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as well as environmental factors, it will 
be possible to identify molecular finger-
prints, of multiple genes, RNAs, proteins, 
metabolites, or combination of them, asso-
ciated with unchecked inflammation. The 
ultimate goal of the genomic, proteomic, 
and metabolomic studies will be to clarify 
whether changes in the interconnecting 
networks of genes, proteins, and metabo-
lites are involved in disease susceptibility 
and/or accelerated disease progression. 
These studies will lead to the discovery 
of novel disease biomarkers which will be 
very useful to improve clinical interven-
tions and to translate into personalized 
strategies of treatment (FitzGerald, 2005). 
Thus, it will be possible to tailor commer-
cialized medicines or novel therapeutics 
to the individual patient, minimizing the 
number of exposed individuals who fail to 
benefit from the treatment or experience 
adverse events from the treatment.

IntegratIon of regeneratIve 
medIcIne Into InflammatIon 
research
A difficult, but possible, challenge of 
inflammatory research is to regenerate the 
impaired organs due to excessive chronic 
inflammation. In osteoarthritis and 
other degenerative diseases of the bones 
and joints, it will be possible to regener-
ate the damaged tissue by using patient’s 
stem cells. However, many obstacles per-
sist, such as a suboptimal frequency and 
abundance of adult stem cells, or limited 
potency. Importantly, the environment 
plays an active role in promoting growth 
and potency of stem cells (Logan et al., 
2007). The environment within the body 
changes hugely as you age and this repre-
sents a factor which limits stem cell main-
tenance. However, it is possible to modify 
stem cells in the lab and re-introduce them 
to the body. Recent findings have shown 
that modified adult stem cells through the 
introduction of cyclic AMP which activates 
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Inflammation is a complex set of 
 interactions among soluble factors 
and cells that can arise in any tissue in 
response to traumatic, infectious, post-
ischemic, toxic or autoimmune injury 
(Nathan, 2002; Gilroy et al., 2004). 
Inflammation, per se, does not cause dis-
ease. But unchecked inflammation that 
spreads possibly due to disruption of the 
resolution processes can lead to chronic 
persistent inflammation which plays a 
role in the progression of many diseases, 
such as atherosclerosis, asthma, neurode-
generation, inflammatory bowel diseases 
(IBDs) and cancer. Thus, inflammation 
is one of the relevant areas in biomedical 
research. Molecular mechanisms regulat-
ing the checkpoints tuning on and off the 
inflammatory response have been revealed 
and numerous novel potential therapeutic 
targets have been uncovered. Humanized 
antibodies for anti-cytokine therapy have 
been shown to be effective for the treat-
ment of rheumatoid arthritis and various 
inflammatory diseases (Maini and Taylor, 
2000). However, there is still an impor-
tant gap to be filled by developing new 
therapeutics which should be safer and 
more specific for different inflammation-
related diseases.

Importantly, we need to dissect the 
influence of genetic background but also 
behavioral and psychosocial factors in dif-
ferent socioeconomic groups on increased 
susceptibility to inflammation. This 
knowledge will lead to predict and prevent 
inflammatory-related diseases and hope-
fully to reduce social inequalities in disease 
development observed in many populations 
(Ranjit et al., 2007).

development of strategIes to 
Implement personalIzed medIcIne 
of antI-Inflammatory drugs
Since the development of inflammatory-
related diseases is a complex multi-step 
process involving many biological  pathways 

protein kinase A (PKA), maturate into 
bone cells when reintroduced to the body 
(Siddappa et al., 2008).

novel InsIghts Into chronIc 
InflammatIon and cancer 
development and progressIon
The association of chronic inflammation 
and cancer development and progression 
is becoming apparent but the mechanisms 
remain largely obscure. Thus, IBDs, both 
ulcerative colitis (UC) and Crohn’s colitis, 
ranks among the top three high-risk condi-
tions for colorectal cancer (CRC), together 
with the hereditary syndromes of familial 
adenomatous polyposis (FAP) and hereditary 
nonpolyposis colorectal cancer (HNPCC) 
(Itzkowitz and Yio, 2004). Unlike the lat-
ter two conditions that have a well-defined 
genetic etiology, CRC risk in IBDs appears to 
be related more to chronic inflammation of 
the gastrointestinal (GI) mucosa triggered in 
a susceptible individual by an environmen-
tal insult such as GI infection or other envi-
ronmental toxins (Itzkowitz and Yio, 2004). 
Recent studies have underscored a striking 
connection between tissue injury, repair and 
malignancy and systemic rheumatic diseases 
(Rosen and Casciola-Rosen, 2006).

A new hypothesis is that chronic 
inflammation may switch on the endog-
enous injury-repair machinery where 
stem cells play a critical role. It is possible 
that increased stem cell recruitment and 
mutation in the environment of chronic 
inflammation may translate into cancer 
formation in the inflamed target tissue 
(Houghton et al., 2004). Prostaglandin 
E

2
 (PGE

2
), an important mediator of 

inflammation which has been shown to 
induce somatic and embryonic cell sur-
vival (North et al., 2007), might be the 
link among inflammation, stem cells and 
cancer development.

In addition to this mechanism, PGE
2
 

promotes cancer development by multiple 
other effects, ie by inhibiting apoptosis, 
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due to a lower incidence of gastrointestinal 
toxicity (Celotti and Laufer, 2001; Kulkarni 
and Singh, 2007).

Interestingly, the pro-infiammatory 
5-LO product LTD

4
 is tumorigenic causing 

translocation of β-catenin both to the mito-
chondria, in which it associates with the 
survival protein Bcl-2, and to the nucleus 
in which it activates the TCF/LEF transcrip-
tion machinery involved in the expression 
of pro-tumorigenic genes, ie COX-2, c-myc, 
cyclin D1, and PPARδ (Mezhybovska et al., 
2006). Moreover, it has been recently shown 
that 5-LO gene (Alox5) may represent a 
novel strategy to target cancer stem cells. 
Loss of the Alox5 gene impairs leukemia 
stem cells and prevents chronic myeloid 
leukemia in experimental animals (Chen 
et al., 2009).

mIcrornas as therapeutIc targets
MicroRNAs (miRNAs) are an emerging 
class of highly conserved, non-coding small 
RNAs that regulate gene expression on the 
post-transcriptional level by inhibiting 
the translation of protein from mRNA or 
by promoting the degradation of mRNA 
(Czech, 2006).

More than 800 miRNAs have been 
identified in mammals and increasing evi-
dence indicates that miRNAs have distinct 
expression profiles and play crucial roles 
in various physiological and pathological 
processes such as cardiogenesis, haemat-
opoietic lineage differentiation, oncogen-
esis, vascular disease and inflammation. 
miRNAs are thought to control up to 30% 
of all gene activity, with one type respon-
sible for directing the expression of whole 
networks of genes, rather than just single 
genes. Several lines of evidence show that 
miRNAs play a key role in checking inflam-
mation. Thus, miR146 has been proposed to 
target the 3′ UTRs (untranslated regions) of 
the TRAF6 and IRAK-1 genes, and to con-
trol Toll-like receptor and cytokine signal-
ing through a negative feedback loop, thus 
reducing inflammatory cytokines produc-
tion (Taganov et al., 2006). In mature human 
dendritic cells, miR-155 has been shown to 
be part of a negative feedback loop, which 
down-modulates inflammatory cytokine 
production in response to  microbial  stimuli 
(Ceppi et al., 2009). Moreover, miR-16, 
has been shown to contribute to AU-rich 
element-mediated mRNA turnover of 
inflammatory genes, such as TNF-α, IL-6, 

with a profound inhibition of PGE
2
 in vitro 

and in vivo and with a redirection of the 
PGH

2
 substrate to other PG synthases, such 

as PGI
2
 and PGD

2
, which might participate 

to the safe cardiovascular profile (Wang 
et al., 2006, 2008). Inhibitors of mPGES-1 
might circumvent adverse GI side effects 
of unselective COX inhibitors. However, in 
the stomachs of mice lacking mPGES-1, a 
shift from PGE

2
 to all other prostanoids, i.e. 

TXA
2
, PGD

2
, PGF

2α, and PGI
2
, was detected, 

thus making extremely difficult to predict 
the clinical consequences of mPGES-1 inhi-
bition in the GI tract (Boulet et al., 2004). 
Further studies addressing this issue in 
appropriate animal models are required.

development of dual InhIbItors of 
mpges-1 and 5-lo
PGE

2
 couples via high-affinity EP4 receptors 

and may upregulate IL-8 (Yu and Chadee, 
1998). IL-8 is a potent chemokine which 
can attract and activate neutrophils to cause 
nonspecific tissue damage, important in the 
onset of colonic inflammation (Dey et al., 
2006). Activated leukocytes alone and their 
interaction with other cells, mainly with 
platelets, via P-selectin/P-selectin glyco-
protein ligand-1 (PSGL-1), are involved in 
enhanced generation of leukotrienes (LT) 
(Evangelista et al., 1999). LTs, ie LTB

4
 and 

LTC
4
, are important factors of inflamma-

tory responses. They are produced from 
AA by 5-lipoxygenase (5-LO), function-
ally coupled to 5-LO-activating protein, an 
integral membrane protein present on the 
nuclear envelope that presents AA to 5-LO. 
Neutrophils generate the unstable interme-
diate LTA

4
 by 5-LO; then, it is released or 

enzymatically hydrolyzed by LTA
4
 hydrolase 

to produce LTB
4
. When released, LTA

4
 can be 

taken up by neighboring cells, in particular 
platelets, and conjugated with glutathione 
by LTC

4
 synthase to generate LTC

4
 that is 

further metabolized extracellularly to LTD
4
 

and LTE
4
 (Gijón et al., 2007). Altogether 

these findings support an important coop-
eration of COX-2/mPGES-1 and 5-LO 
pathways in inflammatory diseases. The 
development of dual inhibitors of mPG-
ES-1 and 5-LO pathways may represent 
a novel strategy to restrain inflammation 
(Koeberle et al., 2008, 2010). There is accu-
mulating evidence that inhibition of both 
the LT and the PG biosynthetic pathway is 
superior over single interference, in terms 
of anti-inflammatory effectiveness and also 

 promoting cell growth, inducing angiogen-
esis and tumor invasion (Wang and Dubois, 
2006). Altogether these findings suggest that 
inhibition of inflammatory PGE

2
 may be 

an appropriate strategy to fight cancer (Cha 
and DuBois, 2007).

PGE
2
 is generated from arachidonic acid 

(AA) after its release from membrane phos-
pholipids by phospholipases. AA is trans-
formed into prostaglandin (PG) H

2
, through 

the activity of cyclooxygenase (COX) 
enzymes (i.e. COX-1 and COX-2) (Funk, 
2001). The isomerization of PGH

2
 to PGE

2
 

is catalyzed by three different isomerases: a 
cytosolic PGE synthase (cPGES) and two 
membrane-bound PGESs, mPGES-1 and 
mPGES-2. (Kudo and Murakami, 2005). Of 
these isomerases, cPGES and mPGES-2 are 
constitutive enzymes whereas mPGES-1 is 
mainly an induced isoform. PGE

2
 interacts 

with specific receptors, termed EP1–4, that 
have restricted patterns of expression and 
receptor-specific actions (Narumiya and 
FitzGerald, 2001; Kamei et al., 2003).

Inhibition of COX-2-dependent PGE
2
 

by nonsteroidal anti-inflammatory drugs 
(NSAIDs) selective for COX-2 (coxibs) has 
shown to have chemopreventive activity for 
CRC and other types of cancer (Thun et al., 
2002; Cha and DuBois, 2007). However, 
the long-term use of coxibs is restricted by 
the occurrence of adverse cardiovascular 
events believed to be associated with the 
reduction of the biosynthesis of vascular 
COX-2-dependent prostacyclin which is 
an important protective pathway for the 
cardiovascular system (Grosser et al., 2006; 
García Rodríguez et al., 2008; Patrignani 
et al., 2008). A possible strategy to overcome 
the cardiovascular toxicity of COX-2 inhi-
bition is to target the downstream enzyme 
in PGE

2
 biosynthesis, ie mPGES-1. In fact, 

several evidences suggest a key role of mPG-
ES-1 in carcinogenesis (Kamei et al., 2003; 
Hanaka et al., 2009).

development of mpges-1 
InhIbItors as novel antI-
Inflammatory agents
Inhibitors of mPGES-1 are in preclinical 
development for relief of pain – similarly 
to NSAIDs – (Bruno et al., 2010; Koeberle 
et al., 2010) but with the potential advan-
tage of not affecting or perhaps causing 
a  beneficial impact on the cardiovascular 
system (Wang et al., 2006, 2008). In fact, 
deletion of mPGES-1 in mice is associated 
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miRNA may control whole groups of genes 
and its inhibition could be associated with 
unforeseen side effects.

There is the need of safer anti-inflammatory 
agents in association with the development 
of valid biomarkers of efficacy and toxicity 
to tailor drug treatment to individual charac-
teristics. This will be promoted by the avail-
ability of sophisticated technologies to detect 
changes in the interconnecting networks of 
genes, proteins, and metabolites which may be 
involved in disease susceptibility and/or accel-
erated disease progression and drug responses. 
The application of pharmacoepidemiological 
methods together with the use of pharmacog-
enomics tools will open the way to a new era of 
pharmacovigilance to put information out on 
drug hazard as quickly as possible and to make 
appropriate decisions on risk management.
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There is a great interest to develop 
miRNA-inhibiting drugs. Single-stranded 
RNA molecules have been designed to bind 
specifically to miR-122, which is thought 
to regulate up to 450 genes, around 100 
of which are involved in cholesterol and 
lipid metabolism. This miRNA inhibitor, 
or antimiR, is readily taken up by liver cells 
and lowers cholesterol by up to 35% (Esau 
et al., 2006).

new era of pharmacovIgIlance
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ever, some of the risks are unknown and 
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with the use of pharmacogenomics tools 
(Arehart et al., 2008) will open the way to 
a new era of pharmacovigilance (García 
Rodríguez et al., 2008; Massó González 
et al., 2010). This will allow to put infor-
mation out on drug hazard as quickly as 
possible and to make appropriate decisions 
on risk management.

conclusIons
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therapy of inflammation will be addressed 
in the 21st century. Understanding in 
detail the role played by stem cells in 
 inflammatory-related diseases will lead to 
the development of innovative therapeutic 
strategies. Moreover, the development of 
new therapeutic tools by targeting miR-
NAs has enormous potential. However, it 
is wise to improve our knowledge on how 
the miRNA regulatory system works before 
developing miRNA inhibitors. In fact, a 
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