generalizability of our findings to other pediatric populations
and healthcare settings. The relatively small sample size of 223
patients, particularly the low number of non-survivors (n=23),
may affect model stability and the precision of risk estimates.
The study period spanning 2010-2018 may introduce temporal
bias due to changes in clinical practice and treatment protocols
over time. Additionally, we excluded patients with ICU stays

<24h, which may have removed some early deaths and
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introduced selection bias. The dataset lacked important clinical
variables such as pediatric-specific severity scores (PRISM,
PELOD, pSOFA), source of infection, antibiotic resistance
patterns, and detailed organ support measures, which could
improve model performance. External validation in independent
cohorts is needed to confirm the robustness and generalizability
of our findings before widespread clinical implementation.

Conclusion

This study developed a survival prediction model for
pediatric sepsis using RandomSurvivalForest, achieving a time-
dependent AUC of 0.97. SHAP analysis identified calcium total
and RDW as the
establishing clinically relevant thresholds including calcium
total <1.10 mmol/L, RDW >15.07%, sodium <131.68 mmol/L,
and pH <7.32 as indicators of increased mortality risk.
Additional U-shaped identified for
creatinine and lymphocytes, revealing optimal physiological

strongest mortality predictors, while

relationships ~ were
ranges for survival outcomes. The web-based prediction
calculator provides clinicians with immediate access to survival
stratification and clinical

probability estimates for risk

decision-making in pediatric sepsis management.
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SUPPLEMENTARY FIGURE S1

SHAP feature importance and decision plot analysis. (A) Bar plot showing
the top 10 features ranked by mean absolute SHAP values. Calcium total
and RDW are the most influential predictors, followed by creatinine,
sodium, hemoglobin, pH, lymphocytes, PO2, chloride, and lactate. (B)
Decision plot illustrating the cumulative effect of all features on model
predictions for individual patients. Each line represents one patient’s
prediction path from the expected value (left) to the final model output
(right), showing how different feature combinations lead to varying
survival predictions.

SUPPLEMENTARY FIGURE S2

Web-based survival prediction calculator interface. Screenshot of the
deployed calculator showing the input interface for clinical parameters
and the prediction output. The example case displays survival probabilities
at key time points (Day 1. 100.0%, Day 3: 74.0%, Day 5: 74.0%, Day 7:
74.0%) and a survival probability curve for the first 7 days of ICU stay. The
calculator accepts demographic data, laboratory values, medication
usage, and fluid balance information to generate personalized
survival predictions.
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