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The expanse of human biliverdin reductase (hBVR) functions in the cells is arguably
unmatched by any single protein. hBVR is a Ser/Thr/Tyr-kinase, a scaffold protein, a tran-
scription factor, and an intracellular transporter of gene regulators. hBVR is an upstream
activator of the insulin/IGF-1 signaling pathway and of protein kinase C (PKC) kinases in
the two major arms of the pathway. In addition, it is the sole means for generating the
antioxidant bilirubin-IXα. hBVR is essential for activation of ERK1/2 kinases by upstream
MAPKK-MEK and by PKCδ, as well as the nuclear import and export of ERK1/2. Small frag-
ments of hBVR are potent activators and inhibitors of the ERK kinases and PKCs: as such,
they suggest the potential application of BVR-based technology in therapeutic settings.
Presently, we have reviewed the function of hBVR in cell signaling with an emphasis on
regulation of PKCδ activity.
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STRUCTURE OF HUMAN BILIVERDIN REDUCTASE AND ITS
FUNCTIONS IN CELL SIGNALING PATHWAYS
Biliverdin reductase (BVR), purified to homogeneity from rat
liver, was characterized as an enzyme that was capable of reduc-
ing biliverdin-IXα to bilirubin-IXα and was shown to exhibit a
unique, dual cofactor/pH optimum profile (Kutty and Maines,
1981). In the course of elucidating the underlying mechanism for
this unprecedented activity profile, an extensive array of functions
of the human BVR (hBVR) protein was uncovered (Kapitul-
nik and Maines, 2009; Gibbs et al., 2012). Examination of the
sequence has revealed the presence of three domains, as illustrated
in Figure 1A. The N-terminal domain contains the catalytic site,
while the extreme C-terminus is cysteine-rich and binds metal
ions, notably Zn2+. The remainder of the molecule, as discussed
below, harbors numerous regulatory motifs. An early observation
made with the rat enzyme was that BVR was extensively modified
posttranslationally (Huang et al., 1989), and it was subsequently
demonstrated that this was a consequence of phosphorylation
(Salim et al., 2001). The reductase activity of BVR required that
the protein be phosphorylated. Rat or human BVR purified after
expression in E. coli was found to be phosphorylated. Because E.
coli has minimal Ser/Thr- or Tyr-kinase activity, the likely source
of post-translational modification was autophosphorylation, indi-
cating that BVR is a protein kinase. This kinase activity was
characterized further using the human enzyme, and it was shown
that BVR is a rare, soluble dual-specificity (Ser/Thr/Tyr) kinase
(Lerner-Marmarosh et al., 2005). In its capacity as a Tyr-kinase,
hBVR was shown to phosphorylate the insulin receptor substrate,
effectively mimicking the insulin receptor kinase (IRK; Lerner-
Marmarosh et al., 2005). This phosphorylation event initiates the

down-regulation of glucose uptake (Tanti et al., 1994). hBVR itself
was a substrate for tyrosine phosphorylation by IRK.

The extensive array of motifs in hBVR is illustrated further
in Figure 1B. Each of the sequences shown in the figure was
proposed as a functional site in the molecule, and has subse-
quently been demonstrated to be active. Sequence motifs in the
C-terminal regulatory domain of BVR are, to a great extent,
involved in interaction with other proteins. As an example, hBVR
was found to bind AP-1 sites in DNA by means of its bZip
motif (Ahmad et al., 2002). The reaction of hBVR with DNA
required two binding sequences in the DNA target, suggesting
that hBVR binds as a dimer; site-directed mutagenesis of residues
in the leucine zipper segment of the bZip domain prevented DNA
binding, presumably by preventing hBVR dimerization. The bZip
domain probably also allows heterodimer formation with other
bZip transcription factors (Ahmad et al., 2002; Kravets et al.,
2004). Two motifs, the nuclear localization (NLS) and nuclear
export (NES) sequences presumably allow hBVR to interact with
components of the nuclear pore. Critically for signaling activity,
hBVR also interacts with several protein kinases; this interaction
aids in the activation of these kinases, as well as playing a role in
their translocation to the site of activity. The experiments used
to characterize these sequences relied on site-directed mutagen-
esis and siRNA studies to disrupt each function (Ahmad et al.,
2002; Lerner-Marmarosh et al., 2007, 2008; Maines, 2007; Tudor
et al., 2008; Miralem et al., 2010; Gibbs et al., 2012). More recent
studies have focused on the use of peptides based on the hBVR
sequence as a means of disrupting protein: protein interactions,
and/or modulating the enzyme activities of hBVR or its bind-
ing partners. These experiments will be discussed below. We have
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FIGURE 1 | Domain structure of hBVR, and its functional specific

sequence motifs. (A) Three domains of hBVR. The N-terminal domain
includes the sequences required for catalytic activity. The regulatory domain
comprises residues beyond position 107, and there is some overlap with the
C-terminal metal-binding sequence. (B) Schematic presentation of consensus
sequences of hBVR for which functions have been ascribed. The numbers
indicated for each consensus sequences are those of the hBVR primary
structure. The N-terminal segment of 99 residues is the catalytic domain of
hBVR; it houses a sequence of four valines followed by the consensus for the
ATP/adenine ring-binding site. The kinase activity of hBVR is responsible for its
autophosphorylation (Salim et al., 2001; Lerner-Marmarosh et al., 2005). hBVR
is a kinase for serine phosphorylation of IRS-1, the phosphorylation of which
halts glucose uptake (Tanti et al., 1994). hBVR is also a likely kinase for T500 in
the activating loop of PKCβII (Maines et al., 2007); the PKC is a key
component of cell growth and differentiation. The reductase domain catalyzes
reduction of biliverdin to bilirubin, a component of cellular defense
mechanisms protecting against ROS (Sedlak et al., 2009) and apoptosis

(Miralem et al., 2005). The sequences starting at aa 107 and 211 closely
resemble sites in the primary sequence of repeats V (QAMLWDLNE) and VI
(SIKIWDLE) of the Receptor for Activated C-Kinase-1 (RACK1). RACK1 is a
36-kDa protein that is similar in size to hBVR (Ron et al., 1994). Activation of
PKCs, including the β, δ and ε isoforms (Ron et al., 1994), is associated with
conformational change that exposes their RACK-binding sites. We predict that
the presence of RACK1-like sequences in hBVR may allow its binding to
PKCs. The binding would not require kinase activity of hBVR. The bZip motif
binds to 7 and 8 bp AP-1 and AP-2 sites. Stress response genes are activated
by AP-1, and cAMP-responsive genes are regulated by AP-2 regulatory
elements. hBVR regulates expression of stress-responsive HO-1, c-Fos,
c-Jun, and ATF2/CREB (Kravets et al., 2004; Miralem et al., 2005; Maines
et al., 2007). Within this sequence is a motif that strongly resembles a
conserved protein kinase motif (Hanks and Hunter, 1995). The high affinity
ERK binding site, known either as C-Box or DEF (Jacobs et al., 1999), is the
site of interaction of ERK1/2 and hBVR, positioning ERK in proximity to its

(Continued)
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FIGURE 1 | Continued

kinase (Lerner-Marmarosh et al., 2008). Nuclear localization of hBVR is also
critical for transport of the transcriptional regulators ERK1/2 and heme into
the nucleus (Lerner-Marmarosh et al., 2008; Tudor et al., 2008). Reentry of
ERK into the cytoplasm requires the intact hBVR NES (Lerner-Marmarosh
et al., 2008). hBVR is directly phosphorylated by IRK upon activation by
insulin or IGF-1 (Lerner-Marmarosh et al., 2005). The tyrosine in the SH2
recognition motif of hBVR, as with other SH2 recognition motif-containing
proteins, is predicted to form a platform for formation of signaling
complexes (Pawson and Scott, 1997). hBVR is phosphorylated by ERK, and
MotifScan predicts serine in the SP sequence as the phosphorylation target
site of ERK1/2. A second SH2 recognition motif follows the nuclear
localization signal and is involved in activation of PKCζ by TNF-α

(Lerner-Marmarosh et al., 2007). The low affinity D-Box-like sequence is the
binding site for kinases and substrates in the MAPK signaling cascade. The
C-terminal six residues are the Zn-binding domain of hBVR (Maines et al.,
1996). Based on the reported role of Zn for plasma membrane translocation
of PKCs and nuclear translocation of NF-κB (Kabu et al., 2006) we predict
that the function of hBVR in translocation of PKCs β and ζ to the cell
membrane may involve its associated Zn. Notably, hBVR under resting
conditions is found in the cytoplasm and membrane caveolae (Kim et al.,
2004). The C-terminal lysine 296 is critical for hBVR’s catalytic activity
(unpublished); although it lies in a disordered region of the BVR molecule
(Whitby et al., 2002), this does not preclude a catalytic function. The figure is
adapted from a previously published version (Gibbs et al., 2012), and
description is taken directly from the same publication.

examined in some detail the role played by hBVR in modulat-
ing the activity of five different kinases: three members of the
protein kinase C family (PKCβII, PKCζ, and PKCδ, the extra-
cellular signal responsive kinase 2 (ERK2) and the highly atyp-
ical but clinically relevant Goodpasture antigen binding protein
(GPBP). The function of BVR differs somewhat for each of these
kinases.

REGULATION OF PROTEIN KINASE C ENZYME ACTIVITIES BY
hBVR
Studies in our laboratory have indicated that hBVR activates mem-
bers of the three protein kinase C (PKC) classes, and is in turn,
activated by the PKCs. It is apparent, however, that the mechanism
by which activation occurs differs according to the class of PKC
associating with hBVR. A brief description of the structure and
activation of the PKCs is presented, followed by discussion of the
function of hBVR in the regulation of each class.

STRUCTURE AND MATURATION OF PKC ENZYMES
The PKC family of signaling proteins functions at the intersec-
tion of a wide variety of signal transduction pathways, and the
kinases are therefore considered as key regulators of responses
to extracellular stimuli. The PKC family consists of three sub-
groups, i.e., the conventional, novel, and atypical PKCs (cPKC,
nPKC, aPKC, respectively), which are characterized by differences
in protein structure, mechanism of activation and function.

The cPKCs, nPKCs, and aPKCs have homologous catalytic
kinase domains that encompass the C-terminal half of the mol-
ecules (Figure 2; Steinberg, 2008; Newton, 2010). The primary
structure of this domain is well conserved between the proteins,
and it includes essential sequence motifs that are common to
all members as well as being required for maturation of the
kinase. These motifs include the activation loop, which contains a
threonine residue that generally must be phosphorylated for cat-
alytic activity; in the case of PKCδ, phosphorylation of this site is

FIGURE 2 | Structural domains of protein kinase C.The three classes

of PKCs are shown. Members of each class have a catalytic domain that
encompasses the C-terminus of the protein (shown in orange). Positions
of residues in the catalytic domain that are phosphorylated during
activation of the kinases are shown as yellow circles above each map. The
threonine residue in the activation loop is the first to be phosphorylated,
which allows phosphorylation of the threonine/serine in the turn motif and
the serine/threonine in the hydrophobic motif, resulting in full activity of

the kinase. There is no phosphorylation target in the atypical kinase
hydrophobic motif; negative charge is supplied by the glutamic acid
residue (indicated by the brown circle). The regulatory domains are located
in the N-terminal half, and consist of C1 (blue), C2 (red) and
pseudosubstrate domains (green). The positions of the C1 and C2 domains
of conventional PKCs are reversed in the novel PKCs. Atypical PKCs lack a
C2 domain, and have only a partial C1 domain. Redrawn from Steinberg
(2008), Newton (2010).
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observed, but it is not essential. Phosphorylation of the activation
loop threonine is otherwise the essential first step in maturation
of the newly synthesized protein. All members have both a turn
motif and a C-terminal hydrophobic motif; each motif contains
serine or threonine targets for autophosphorylation, a require-
ment for full maturation of the enzyme. One exception is noted
for the atypical kinases, which have glutamic acid, an amino acid
known to mimic phosphoSer/Thr, at the hydrophobic motif phos-
phoacceptor site. Phosphate incorporated during the maturation
process remains an integral part of the protein, with little or no
turnover.

The PKC regulatory domains are located in the N-terminal
half of the molecule, and it is these domains that differentiate
the different classes from each other, and enable the PKCs to
mount specific responses to different stimuli. Each PKC protein
contains one or two conserved regulatory domains (C1, C2) and
a pseudosubstrate sequence which is located N-terminal to the
C1 domain. In the resting state, the pseudosubstrate is bound
by the active site of the catalytic subunit, effectively preventing
substrate binding. The C2 domain is found only in the conven-
tional and novel PKCs – in the conventional PKCs, the C2 domain
binds Ca2+, which is critical for their activation. Ca2+ binding
initiates a conformational change in the kinase exposing lipid
biding sites in the C1 domain. The novel PKCs lack the Ca2+-
binding site, and are therefore Ca2+-independent; however, they
too must undergo a conformational change in response to stim-
uli that results in exposure of the C1 domain. The C1 region of
cPKCs and nPKCs contains two sequences (C1A, C1B) that share
a pattern of conserved His and Cys residues that coordinate Zn2+.
These regions serve as binding sites for membrane lipids, notably
phosphatidyl serine and diacylglycerol (DAG), which is a product
of phospholipase C activity. Interaction with the plasma mem-
brane is a critical step in the activation of the conventional and
novel PKCs; for the cPKCs the C1 domain is inserted into the
membrane to bind DAG. In resting cells the lipid binding sites
of the cPKC C1 domain are masked by the C2 domain – binding
of Ca2+ triggers a conformational change that unblocks the C1
domain. The atypical kinases have only a single C1-type sequence
that binds phosphatidylinositoltrisphosphate or ceramide, but
not DAG.

REGULATION OF INDIVIDUAL PKC ENZYME ACTIVITIES BY hBVR
Protein kinase C-βII
The conventional PKCβII phosphorylates hBVR in vitro, under
conditions that are unfavorable to hBVR kinase activity (and hence
autophosphorylation). The presence of hBVR in kinase reactions
increased the Vmax of the PKC without affecting the Km for its
substrate. However, both wild-type and kinase-inactive PKC could
serve as substrates for the hBVR kinase activity. Peptides, based on
the three motifs of PKCβII that are required for maturation of the
kinase, were used as hBVR kinase substrates and the data suggested
that the hBVR phosphorylation target may be in the PKCβII acti-
vation loop (Maines et al., 2007). As noted above, phosphorylation
at that site is the first step in maturation of PKCβII. Peptides that
included the PKCβII turn and hydrophobic motif phosphorylation
sites were not substrates for the hBVR kinase activity. These experi-
ments do not preclude the possibility that hBVR phosphorylation

of other sites in PKCβII could provide an additional activation
mechanism.

Protein kinase C-βII and hBVR were found to co-
immunoprecipitate from extracts of cells in which both pro-
teins were over-expressed and stimulated with phorbol myristate
acetate (PMA). Confocal microscopy of PMA-stimulated cells
over-expressing PKCβII and hBVR indicated that both proteins
colocalized to the cell membrane. Based on site-directed mutage-
nesis of its sequence, two regions of hBVR were required for the
protein–protein interaction, notably the C-terminal cysteine-rich
metal-binding sequence (Figure 1B) and an intact ATP binding
site. hBVR was shown to be a Zn2+-binding protein (Maines et al.,
1996), and the hBVR metal-binding sequence closely resembles
the Zn2+-binding sequences in the PKC C1 domain. It is possible
that hBVR may be binding to the C1 domain via a mechanism that
involves the cysteine residues of both motifs and/or Zn2+ chela-
tion. The hBVR Gly17 residue in the nucleotide binding site was
essential for activation of PKCβII, as was the sequence of four con-
secutive valine residues (Val11–14) located immediately upstream.
The valines are unlikely to interact directly with PKCβII as they
are buried within the molecule (Kikuchi et al., 2001; Whitby et al.,
2002), but their mutation to alanine may alter or destabilize the
BVR secondary structure so as to prevent PKCβII binding.

Activation of PKCβII by hBVR therefore occurs by two mech-
anisms – phosphorylation as a consequence of the hBVR kinase
activity, and protein: protein interaction.

Protein kinase C-ζ
Human biliverdin reductase activates the atypical PKCζ, by a
mechanism that clearly differs from that observed with PKCβII.
PKCζ was able to use hBVR as a substrate in vitro but the PKC was
not a substrate for the hBVR kinase activity (Lerner-Marmarosh
et al., 2007). However, the presence of hBVR in PKCζ-catalyzed
reactions stimulated the activity of the PKC toward its substrates
and in autophosphorylation; in such reactions, stimulation of
activity by kinase-inactive hBVR was at least as effective as that
of the wild-type protein. Mutant hBVR proteins were used as
substrates for in vitro kinase reactions to identify candidate phos-
phorylation sites. Mutation of either hBVR Ser149 in the S/T kinase
motif (Figure 1) or Ser230 in one of the SH2-binding motifs to Ala
yielded substrates that were phosphorylated to a significantly lesser
extent than the wild-type protein. A protein having both of these
mutations was a very poor substrate, incorporating less than 20%
of the phosphate taken up by the wild-type protein. These data
indicate that PKCζ phosphorylates hBVR at Ser149 and Ser230.

In response to stimulation of cells with tumor necrosis factor-
α (TNF-α), hBVR, and PKCζ formed a complex in the cell,
as indicated by their co-immunoprecipitation and by confocal
microscopy (Lerner-Marmarosh et al., 2007). Enhancement of
PKCζ activity in the cell was observed if hBVR was over-expressed;
conversely, ablation of hBVR from cells with siRNA significantly
inhibited the activation of PKCζ in response to TNF-α. A scram-
bled version of the siRNA was ineffective in inhibiting PKCζ. The
inhibition of the TNF-α response by siRNA was as effective as that
seen by introducing a competitive inhibitor peptide containing the
PKCζ pseudosubstrate sequence. The data indicated dependence
of PKCζ activation, and hence downstream signaling events, on
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hBVR. It is probable that binding of hBVR to PKCζ either initiates
a conformational change to activate the protein, or binds to and
preferentially stabilizes the active PKCζ conformation.

Protein kinase C-δ
Protein kinase C-δ is a member of the novel class of PKCs and, as
with the other PKCs described above, is both activated by the pres-
ence of hBVR in kinase reactions and utilizes hBVR as a substrate
(Gibbs et al., 2012). PKCδ was not a substrate for hBVR kinase
activity, however, as enhanced PKC activity was observed with
kinase-inactive hBVR mutant. A constitutively active mutant of
PKCδ, lacking part of the pseudosubstrate sequence (Zhao et al.,
1998) was also activated by hBVR (Lerner-Marmarosh et al., in
preparation). The increased activity of PKCδ is dependent on
formation of a complex with hBVR, and as described above for
the other PKCs, a complex that included both hBVR and PKCδ

could be immunoprecipitated from extracts of IGF-1-treated cells
(Gibbs et al., 2012). More direct evidence for association of the
proteins was provided by an in vivo assay, using FRET-FLIM and
IGF-1-treated cells. To examine whether BVR–PKCδ interaction
extended to other stimuli that activate hBVR and PKCδ, cells
were instead treated with PMA. Cells transfected with PKCδ alone
showed a fluorescence lifetime of 2.65 ± 0.09 ns (Figures 3A,B).
However, when the cells are co-transfected with pDsRed2-hBVR,
the PKCδ fluorescence lifetime was reduced to 2.31 ± 0.13 ns; the
diminished lifetime is indicative of close juxtaposition of the hBVR
and PKCδ proteins in the FRET detection system. In PMA-treated
cells, the fluorescence lifetime is 2.39 ± 0.15 ns, again indicating
association of the proteins in the cell. Based on these observations,
it is likely that the binding between hBVR and the PKC triggers a
conformational change in the latter that facilitates its activation.

ROLE OF hBVR IN ACTIVATION OF ERK1/2 BY MEK1/2 AND
PKCδ

The ERK proteins are of fundamental importance in the regu-
lation of cell proliferation and differentiation, and of the stress
responses (Jackson and Foster, 2004; Boutros et al., 2008; Kim and
Choi, 2010). ERK1/2 is known to activate some 50 transcription
factors, including Elk and NF-κB (Ranganathan et al., 2006; Yazi-
cioglu et al., 2007). hBVR was shown to be both an activator of
extracellular receptor kinase 1/2 (ERK1/2) kinase activity, and a
substrate for the kinase in vitro (Lerner-Marmarosh et al., 2008);
this activation did not require hBVR kinase activity, as the kinase-
inactive Val11–14, Gly17 mutant was able to activate ERK1/2. In cells
stimulated with IGF-1, the ERK proteins associate with hBVR in
co-immunoprecipitation experiments. A central role for hBVR in
ERK-mediated signal transduction was proposed based on hBVR
serving as a scaffold in the formation of a series of complexes
that included ERK proteins. These included a complex containing
the MAPK kinase MEK1/2 (Lerner-Marmarosh et al., 2008), the
upstream activator of ERK1/2. Association of hBVR and ERK1/2
enabled translocation of ERK1/2 into and out of the nucleus, a
function dependent on the hBVR NLS and NES motifs. Mutation
of the NLS resulted in reduced transport of ERK2 into the nucleus,
whereas expression of the NES mutant in cells resulted in signifi-
cant nuclear accumulation of ERK2. Whereas the Gab1 protein is
a known carrier for import to the nucleus of ERK1/2, it does not

FIGURE 3 | FRET detection of association of BVR and PKCδ in living

cells. (A) FRET-FLIM images. Representative fluorescence intensity and
FLIM images of HeLa cells transfected with EGFP-PKCδ,
EGFP-PKCδ + DsRed2-hBVR and EGFP-PKCδ + DsRed2-hBVR treated with
PMA. The scale bar ranges from 1 to 4 ns. Frequency-domain FLIM
(Schlachter et al., 2009) experiments were performed using a Zeiss Axiovert
200M inverted wide-field microscope and a Lambert Instruments
Fluorescence lifetime Attachment (LIFA; Lambert Instruments, Roden, The
Netherlands). FLIM images were taken in the presence or absence of
100 nM PMA added before image collection. Fluorescence lifetimes were
calculated from several regions and included data from multiple cells. (B)

Fluorescence lifetime data are represented as histograms for each of
EGFP-PKCδ (©), EGFP-PKCδ + DsRed2-hBVR (•) and
EGFP-PKCδ + DsRed2-hBVR + PMA (�) transfected cells. Curves represent
FLIM data recorded from ∼25 cells per condition; frequency of events is
shown in arbitrary units (a.u.). Errors reported are one-half of the
distribution width.
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function to export the kinase (Osawa et al., 2004). On the other
hand, hBVR functions as a bidirectional carrier protein for translo-
cation of ERK1/2 into and out of the nucleus and, to date, it is the
only protein known to fulfill this latter function. In the nucleus,
hBVR brings ERK1/2 into proximity with the transcription factor
Elk, enabling phosphorylation and activation of Elk. Ablation of
hBVR with siRNA resulted in significantly reduced induction of
ERK1/2 activation in response to IGF-1 treatment, and an atten-
uated response of Elk-dependent gene expression in response to
IGF-1. The sites in hBVR required to form the complexes with
ERK1/2 were determined by expressing mutant hBVR proteins
in cells. Mutations in the 162FGFPAF sequence, that resembles the
high affinity C-Box binding motif found in ERK1/2 associated pro-
teins (Jacobs et al., 1999) and in the low affinity 275KKRILHCLGL
D-Box-like sequence (Minden and Karin, 1997) prevented forma-
tion of the complex, and attenuated ERK activation and signaling
in response to IGF-1.

Protein kinase C-δ is known to function in the ERK1/2 sig-
naling pathway (Gorelik et al., 2007), and is believed to directly
activate the ERK proteins. Examination of immunoprecipitates
obtained from cells over-expressing both hBVR and PKCδ and
stimulated with either IGF-1 or PMA revealed the presence of co-
immunoprecipitated ERK2 (Gibbs et al., 2012). Formation of the
ternary complex was required for downstream nuclear signaling
mediated by ERK2. The activation of PKCδ by BVR in the absence
of its kinase activity suggests that BVR may act as a scaffold to sta-
bilize the active conformation of the PKC, while at the same time
bringing the kinase into close association with its substrate. Site-
directed mutagenesis implicated the hBVR C- and D-Boxes in the
formation of the ternary complex. The C-Box was found to be crit-
ical for hBVR/ERK2 association, and the D-Box for hBVR/PKCδ

interaction. These findings underscore the critical scaffolding
function of hBVR as does the observation that siRNA-mediated
reduction of hBVR protein in the cell resulted in a severe attenua-
tion of PKCδ- and ERK2-dependent signaling, as determined from
activation of Elk-dependent transcription. The siRNA-mediated
inhibition was rescued by introduction of a plasmid to express
hBVR into siRNA-treated cells. NF-κB is also activated in response
to ERK2 (Ranganathan et al., 2006; Yazicioglu et al., 2007), and a
transcription factor for expression of the HO-1 and iNOS genes. As
with Elk, activation of the transcription factor, and expression of a
downstream iNOS target, was shown to be blocked by siRNA treat-
ment to ablate any of hBVR, PKCδ, ERK1/2, or MEK1/2. Restora-
tion of protein expression by transfection with expression plas-
mids restored downstream NF-κB-dependent gene expression.

As described above, hBVR binds to ERK1/2 and to its upstream
activating kinases MEK1/2 (Lerner-Marmarosh et al., 2008) and
PKCδ (Gibbs et al., 2012). It was thought to be unlikely that
two entirely distinct complexes, containing hBVR ERK2 and an
upstream kinase would be formed in response to the same extracel-
lular stimulus with IGF-1. Examination of the complex obtained
by immunoprecipitation with anti-PKCδ antibodies revealed the
presence of MEK1, in addition to the expected hBVR and ERK2
(Gibbs et al., 2012), suggesting the assembly of an elaborate, hBVR-
anchored signal transduction complex. Because this function of
hBVR is independent of its kinase activity, the role of hBVR in
the complex is clearly that of a scaffold or bridge, and formation

of the complex results in activation of both PKCδ and of ERK.
Because unrestrained activation of the signaling complex is likely
to be detrimental to the cell, it is noteworthy that the protein
phosphatase, PP2A, that targets PKCδ (Srivastava et al., 2002),
was also detected in the complex. This implies that the com-
plex carries within it a means of self-regulation. PKCδ activity
is commonly considered in the context of oxidant-dependent,
mitochondrial-linked apoptosis (Buder-Hoffmann et al., 2009).
Additionally, however, the enzyme is associated with functions that
include cell cycle progression and proliferation, differentiation and
tumorigenesis (Steinberg, 2008; Newton, 2010). Since hBVR has
been observed to provide cytoprotective functions during oxida-
tive stress (Miralem et al., 2005), it is possible that the association
of hBVR, PKCδ and ERK1/2 in a ternary complex may provide
a mechanism to protect the PKC from cleavage to its constitu-
tively active, pro-apoptotic form, thereby favoring those functions
involved in cell survival.

BVR AND BILIVERDIN-MEDIATED CYTOPROTECTION
Our studies with protein kinases had led to our proposing two
hypotheses. The first predicted that BVR would affect signaling
via Toll-like receptors (TLRs) and NF-κB (Maines, 2005), and this
would also involve the PKCs and MAPKs, including ERK. The
second prediction was that, by virtue of its interaction with the
insulin receptor (Lerner-Marmarosh et al., 2005) and role in acti-
vation of PKCβII (Maines et al., 2007), BVR would be an integral
component of the PI3K/Akt signaling pathway (Maines, 2007).

It has been reported that biliverdin is a protective agent in
preventing damage due to ischemia and reperfusion (I/R) in car-
diac and renal transplantation (Nakao et al., 2005). It has also
been reported that the cytoprotective effects of Heme Oxygenase-
1 (HO-1) in I/R injury, both in rat cardiomyoblasts (H9c2 cells)
and in the intact mouse heart are mediated by rat and mouse
BVR (rBVR, mBVR), respectively, and involve the PI3K/Akt sig-
naling pathway (Pachori et al., 2007). Specifically, activation of
PI3K and its downstream effector Akt, as measured by phosphory-
lation, was increased in the presence of elevated HO-1. Inhibition
of PI3K or knockdown of rBVR with siRNA attenuated the HO-1-
induced phosphorylation of Akt. As described above for the PKCs,
rBVR was found to co-immunoprecipitate with the phosphory-
lated p85 subunit of PI3K. In mouse macrophages, activation of
the PI3K/Akt pathway was shown to be initiated by conversion of
biliverdin to bilirubin by membrane-bound mBVR, which led to
tyrosine phosphorylation of the mBVR C-terminal region (Wegiel
et al., 2009), and allowed subsequent binding of mBVR to p85, acti-
vating PI3K and then Akt. The cytoprotective effect of biliverdin
was negated by siRNA-induced ablation of mBVR.

Biliverdin was also observed to enable tolerance of cardiac
allografts (Yamashita et al., 2004), by a means of inhibiting the
activation of the proinflammatory transcription factors, nuclear
factor of activated T cells (NFAT) and nuclear factor κB (NF-κB).
These transcription factors both function in production of inflam-
matory cytokines, and stimulation of T cell proliferation. We also
examined the role of biliverdin in modulating the activity of NF-κB
(Gibbs and Maines,2007),and observed an inhibition of transcrip-
tion factor activation in response to stimulation of the cells with
TNF-α. This inhibition could be overcome by over-expression of
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BVR, resulting in activation of NF-κB. Examination of NF-κB
binding to its target sequence in vitro indicated that biliverdin
was not an inhibitor of NF-κB binding to DNA, suggesting that
biliverdin functions by quenching an upstream signaling event
(Gibbs and Maines, 2007). Biliverdin was also effective in down-
regulating the activity of the human BVR promoter (Gibbs et al.,
2010).

Other studies have indicated that the endothelial nitric oxide
synthase (eNOS) was phosphorylated by the calcium/calmodulin-
dependent kinase in response to endotoxin, and that this was medi-
ated by biliverdin binding to mBVR. This results in S-nitrosylation
of mBVR, followed by its translocation to the nucleus and bind-
ing to AP-1 sites in the Toll-like receptor 4 (TLR4) promoter.
This binding down-regulated TLR4 expression and subsequent
resolution of the inflammatory response (Wegiel et al., 2011).
The in vivo protection against acute liver damage was found to
be dependent on the availability of NO. Moreover, macrophages
from eNOS knockout mice displayed neither nitrosylation of BVR
nor its translocation to the nucleus. Further, the expression of
TLR4 was not inhibited in these cells. Recent studies also have
revealed that biliverdin is a potent inhibitor of PKCδ in vitro. The
mechanism of inhibition is presently unclear, although it does not
appear to involve covalent modification of the protein (Lerner-
Marmarosh et al., in preparation). These observations revealed a
second mechanism by which BVR might activate PKCδ; in addi-
tion to the scaffolding function described above, BVR catalyzes the
metabolism of a potent kinase inhibitor.

FUNCTION OF BVR AND ITS PEPTIDES IN THE IMMUNE
SYSTEM
Goodpasture syndrome (GPS) is characterized by an autoimmune
attack against the C-terminal non-collagenous-1 (NC1) domain
of the α3 chain of the type IV collagen of basement membrane
[α3(IV)NC1; Goodpasture antigen, GPA], resulting in deposits
of autoantibodies along alveolar and glomerular basement mem-
branes, which leads to hemorrhage in the lungs and a rapidly pro-
gressive glomerulonephritis (Saus, 1998; Hudson et al., 2003). The
NC1 domain initiates the assembly of two individual triple helical
protomers into a quaternary structure known as the hexamer; cor-
rect folding of the protein in the hexamer conceals the epitope for
the autoantibody. The mechanism for its immunological expo-
sure remains unknown; however GPBP targets the α3(IV)NC1
domain and regulates basement membrane collagen organization
(Quinones et al., 1992; Raya et al., 1999; Granero et al., 2005;
Revert et al., 2007); GPBP phosphorylates GPA at its N-terminus
(Raya et al., 1999). Alterations in protein phosphorylation may
lead to the autoimmune response by adversely modifying protein
processing, resulting in epitope peptide presentation (Litersky and
Johnson, 1992; Brown et al., 1995).

The association of GPBP with hBVR suggested by the
yeast two-hybrid experiment was confirmed in the cell by co-
immunoprecipitation and GST pull-down experiments (Miralem
et al., 2010). hBVR down-regulated the TNF-α-stimulated kinase
activity of GPBP without decreasing the level of the protein. In the
same study, hBVR was found to stimulate GPBP gene expression
by TNF-α-activated NF-κB. Ablation of hBVR with siRNA pre-
vented GPBP gene expression, and led to a decrease in the cellular

level of GPBP mRNA. Using a series of constructs expressing
truncated forms of hBVR enabled the interacting domain to be
mapped to the C281X10CC motif in the hBVR C-terminal 24
residues (Figure 2). These findings suggest a role for hBVR in
auto-immunity, since hBVR may modulate the activity of a key
protein in presentation of an autoantigen.

REGULATION OF KINASE ACTIVITY BY hBVR-BASED
PEPTIDES
Several sequence motifs within hBVR (Figure 1) were identified as
possible protein–protein interaction sites: the cysteine-containing
275KKRILHC and 290KYCCSRK in the C-terminal α-helix, and
the two SH2-binding motifs (198YMKM and 228YLSF). As noted
above, 162FGFPAF closely resembles the core of the high affinity
C-Box for binding of ERK (Jacobs et al., 1999). The KKRILHC
sequence resembles the core of the D-Box (KKRILHCLGL), a
lower affinity binding site for MAPKs (Minden and Karin, 1997).
Three peptides were initially examined for their effect on hBVR
activity. The peptide KYCCSRK activated hBVR kinase activ-
ity, whereas KKRILHC and KRNRYLSF were both inhibitors
(Lerner-Marmarosh et al., 2007).

The same peptides were also found to modulate the activity
of PKCζ, with their effects on the PKC being similar to those
observed with hBVR activity (Lerner-Marmarosh et al., 2007) –
the BVR-activating peptide also activated PKCζ and allowed its
translocation to the plasma membrane in response to TNF-α.
Since the C-terminal lysine of the peptide was required for the
PKC activation, it was proposed that the peptide enhances presen-
tation of ATP to the kinase. The BVR inhibitor peptide KKRILHC
clearly inactivated PKC activity, and also prevented transport to
the membrane. The C-terminal cysteine residue of this peptide
was found to be essential for kinase inactivation, and it is therefore
possible that the peptide interacted with, and adversely affected
the function of, the atypical C1 domain of PKCζ. Such binding
might also be expected to inhibit the proposed hBVR association
with the C1 domain. KRNRYLSF did not affect kinase activity
of PKCζ in vitro, but did prevent translocation to the membrane
in the intact cell. It is probable that this peptide prevented for-
mation of the hBVR/PKCζ complex in response to TNF-α. Since
translocation to the membrane is an integral part of PKC activa-
tion (Steinberg, 2008; Newton, 2010), it is clear that in the cell this
peptide is also an inhibitor of the PKC.

The observation that, in response to IGF-1 or PMA, hBVR
forms an essential complex for activation of PKCδ and ERK, which
minimally includes PKCδ, MEK, and ERK1/2 (Lerner-Marmarosh
et al., 2008; Gibbs et al., 2012) gave further scope to the use of
BVR peptides as a means of disrupting intracellular signaling. As
noted, mutation of either the C- or D-Box sequences of hBVR
indicated that the interaction with ERK is dependent on the C-Box
sequence, whereas the D-Box is required for interaction with PKCδ

(Lerner-Marmarosh et al., 2008; Gibbs et al., 2012). Introduction
into cells of peptides that include the C-Box core (FGFPAFSG)
or the D-Box (KKRILHCLGLA) prevent complex formation in
response to treatment with IGF-1, and thus prevent activation of
ERK1/2 (Lerner-Marmarosh et al., 2008); The D-Box peptide is
also sufficient to prevent association between PKCδ and ERK2,
and blocks activation of PKCδ (Gibbs et al., 2012). Because the
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hBVR/PKCδ/ERK2 complex is critical for downstream signaling by
ERK2, the finding that treatment with peptides disrupts complex
formation in the cell and leads to inhibition of ERK-dependent
activation of Elk-mediated gene expression offers a novel approach
to regulation of ERK signaling.

Peptides were also examined for their ability to modu-
late hBVR-dependent down-regulation of GPBP. The peptide
KKRILHC, which inhibits hBVR and PKCζ activity, was found
to be as effective as the intact 296 residue hBVR protein in inhibit-
ing GPBP kinase activity in the cell. Two other peptides that were
examined, KYCCSRK and KRNRYLSF, both of which affect the
activities of hBVR and PKCζ, but showed no effect on GPBP. The
specificity of the KKRILHC in inhibiting GPBP suggests that it
might offer a new line of attack in prevention of auto-immunity.

CONCLUDING REMARKS
Altered activity of PKCδ has been implicated in a variety of
disorders, including breast and lung cancer (Clark et al., 2003;
McCracken et al., 2003), and in resistance to chemotherapeutic
drugs. PKCδ is upregulated by estrogen (Cutler et al., 1994), and
development of resistance to drugs such as tamoxifen that are used
in treatment of hormone-responsive breast tumors is directly reg-
ulated by PKCδ. Resistance is enhanced by over-expression of the
kinase (Nabha et al., 2005).

A major factor in the development of Parkinson’s disease is
PKCδ-mediated death of dopaminergic neurons (Anantharam
et al., 2002). In this context, it is noteworthy that an early event in
apoptosis is cleavage of PKCδ by caspase-3 that results in the sepa-
ration of the catalytic and regulatory domains (Emoto et al., 1995).
Nuclear transport of the constitutively active catalytic domain
accelerates apoptosis by inhibition of DNA repair functions and
phosphorylation of lamin-B, resulting in a loss of nuclear integrity
(Bharti et al., 1998; Cross et al., 2000; Yoshida et al., 2003). Con-
versely, PKCδ may be cytoprotective in retinopathy associated with
type-2 diabetes. On balance, it is apparent that PKCδ regulation is
critical to health, and that over- or under-expression is likely to be

detrimental. Restoration of normal levels of activity of this kinase
is, therefore, likely to be importance in controlling disease.

The finding that kinases upstream of ERK1/2 are dependent
on the hBVR scaffolding function defines hBVR as an essential
partner in ERK1/2 signaling. hBVR therefore regulates one of
the three major MAPK signal transduction pathways, a carefully
orchestrated series of events that initiates at the cell membrane
and ultimately results in gene activation. The significance of these
findings is underscored by the essential role of ERK and PKCδ in a
wide spectrum of cellular functions, including ERK1/2-dependent
regulation of transcription factors and proteins involved in the
cellular stress response. ERK kinases have major roles in regu-
lation of cell growth, differentiation and division; uncontrolled
ERK1/2 activation is a frequent event in cancer. Such dysregula-
tion is frequently a consequence of mutation of upstream kinases
and signaling molecules in the pathway. The search for inhibitors
of the ERK1/2 pathway is a major thrust of drug development
research (Chappell et al., 2011). Therefore, hBVR-based peptides
targeting the PKCδ/ERK and MEK/ERK pathways may well be
an effective approach for therapeutic intervention in drug resis-
tant cancers that are linked to dysregulated signaling pathways.
We envision that hBVR-based peptides that inhibit ERK1/2 acti-
vation, whether by disrupting the hBVR-scaffolded complexes,
or that inhibit upstream kinases, would be antiproliferative if
administered over the long term.

Examination of the role of hBVR in activation of kinases, such
as PKCs and MEK1/2, that function upstream of ERK1/2 has led
to development of hBVR-based peptides that have introduced a
new dimension to the regulation of ERK signaling. These peptides
hold the potential for development of novel therapeutic agents
to regulate the ERK signaling pathway, and hence in ameliorating
human disease.
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