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Background: Pediatric sepsis remains a leading cause of mortality in critically ill 

children worldwide. Current approaches to sepsis prognosis rely on clinical 

criteria and biomarkers with variable performance. This study aimed to 

develop and validate time-to-event survival prediction models for pediatric 

sepsis using survival analysis machine learning algorithms.

Methods: We conducted a retrospective cohort study of 223 pediatric sepsis 

patients from a pediatric intensive care database (2010–2018). Five survival 

analysis machine learning algorithms were evaluated: CoxPHSurvivalAnalysis, 

HingeLossSurvivalSVM, GradientBoostingSurvivalAnalysis, RandomSurvivalForest, 

and ExtraSurvivalTrees. These algorithms predict survival time rather than binary 

outcomes. Model performance was assessed using time-dependent area under 

the curve (td-AUC), concordance index (c-index), Brier score, and calibration 

curves. SHapley Additive exPlanations (SHAP) analysis was performed for model 

interpretability, and zero-crossing point analysis identified clinically 

actionable thresholds.

Results: Among 223 patients, 200 (89.7%) survived with median ICU stay of 12.2 

days for survivors vs. 2.3 days for non-survivors. RandomSurvivalForest achieved 

the highest performance with td-AUC of 0.97, while CoxPHSurvival and 

HingeLossSurvivalSVM showed comparable c-indices of 0.87. SHAP analysis 

identified calcium total and RDW as the strongest mortality predictors. Zero- 

crossing point analysis established clinical thresholds: calcium total <1.10 mmol/L, 

RDW >15.07%, sodium <131.68 mmol/L, and pH <7.32 were associated with 

increased mortality risk, with U-shaped relationships observed for creatinine 

and lymphocytes.

Conclusions: RandomSurvivalForest demonstrated superior time-to-event 

prediction performance for pediatric sepsis. The survival analysis approach 

provides dynamic risk assessment and precise timing for clinical interventions. 

A web-based prediction calculator was developed to facilitate 

clinical implementation.
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Introduction

Sepsis is one of the leading causes of morbidity and 

mortality in critically ill children worldwide (1), killing 

approximately 4,500 children annually in the United States 

(2) and causing 25% mortality globally among those with 

severe sepsis (3). Pediatric intensive care units experience 

particularly high rates of sepsis due to the complex medical 

conditions and invasive procedures that characterize critical 

care (4, 5). Children with severe sepsis present unique 

challenges for clinicians attempting to predict outcomes and 

stratify risk, especially when underlying conditions 

complicate diagnosis and treatment (6–8). Current 

approaches to sepsis diagnosis and prognosis rely on clinical 

criteria and biomarkers like procalcitonin and C-reactive 

protein, which demonstrate variable performance and limited 

predictive accuracy (9–11). The complex pathophysiology of 

sepsis, particularly in children with cardiac disease, makes it 

difficult to identify high-risk patients and predict 

outcomes accurately (12, 13). Better survival prediction tools 

are needed to help clinicians counsel families and make 

treatment decisions.

Machine learning (ML) have emerged as promising tools for 

improving sepsis outcome prediction and clinical decision- 

making (14–16). Recent studies have demonstrated the 

potential of various ML algorithms in predicting mortality 

among pediatric sepsis patients (17–19). Moore et al. 

evaluated multiple ML models including random forest, light 

gradient boosting machine, and Extreme Gradient Boosting 

for predicting in-hospital mortality in children with Phoenix 

sepsis, achieving area under the receiver operating 

characteristic curves (AUROCs) ranging from 0.81 to 0.88, 

with random forest showing the best performance (17). Kim 

et al. developed the Pediatric Risk of Mortality Prediction 

Tool (PROMPT) using a convolutional neural network, which 

achieved AUROCs of 0.89–0.97 for mortality prediction 6– 

60 h prior to death in critically ill children, outperforming 

conventional severity scoring systems (18). Additionally, 

Shimabukuro et al. conducted a randomized controlled trial 

of a ML -based severe sepsis prediction algorithm, 

demonstrating significant reductions in average length of stay 

(from 13.0 to 10.3 days, p = 0.042) and in-hospital mortality 

(12.4 percentage point reduction, p = 0.018) (19). These 

findings highlight the clinical utility of ML in sepsis 

management. However, very few studies have specifically 

focused on using ML approaches to predict survival time and 

survival status in children with severe sepsis.

In this study, we utilized data from a pediatric intensive care 

unit database to develop survival prediction models for children 

with severe sepsis. We compared several survival analysis 

machine learning algorithms using time-dependent area under 

the curve (td-AUC), concordance index (c-index), Brier score, 

and calibration curves to identify the optimal model. The best- 

performing model was interpreted using SHapley Additive 

exPlanations (SHAP) analysis, and a web-based calculator was 

developed for clinical application.

Methods

Study population

We conducted a retrospective cohort study using data from 

the Paediatric Intensive Care (PIC) database, including all 

pediatric patients diagnosed with sepsis who were admitted to 

intensive care units at the Children’s Hospital, Zhejiang 

University School of Medicine between 2010 and 2018. Data 

access was obtained following completion of the required CITI 

training program (certification 64180628) and execution of the 

data use agreement. Patients were included if they were ≤18 

years at ICU admission, had a primary or secondary diagnosis 

of sepsis according to International Pediatric Sepsis Consensus 

Conference criteria, and had complete data for survival time and 

vital status. We excluded patients with missing essential clinical 

data, ICU stay <24 h, or incomplete admission data due to 

transfer from other hospitals. The primary outcome was survival 

time from ICU admission to death or hospital discharge.

Data extraction and preprocessing

The study cohort was derived from 12,881 patients in the PIC 

database. After excluding 12,657 patients without a sepsis 

diagnosis upon ICU admission, 224 patients with sepsis were 

identified. One patient was further excluded due to extreme 

laboratory values (RBC = 327.07 × 1012/L), resulting in a final 

cohort of 223 participants (Figure 1). Clinical data were initially 

extracted from the first measurements obtained within 24 h of 

ICU admission, including demographic characteristics, 

laboratory measurements, vital signs, anthropometric 

measurements, medication usage, and Guid balance data. 

Variables with >30% missing values were removed, and 

K-nearest neighbors (KNN) imputation was applied to handle 

remaining missing values. The final dataset included age, 

gender, hematological parameters (RBC, WBC, neutrophil 

percentage, lymphocyte percentage, platelet count, hemoglobin, 

RDW, hematocrit), biochemical markers (sodium, potassium, 

calcium, chloride, ALT, creatinine), blood gas analysis (pH, 

PCO2, PO2, lactate), medication usage (cephalosporins, 

vasopressors), Guid balance data (liquid input and output), and 

ICU length of stay. Survival time was calculated from ICU 

admission to death or hospital discharge.

Continuous variables were standardized using 

“StandardScaler” package in Python. Variance inGation factor 

(VIF) was calculated to detect multicollinearity, and variables 

with VIF >10 were excluded (Supplementary Table S1).

Variable selection was performed using a multi-stage 

approach. First, univariate Cox regression analysis was 

conducted for all candidate variables to assess individual 

associations with mortality. Variables with high correlation 

(r > 0.6) were identified, and the less statistically significant 

variable from each correlated pair was removed to reduce 

multicollinearity. Final variable selection prioritized statistically 
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significant predictors (p < 0.05) from univariate analysis, 

supplemented by variables with the strongest effect sizes based 

on hazard ratios. The selected variables were then incorporated 

into a multivariable Cox proportional hazards model, with 

performance assessed using Harrell’s concordance index. 

Following this selection process, 15 variables were ultimately 

included in the final model: Age, Gender, RDW, Lymphocytes, 

Hemoglobin, Lactate, pH, PO2, Sodium, CalciumTotal, 

Chloride, Creatinine, Cephalosporins, Vasopressors, and Liquid 

input. All variables underwent normality testing for survivors, 

non-survivors, and the total cohort, with complete results 

presented in Supplementary Table S4.

ML model construction and evaluation

The dataset was randomly split into training and testing sets 

using a 7:3 ratio, with 156 patients allocated to the training set 

and 67 patients to the testing set. Stratified sampling was 

employed to ensure balanced distribution of survival outcomes 

between the two sets. Five survival analysis machine learning 

algorithms were implemented and evaluated for survival 

prediction, including CoxPHSurvivalAnalysis (a regularized Cox 

proportional hazards model), HingeLossSurvivalSVM (Support 

Vector Machine adapted for survival analysis using hinge loss 

function), GradientBoostingSurvivalAnalysis (gradient boosting 

algorithm for survival data), RandomSurvivalForest (ensemble 

method extending random forests to survival analysis), and 

ExtraSurvivalTrees (extremely randomized survival trees with 

additional randomness in threshold selection). For each 

algorithm, comprehensive hyperparameter optimization was 

performed using 10-fold cross-validation with grid search on the 

training set. The hyperparameter search spaces included alpha, 

n_iter, ties, and tol for CoxPHSurvivalAnalysis; alpha, solver 

types, kernel functions, constraint pairs, and maximum 

iterations for HingeLossSurvivalSVM; number of estimators, 

maximum depth, minimum samples for splitting and leaf nodes 

for the tree-based ensemble methods including 

GradientBoostingSurvivalAnalysis, RandomSurvivalForest, and 

ExtraSurvivalTrees, with ExtraSurvivalTrees additionally 

FIGURE 1 

Study flowchart and machine learning pipeline for pediatric sepsis survival prediction. Patient selection from 12,881 PIC database records to 223 

pediatric sepsis patients, followed by 7:3 training-testing split. Five survival analysis algorithms were evaluated using td-AUC, c-index, Brier score, 

and calibration curves. The optimal model underwent SHAP analysis and web-based calculator development. PIC, Paediatric Intensive Care; td- 

AUC, time-dependent area under the curve; SHAP, SHapley Additive exPlanations.
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optimizing maximum leaf nodes parameters (Supplementary 

Table S2).

Model performance was evaluated using time-dependent 

Area Under the Curve (td-AUC) calculated at multiple time 

points to assess discriminative ability over time, concordance 

index (C-index) to measure the probability that predicted 

survival rankings align with observed survival times, Brier 

score to evaluate prediction accuracy as a proper scoring rule 

for survival models, and calibration curves to assess 

agreement between predicted and observed survival 

probabilities. All models were implemented using the scikit- 

survival library in Python 3.12, with optimal hyperparameters 

selected based on the highest C-index achieved during cross- 

validation on the training set, and final model evaluation 

performed on the independent testing set to assess 

generalization performance.

SHAP analysis

To enhance model interpretability and understand feature 

contributions, SHapley Additive exPlanations (SHAP) analysis 

was performed on the best-performing model. 

A KernelExplainer was initialized using K-means clustering with 

50 cluster centers as background data to reduce computational 

complexity while maintaining representative coverage of the 

feature space. Feature importance was determined by calculating 

the mean absolute SHAP values across all samples, and the top 

8 most inGuential features were identified for detailed analysis. 

Model interpretability was visualized through multiple SHAP 

plots including waterfall plots to show individual prediction 

explanations, summary plots to display feature importance 

rankings, and partial dependence plots with LOWESS (Locally 

Weighted Scatterplot Smoothing) regression to illustrate the 

relationship between feature values and SHAP contributions. 

Zero-crossing points were identified and marked to determine 

optimal thresholds where features transition from protective to 

harmful effects on survival outcomes.

Web-based calculator

For clinical applications, a web-based survival prediction 

calculator was developed using the Gradio framework. The 

interface accepts all model input variables including 

demographic data, laboratory parameters, medication usage, and 

Guid balance information. The trained model and preprocessing 

scaler were integrated to provide real-time survival predictions 

with probability curves for the first 7 days of ICU stay and 

survival probabilities at key time points (1, 3, 5, and 7 days), 

making the predictive model accessible for clinical decision 

support (https://huggingface.co/spaces/MLlab00/sepsis). The tool 

processes data locally without storing or recording any patient 

information, ensuring privacy protection.

Statistical analysis

Continuous variables were assessed for normality using the 

Shapiro–Wilk test within each group. Normally distributed 

continuous variables were presented as mean ± standard 

deviation (SD), while non-normally distributed continuous 

variables were expressed as median (25th percentile, 75th 

percentile). Categorical variables were expressed as frequency 

and percentage (n, %). For group comparisons, independent 

t-tests were used for normally distributed continuous data and 

Mann–Whitney U tests for non-normally distributed continuous 

data. Categorical variables were compared using Fisher’s exact 

test or chi-square tests as appropriate. Statistical significance was 

set at p < 0.05. All statistical analyses were performed using 

R version 4.4 and Python version 3.12.

Results

Baseline characteristics

A total of 223 pediatric patients with sepsis were included in 

the final analysis, with 200 (89.7%) survivors and 23 (10.3%) 

non-survivors. The baseline characteristics are presented in 

Table 1. The median age was 0.1 (0.0, 0.2) years with no 

significant difference between groups (p = 0.145), and gender 

distribution was similar (60.5% male, p = 1.0). Most 

hematological and biochemical parameters showed no significant 

differences between survivors and non-survivors, except for red 

cell distribution width (15.9 vs. 14.9, p = 0.004), total calcium 

levels (1.2 vs. 1.1 mmol/L, p = 0.02), chloride levels (109.0 vs. 

105.2 mmol/L, p = 0.012), and pH values (7.4 vs. 7.3, p = 0.005).

Notable differences were observed in lactate levels, which were 

significantly higher in non-survivors (5.2 vs. 2.1 mmol/L, 

p < 0.001). Cephalosporin usage was more frequent in survivors 

(38.0% vs. 13.0%, p = 0.02), while vasopressor usage was more 

frequent in non-survivors (56.5% vs. 31.0%, p = 0.026). Survivors 

had significantly more liquid input (0.0 vs. 0.0 ml, p < 0.001) 

and longer ICU stays (12.2 vs. 2.3 days, p < 0.001).

Survival machine learning model 
performance evaluation

Five survival analysis machine learning algorithms were 

evaluated and compared for their predictive performance. Time- 

dependent AUC analysis revealed significant differences in 

discriminative ability across models (Figure 2). 

RandomSurvivalForest demonstrated superior performance with 

the highest mean time-dependent AUC of 0.97, maintaining 

consistently high discriminative ability across all time points 

from day 2 to day 7. CoxphSurvival and HingeLossSurvivalSVM 

showed comparable performance with mean AUCs of 0.94 and 

0.92 respectively, both maintaining stable predictive accuracy 

throughout the observation period. ExtraSurvivalTrees achieved 
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a mean AUC of 0.87, while GradientBoostingSurvival exhibited 

the lowest performance with a mean AUC of 0.84, showing 

consistently lower discriminative ability compared to the other 

models. Detailed time-dependent AUC values for each day are 

presented in Supplementary Table S3.

Further evaluation using concordance indices and Brier 

scores confirmed the superior performance of 

RandomSurvivalForest (Table 2). CoxPHSurvival and 

HingeLossSurvivalSVM achieved the highest c-index of 0.87 

(95% CI: 0.77–0.95 and 0.76–0.95, respectively), while 

GradientBoostingSurvival, RandomSurvivalForest, and 

ExtraSurvivalTrees showed comparable performance with c- 

indices of 0.85 (95% CI: 0.64–0.95, 0.65–0.96, and 0.65–0.96, 

respectively). Brier scores were consistently low across the 

TABLE 1 Baseline characteristics of patients.

Variable Survivors Non-survivors Total p value

(N = 200) (N = 23) (N = 223)

Age, years 0.1 (0.0, 0.2) 0.1 (0.1, 0.4) 0.1 (0.0, 0.2) 0.145

Gender, n (%) 1

Male 121 (60.5%) 14 (60.9%) 135 (60.5%)

Female 79 (39.5%) 9 (39.1%) 88 (39.5%)

RDW 15.9 (15.1, 17.2) 14.9 (13.7, 15.7) 15.8 (14.8, 17.1) 0.004

Lymphocytes, % 27.2 (18.8, 38.2) 27.2 (21.5, 48.0) 27.2 (19.1, 39.8) 0.286

Hemoglobin, g/L 116.2 (93.9, 135.3) 104.0 (90.2, 115.8) 113.5 (93.5, 135.0) 0.16

Lactate, mmol/L 2.1 (1.4, 3.5) 5.2 (2.4, 6.1) 2.2 (1.5, 3.7) <0.001

pH 7.4 (7.3, 7.4) 7.3 (7.2, 7.4) 7.4 (7.3, 7.4) 0.005

PO2, mmHg 102.7 (80.2, 125.0) 102.3 (74.6, 128.0) 102.5 (79.9, 125.0) 0.852

Sodium, mmol/L 136.0 (133.5, 139.0) 135.0 (130.2, 137.2) 136.0 (133.0, 139.0) 0.137

Calcium, mmol/L 1.2 (1.1, 1.2) 1.1 (1.0, 1.2) 1.2 (1.1, 1.2) 0.02

Chloride, mmol/L 109.0 (105.5, 112.5) 105.2 (102.7, 109.1) 108.0 (105.2, 112.4) 0.012

Creatinine, μmol/L 55.5 (40.0, 79.2) 40.4 (31.0, 73.0) 55.0 (39.0, 79.0) 0.15

Cephalosporins, n (%) 76 (38.0%) 3 (13.0%) 79 (35.4%) 0.02

Vasopressors, n (%) 62 (31.0%) 13 (56.5%) 75 (33.6%) 0.026

Liquid input, ml 0.0 (0.0, 184.5) 0.0 (0.0, 0.0) 0.0 (0.0, 166.5) <0.001

ICU stay, days 12.2 (4.9, 25.7) 2.3 (1.6, 3.3) 11.0 (3.6, 21.9) <0.001

FIGURE 2 

Time-dependent area under the curve (td-AUC) comparison of five survival analysis machine learning algorithms. Performance of each model from 

day 2 to day 7 after ICU enrollment. RandomSurvivalForest achieved the highest mean AUC of 0.97, followed by CoxphSurvival (0.94), 

HingeLossSurvivalSVM (0.92), ExtraSurvivalTrees (0.87), and GradientBoostingSurvival (0.84).
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evaluated models (ranging from 0.07 to 0.08), indicating good 

overall prediction accuracy. Note that Brier score was not 

available for HingeLossSurvivalSVM. Calibration analysis 

showed varying performance across models (Figure 3), with 

ExtraSurvivalTrees and RandomSurvivalForest demonstrating 

excellent agreement between predicted and observed survival 

probabilities, closely following the ideal diagonal line, while 

CoxPHSurvival and GradientBoostingSurvival showed 

suboptimal calibration with greater deviations from perfect 

calibration. Based on the combination of highest time- 

dependent AUC, highest c-index, and excellent calibration, 

RandomSurvivalForest was selected as the optimal model for 

subsequent SHAP analysis and clinical application.

SHAP model interpretation

SHAP analysis was performed on the optimal 

RandomSurvivalForest model to enhance interpretability and 

identify key predictive features. Feature importance analysis 

revealed that calcium total and RDW were the two most 

inGuential variables, followed by creatinine, sodium, and 

hemoglobin. Other important predictors included pH, 

lymphocytes, PO2, chloride, and lactate (Supplementary 

Figure S1A). The waterfall plot for a representative case 

demonstrated how individual features contributed to the final 

prediction, with pH providing the strongest risk contribution 

(SHAP value: +0.82) and calcium total providing a protective 

effect (SHAP value: −0.32) for this specific patient (Figure 4A). 

Other notable contributors included RDW (+0.51), lactate 

TABLE 2 Discriminative ability and calibration of each model.

Models c-index (95% 
CI)

Brier score (95% 
CI)

CoxPHSurvival 0.87 (0.77–0.95) 0.07 (0.02–0.14)

HingeLossSurvivalSVM 0.87 (0.76–0.95) /

GradientBoostingSurvival 0.85 (0.64–0.95) 0.08 (0.03–0.15)

RandomSurvivalForest 0.85 (0.65–0.96) 0.08 (0.03–0.15)

ExtraSurvivalTrees 0.85 (0.65–0.96) 0.08 (0.03–0.15)

FIGURE 3 

Calibration curves for four survival analysis machine learning algorithms. Each panel shows the agreement between predicted and observed survival 

probabilities for (A) CoxPHSurvival, (B) GradientBoostingSurvival, (C) RandomSurvivalForest, and (D) ExtraSurvivalTrees. The dashed diagonal line 

represents perfect calibration. ExtraSurvivalTrees demonstrated the best calibration performance with points closely following the ideal diagonal line.
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(+0.28), and hemoglobin (+0.17), illustrating how multiple clinical 

parameters collectively inGuenced this specific patient (Figure 4A).

The SHAP summary plot revealed complex patterns in feature 

contributions across the patient cohort (Figure 4B). While calcium 

total levels generally showed protective effects with negative SHAP 

values, there was considerable variability across patients. Similarly, 

RDW, creatinine, sodium, and other continuous variables 

demonstrated overlapping distributions of positive and negative 

SHAP values, indicating that the relationship between these 

features and mortality risk varies significantly across different 

patients and clinical contexts. This complexity suggests that the 

interactions between variables and non-linear relationships may 

play crucial roles in mortality prediction, warranting further 

detailed analysis of each variable’s specific contribution patterns 

and threshold effects in the model. The decision plot 

visualization (Supplementary Figure S1B) further illustrated the 

FIGURE 4 

SHAP analysis of the randomSurvivalForest model. (A) Waterfall plot showing individual feature contributions for a representative patient case. pH 

provides the strongest risk contribution (SHAP value +0.82), while calcium total provides a protective effect (SHAP value −0.32). Other notable 

contributors include RDW (+0.51), lactate (+0.28), and hemoglobin (+0.17). (B) Summary plot displaying feature importance and value 

distributions across all patients. Each point represents one patient, with colors indicating high (red) to low (blue) feature values. Calcium total and 

RDW emerged as the most influential predictors, with complex patterns showing variable contributions across different patient populations.
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cumulative effect of all features on model predictions, showing 

how different combinations of clinical variables led to varying 

survival predictions across the patient population.

SHAP feature value plots with LOWESS regression identified 

critical thresholds where SHAP contributions transition from 

negative to positive values (Figure 5). For continuous variables, 

zero-crossing points revealed clinically relevant cutoff values: 

calcium total at 1.10 mmol/L (Figure 5A), RDW at 15.07% 

(Figure 5B), creatinine showing dual thresholds at 42.0 μmol/L 

and 170.33 μmol/L (Figure 5C), sodium at 131.68 mmol/L 

(Figure 5D), hemoglobin with dual thresholds at 91.75 g/L and 

102.65 g/L (Figure 5E), pH at 7.32 (Figure 5F), lymphocytes with 

dual thresholds at 10.11% and 43.39% (Figure 5G), and PO2 at 

89.08 mmHg (Figure 5H). These thresholds demonstrate that 

values below the cutoffs for calcium total, sodium, hemoglobin, 

pH, and PO2 contribute to increased mortality risk, while RDW 

values above 15.07% are associated with higher mortality risk. 

The dual thresholds observed for creatinine and lymphocytes 

suggest U-shaped relationships, indicating optimal physiological 

ranges for survival outcomes in pediatric sepsis management.

Web-based survival prediction calculator

To facilitate clinical implementation, a user-friendly web- 

based survival prediction calculator was developed and deployed 

using the optimal RandomSurvivalForest model (Supplementary 

Figure S2). The calculator interface allows clinicians to input 

patient-specific clinical parameters including demographic 

information, laboratory values, medication usage, and Guid 

balance data. Upon entering the required variables, the system 

automatically generates personalized survival predictions with 

probability estimates at key time points (Day 1: 100.0%, Day 3: 

74.0%, Day 5: 74.0%, Day 7: 74.0% in the demonstrated case) 

and displays a comprehensive survival probability curve for the 

first 7 days of ICU stay. The calculator provides immediate risk 

assessment and supports clinical decision-making by offering 

quantitative survival estimates that can inform treatment 

planning and family counseling in pediatric sepsis management.

Discussion

In this retrospective cohort study of 223 pediatric sepsis 

patients, we found that RandomSurvivalForest achieved the best 

predictive performance among five survival analysis algorithms, 

with a time-dependent AUC of 0.97 and superior calibration 

compared to other models. Our SHAP analysis identified 

calcium total and RDW as the strongest predictors of mortality 

risk, with complex threshold effects revealed through zero- 

crossing point analysis. Specifically, calcium total levels below 

1.10 mmol/L, RDW values above 15.07%, sodium levels below 

FIGURE 5 

SHAP feature value plots with zero-crossing point analysis. (A) Calcium total showing a zero-crossing point at 1.10 mmol/L, where values below this 

threshold contribute to increased mortality risk. (B) RDW demonstrates a zero-crossing point at 15.07%, with higher values associated with increased 

mortality risk. (C) Creatinine shows zero-crossing points at 42.0 μmol/L and 170.33 μmol/L, indicating a U-shaped relationship with mortality risk. (D) 

Sodium exhibits a zero-crossing point at 131.68 mmol/L, with lower values contributing to increased mortality risk. (E) Hemoglobin demonstrates 

zero-crossing points at 102.65 g/L and 91.75 g/L, showing complex threshold effects. (F) pH shows a zero-crossing point at 7.32, with acidosis 

contributing to increased mortality risk. (G) Lymphocytes exhibit zero-crossing points at 10.11% and 43.39%, indicating optimal ranges for 

survival. (H) PO2 shows a zero-crossing point at 89.08 mmHg, with lower values associated with increased mortality risk. The horizontal dashed 

line represents SHAP value = 0, and vertical dashed lines mark the zero-crossing thresholds identified by LOWESS regression curves.
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131.68 mmol/L, and pH values below 7.32 were associated with 

significantly increased mortality risk. The analysis also revealed 

U-shaped relationships for creatinine (thresholds at 42.0 and 

170.33 μmol/L) and lymphocytes (thresholds at 10.11% and 

43.39%), indicating optimal physiological ranges for survival 

outcomes. The web-based prediction calculator we developed 

provides clinicians with immediate access to personalized 

survival probabilities, potentially improving risk assessment and 

treatment planning in pediatric intensive care settings.

Our study demonstrates superior predictive performance 

compared to previous machine learning applications in pediatric 

sepsis mortality prediction. While most existing studies have 

focused on predicting mortality at fixed time points, our 

approach represents the first application of survival analysis 

algorithms in this population, providing dynamic risk 

assessment over time rather than static predictions. Banerjee 

et al. achieved an AUC of 0.82 using gene expression profiles 

from 228 septic patients in PICU settings, while their external 

validation showed variable performance (AUC: 0.72–0.96 across 

different datasets) (20). Zhou et al. developed a CatBoost model 

for sepsis-associated acute kidney injury patients with an AUC 

of 0.83 (21), and Hsu et al. reported an AUC of 0.923 using 

deep neural networks in neonatal sepsis (22). In contrast, our 

RandomSurvivalForest model achieved a consistently higher 

time-dependent AUC of 0.97 with excellent calibration across all 

time points. This approach offers more precise timing for 

clinical interventions compared to binary outcome predictions.

This study represents the first application of survival analysis 

machine learning algorithms in pediatric sepsis, providing time- 

to-event predictions rather than traditional binary outcomes. 

We implemented SHAP interpretability analysis to explain 

individual predictions and identify feature contributions, while 

zero-crossing point analysis using LOWESS regression 

established clinically actionable thresholds for biomarkers. Our 

approach included rigorous hyperparameter optimization with 

10-fold cross-validation and comprehensive evaluation across 

multiple performance metrics. The development of an 

immediately deployable web-based prediction tool bridges the 

gap between research and clinical practice, providing frontline 

clinicians with accessible predictive analytics for critically 

ill children.

The limited number of non-survivors (n = 23, 10.3%) 

significantly constrains the precision of our model’s 

performance estimates. This is exemplified by the wide 

confidence interval of our C-index (0.87, 95% CI: 0.76–0.95), 

indicating substantial uncertainty in the model’s 

discriminatory ability, with true performance potentially 

ranging from barely better than random prediction to 

excellent discrimination. Additionally, with an event-per- 

variable ratio of 7.7 (below the recommended 10–15 

threshold), our model is susceptible to overfitting, which may 

explain the high td-AUC of 0.96. The small sample size also 

limits our statistical power to detect clinically meaningful risk 

gradations, with a minimum detectable difference of 

approximately 8%–10% in predicted mortality probability. 

These limitations collectively suggest that larger, more 

balanced cohorts are needed to establish reliable performance 

estimates and clinical utility.

Our established thresholds for calcium levels provide 

actionable clinical guidance. The calcium threshold of 1.1 mmol/ 

L suggests that hypocalcemia correction should be prioritized in 

pediatric sepsis management. Calcium homeostasis is essential 

for maintaining normal myocardial contraction/relaxation cycles, 

and hypocalcemia has been associated with cardiovascular 

dysfunction, acute kidney injury, coagulopathy, and increased 

mortality in septic patients (23–25). Our findings are consistent 

with previous studies in pediatric populations, where Zheng 

et al. demonstrated that ionized calcium was an independent 

predictor of poor prognosis in very low birth weight infants 

with sepsis (OR: 0.283, 95% CI: 0.126–0.638, p = 0.002) (23), 

further supporting the critical role of calcium homeostasis in 

pediatric sepsis outcomes.

The observational nature of our data precludes causal 

inference due to confounding by indication, where treatment 

decisions are inGuenced by patient severity and clinical 

judgment (26, 27). To establish causal relationships, future 

research should employ causal inference methodologies such as 

target trial emulation, instrumental variable analysis, or 

propensity score approaches that can better isolate treatment 

effects from confounding factors. Only through rigorous causal 

analysis can we determine whether interventions targeting these 

modifiable factors can improve outcomes, transforming 

predictive associations into actionable clinical guidance for 

pediatric sepsis management (28).

An important consideration in interpreting our findings is 

the inherent heterogeneity of pediatric sepsis. Sepsis represents 

a complex syndrome with diverse underlying etiologies, 

varying host responses, and distinct clinical phenotypes that 

may exhibit different prognostic patterns (29, 30). Our study 

population encompassed patients with varied infection sources, 

age ranges, and degrees of organ dysfunction, yet we applied a 

unified predictive model without stratification by clinical 

subgroups or sepsis endotypes. The clinical thresholds 

identified through SHAP analysis may not apply uniformly 

across all sepsis phenotypes, as neonatal sepsis may 

demonstrate different physiological responses compared to 

older pediatric patients, and gram-positive vs. gram-negative 

infections may present distinct biomarker patterns (31). Future 

research should investigate model performance across specific 

sepsis subgroups to enable development of more personalized 

risk assessment tools and advance precision medicine in 

pediatric sepsis care.

Several limitations should be acknowledged in this study. First, 

this was a single-center retrospective study, which may limit the 

generalizability of our findings to other pediatric populations 

and healthcare settings. The relatively small sample size of 223 

patients, particularly the low number of non-survivors (n = 23), 

may affect model stability and the precision of risk estimates. 

The study period spanning 2010–2018 may introduce temporal 

bias due to changes in clinical practice and treatment protocols 

over time. Additionally, we excluded patients with ICU stays 

<24 h, which may have removed some early deaths and 
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introduced selection bias. The dataset lacked important clinical 

variables such as pediatric-specific severity scores (PRISM, 

PELOD, pSOFA), source of infection, antibiotic resistance 

patterns, and detailed organ support measures, which could 

improve model performance. External validation in independent 

cohorts is needed to confirm the robustness and generalizability 

of our findings before widespread clinical implementation.

Conclusion

This study developed a survival prediction model for 

pediatric sepsis using RandomSurvivalForest, achieving a time- 

dependent AUC of 0.97. SHAP analysis identified calcium total 

and RDW as the strongest mortality predictors, while 

establishing clinically relevant thresholds including calcium 

total <1.10 mmol/L, RDW >15.07%, sodium <131.68 mmol/L, 

and pH <7.32 as indicators of increased mortality risk. 

Additional U-shaped relationships were identified for 

creatinine and lymphocytes, revealing optimal physiological 

ranges for survival outcomes. The web-based prediction 

calculator provides clinicians with immediate access to survival 

probability estimates for risk stratification and clinical 

decision-making in pediatric sepsis management.
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SHAP feature importance and decision plot analysis. (A) Bar plot showing 

the top 10 features ranked by mean absolute SHAP values. Calcium total 

and RDW are the most influential predictors, followed by creatinine, 

sodium, hemoglobin, pH, lymphocytes, PO2, chloride, and lactate. (B) 

Decision plot illustrating the cumulative effect of all features on model 

predictions for individual patients. Each line represents one patient’s 

prediction path from the expected value (left) to the final model output 

(right), showing how different feature combinations lead to varying 

survival predictions.

SUPPLEMENTARY FIGURE S2

Web-based survival prediction calculator interface. Screenshot of the 

deployed calculator showing the input interface for clinical parameters 

and the prediction output. The example case displays survival probabilities 

at key time points (Day 1: 100.0%, Day 3: 74.0%, Day 5: 74.0%, Day 7: 

74.0%) and a survival probability curve for the first 7 days of ICU stay. The 

calculator accepts demographic data, laboratory values, medication 

usage, and fluid balance information to generate personalized 

survival predictions.
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