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Excitatory GABA: how a correct observation may turn out
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The concept of the excitatory action of GABA during early development is based on data
obtained mainly in brain slice recordings. However, in vivo measurements as well as obser-
vations made in intact hippocampal preparations indicate that GABA is in fact inhibitory in
rodents at early neonatal stages. The apparent excitatory action of GABA seems to stem
from cellular injury due to the slicing procedure, which leads to accumulation of intracel-
lular Cl− in injured neurons. This procedural artifact was shown to be attenuated through
various manipulations such as addition of energy substrates more relevant to the in vivo
situation. These observations question the very concept of excitatory GABA in immature
neuronal networks.
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INTRODUCTION
Brain slices are widely used to investigate basic processes of brain
function. Although being a reduced preparation (i.e., there is
no blood flow, oxygen levels are non-physiological, most in vivo
metabolites are not present in the artificial cerebrospinal fluid),
brain slices provide easier access to cellular phenomena than in vivo
models. Many results obtained in vitro (and reproduced by dif-
ferent laboratories) have been verified in vivo, giving ground to
the general thought that in vitro results can be generalized to the
intact organism. However, although adequate in many cases, this
approach may lead to misinterpretation in many others. The con-
cept of the excitatory action of GABA at early postnatal stages of
development provides a particular example of correct observations
performed in vitro which may not apply to the in vivo situation.

THE CONCEPT OF EXCITATORY GABA IN THE IMMATURE
BRAIN
GABA, the main inhibitory neurotransmitter in vertebrates, acti-
vates GABAA receptors (GABAAR) resulting in opening of anion-
selective channels and transmembrane fluxes of chloride (Cl) and
bicarbonate. Normally, the direction of Cl current determines
the hyperpolarizing or depolarizing effect of GABAAR activation
on the membrane. If the reversal potential for Cl (ECl) is above
(below) the resting membrane potential, Cl leaves (enters) the
cell. An outward (inward) flux of negative charges depolarizes
(hyperpolarizes) the membrane.

It is important to clarify here the difference between depolar-
izing and excitatory actions of GABA since there is a widespread
misunderstanding of these notions. The concentration of intracel-
lular Cl− measured in different cell types varies from 3 to 60 mM
and in mammalian neurons in vitro it is generally low (<10 mM,
see Khirug et al., 2008; Bregestovski et al., 2009). As a result, the
reversal potential of GABAergic currents, EGABA, is close to the

resting membrane potential and activation of GABAAR causes
hyperpolarization or weak depolarization. Meanwhile, GABAAR
channel opening decreases the input membrane resistance induc-
ing “shunting inhibition” (see Andersen et al., 1980; Staley and
Mody, 1992; Tang et al., 2011; Wright et al., 2011) that lowers the
neuron’s firing probability. Therefore,a weakly depolarizing GABA
may exert an inhibitory effect. In contrast, the “excitatory” GABA
action means that GABAAR activation induces a depolarization
large enough to generate action potentials.

The inhibitory/hyperpolarizing effects of GABA have been
extensively verified in juvenile and adult animals in vivo. At earlier
stages of development, the picture appears to be different. In vitro
experiments have shown an excitatory action of GABA at early
stages of development in kittens (Schwartzkroin and Altschuler,
1977), rabbits (Mueller et al., 1983), and rats (Dunwiddie, 1981;
Harris and Teyler, 1983; Mueller et al., 1984; Ben-Ari et al., 1989)
in a large number of subsequent studies (for review, Ben-Ari et al.,
2007). Experiments performed in rodent brain slices indicated
that the switch from the excitatory to inhibitory action of GABA
takes place during the second postnatal week (P12–P13; Ben-Ari
et al., 2007). The mechanism of this switch was explained as the
increased age-dependent expression of KCC2 chloride exporter
which takes over the leading role in Cl homeostasis from NKCC1
chloride importer (Blaesse et al., 2009). A hypothesis on the leading
role of excitatory GABA in development was proposed by Ben-Ari
and co-authors who claimed it as a universal rule: “In all develop-
ing animal species and brain structures investigated, neurons have a
higher intracellular chloride concentration at an early stage leading
to an efflux of chloride and excitatory actions of GABA in immature
neurons” (Ben-Ari et al., 2007). These in vitro findings obtained
in brain slices or cell cultures were frequently taken for granted.
However, several lines of evidence challenge the extrapolation of
these conclusions to the intact brain.
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GABA IS NOT EXCITATORY IN THE INTACT BRAIN
First, the early study performed in vivo, using intracellular record-
ings of hippocampal neurons in young kittens, suggested that
inhibition is a predominant form of synaptic activity at early post-
natal ages (Purpura et al., 1968). However, a high concentration
of KCl was used in the pipette solution, which can alter ionic
homeostasis.

Second, in vivo recordings using GABAAR antagonists contra-
dict the in vitro observations. A study based on the analysis of
more than 200 rat pups at the age of P3–P5 demonstrated that the
injection of bicuculline triggered seizures in these pups (Baram
and Snead, 1990). Another in vivo study reported that cerebel-
lar Purkinje cells inhibit each other as early as at P5 and that
bicuculline abolishes their interaction and increases their spon-
taneous firing activity (Bernard and Axelrad, 1993). Also, several
more recent in vivo studies using specific agonists or antagonists
of GABAARs clearly demonstrated the inhibitory action of GABA
during the first postnatal week (Minlebaev et al., 2006, 2011; Isaev
et al., 2007). For instance, Minlebaev et al. (2006) wrote that
in P3–P5 rats: “Blockade of GABAA receptors by gabazine signifi-
cantly increased spontaneous cortical activity by almost doubling the

occurrence of spontaneous spindle-bursts. . .” However, these results
were not mentioned in the subsequent review by the same main
authors (Ben-Ari et al., 2007), who instead claimed that GABA
“. . .excites immature neurons and generates primitive oscillations.”
It is difficult to state that GABA exerts an excitatory action when
GABAAR blockade leads to an increased activity in vivo.

Third, observations on the “intact hippocampus” preparation
(in toto) where cellular integrity and connectivity are maintained,
also suggest the inhibitory action of GABA. Using recordings
from the CA1 area in isolated hippocampus, Wong et al. (2005)
showed that synaptically released GABA causes inhibition. More-
over, in contrast to observations made in brain slices (Figure 1A;
Ben-Ari et al., 1989), application of bicuculline resulted in epilep-
tiform discharges (Figure 1C; Wong et al., 2005). Interestingly,
similar effects were observed by Ben-Ari’s group in the very
first study on the intact immature hippocampus (Figure 1B;
Khalilov et al., 1997), but they were not discussed in their later
publications. Recent experiments using the same preparation
from P5–P7 mice confirmed these observations (Dzhala et al.,
2010, 2012). Isoguvacine, a selective agonist of GABAARs, tran-
siently reduced spontaneous neuronal activity. Thus, the net effect

FIGURE 1 | (A–C) GABA is depolarizing in the slice preparation and
hyperpolarizing in the intact hippocampus. (A) Microelectrode recording
from hippocampal neuron in a brain slice from a 4-day-old rat
(KCl-containing electrode). Note that bicuculline, a GABAA receptor
antagonist, caused membrane hyperpolarization and inhibition of
spontaneous synaptic activity (from Ben-Ari et al., 1989). (B) Whole-cell
voltage-clamp recording with a pipette containing a K -gluconate based
solution [(Cl) in the pipette was 4.2 mM] from a neuron in the intact rat
hippocampus. Note that bicuculline evokes epileptiform discharges (from
Khalilov et al., 1997). (C) GABAergic activities observed from isolated intact
neonatal (P3) mouse hippocampus as seen by extracellular recordings

from the CA3 area. Top: baseline field potentials. Note the absence of
electrical activity. Bottom: note the presence of spontaneous activity and
epileptiform discharges in the presence of bicuculline (blue line). To
achieve better oxygenation of the preparation, a dual-side perfusion
chamber and a fluid rate of 15 ml/min were used (from Wong et al., 2005).
(D) Lactate without glucose maintains and even augments synaptic
function. Top: local field potentials (LFPs) in response to stimulation trains
when ACSF contains 10 mM glucose (red) or 10 mM lactate (blue). Bottom:
examples of single LFPs at expanded time scale. Note that in the
presence of lactate as the sole energy substrate, LFPs are even better
maintained than under glucose-only conditions (from Ivanov et al., 2011).
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of GABAAR activation in the intact hippocampal network is
inhibitory.

Together, these results strongly suggest that GABA is inhibitory
in the immature intact brain. On the other hand, the excitatory
action of GABA has been observed in a number of studies on brain
slices (Ben-Ari et al., 2007). What mechanisms may underlie this
apparent discrepancy?

BRAIN SLICES ARE SEVERELY DAMAGED BRAIN TISSUE
Using brain slices implies that brain tissue will be cut, i.e., that
cell processes (dendrites, axons etc.) will be severed, generating
a model of traumatic brain injury. According to early histologi-
cal observation in slices, there is a 50- to 100-μm deep zone of
severely disrupted tissue (Garthewaite et al., 1979; Bak et al., 1980;
Frotscher et al., 1981). As a consequence of mechanical injury,
microglial cells in slices are rapidly activated and become highly
mobile (Petersen and Dailey, 2004). This may trigger a cascade
of detrimental processes due to the release of a number of neu-
rotoxic substances including cytokines, chemokines, nitric oxide,
and superoxide free radicals that generate reactive oxygen species
and reactive nitrogen species (Loan and Byrnes, 2010).

While in more recent studies microtomes/vibratomes are used
for slices preparation, still the regions close to the surface (30–
80 μm deep) contain a large amount of damaged cells (Dzhala
et al., 2012). Since most electrophysiological and imaging stud-
ies of cell body layers (like hippocampal pyramidal cells) are
performed in this region, the results may be biased by the inclu-
sion of these injured cells, thus reflecting pathological rather than
physiological processes. Indeed, slicing through brain tissue invari-
ably leads to pathological reorganizations (Hoffman et al., 1994;
McKinney et al., 1997).

DAMAGED NEURONS ACCUMULATE Cl
As mentioned above, the net action of GABAAR activation depends
upon ECl. Hence, the depolarizing action of GABA in slices may
result from intracellular Cl accumulation in traumatized neurons
located close to the surface. Indeed, after neuronal trauma, GABA,
both synaptically released and exogenously applied, induced depo-
larization of neurons, and increased intracellular Ca2+ (van den
Pol et al., 1996). Using gramicidin perforated-patch recordings,
Nabekura et al. (2002), demonstrated that EGABA was more depo-
larized in axotomized than in intact neurons of the vagus dorsal
motor nucleus. The authors concluded that: “axotomy led to . . .

elevation of intracellular Cl, and an excitatory response to GABA. A
switch of GABA action from inhibitory to excitatory might be a mech-
anism contributing to excitotoxicity in injured neurons” (Nabekura
et al., 2002). Direct non-invasive measurements of intracellular Cl
concentration in Clomeleon-expressing mice (Dzhala et al., 2010,
2012) clearly demonstrated that axotomized and dendrotomized
cells proximal to the slice surface have a much higher intracellu-
lar Cl concentration than in deeper situated and less injured cells
(Figure 2A). In contrast, Cl levels were much lower in the intact
hippocampus preparation (Figure 2A), in which a direct activation
of GABAAR decreased neuronal firing – an observation consistent
with an inhibitory/shunting action of GABA (Dzhala et al., 2012).

Finally, it is important to note that the intracellular Cl con-
centration may be cell type-dependent (Rohrbough and Spitzer,

1996; Sauer et al., 2012) and location-dependent in a given cell
(Duebel et al., 2006). An uneven distribution of Cl ions has
been described in hippocampal neurons using electrophysiolog-
ical recordings (Szabadics et al., 2006; Khirug et al., 2008) and
non-invasive monitoring of intracellular Cl (Waseem et al., 2010).
Future studies on GABA action in the immature brain should take
these factors into account.

Thus, the slicing procedure is clearly associated with dam-
aged cells, which accumulate chloride. Slice quality critically
depends upon the slicing procedure and equipment. Recent
studies described conditions for better preparation (with micro-
tomes/vibratomes) and preservation of acute slice preparations
(Schurr et al., 1989; Hájos and Mody, 2009; Hájos et al., 2009;
Maier et al., 2009; Ivanov and Zilberter, 2011). Still, even state-
of-the-art procedures do not prevent damage inherent to slicing.
For instance, using a vibratome, Taylor et al. (1999) wrote: “Light
microscopy of slices fixed immediately after Vibroslice preparation
indicated significant swelling of pyramidal neurons, i.e., cell bodies,
mitochondria, dendrites, and nuclei were enlarged and hydropic.”
While experimentators try to achieve recovery as much as possible
after slicing (Taylor et al., 1999; Bischofberger et al., 2006), even
after 1.5 h incubation in artificial cerebrospinal fluid (ACSF; typi-
cal experimental procedure for recovery of slice integrity) neurons
and glial cells are still functionally and energetically defective. This
point is supported by the observations of Dzhala et al. (2012) who
demonstrated Cl accumulation in slice surface-proximal neurons
(Figures 2A,B).

TRAUMATIC TISSUE NEEDS MORE ENERGY
Abnormalities induced by tissue trauma in brain slices are exac-
erbated by several additional factors. The lack of blood flow in
slices dramatically changes the way energy substrates and oxy-
gen are delivered to cells. Energy substrates and O2 are instead
supplied exogenously by artificial extracellular solution (ACSF),
which must diffuse passively from the surface. In the intact brain,
blood vessels, astrocytes, and neurons form a complex system sup-
porting and adjusting brain metabolism (Pellerin, 2010; Turner
and Adamson, 2011; Zilberter and Bregestovski, 2012) while in
brain slices metabolism depends entirely on the experimental
conditions. Although experimentalists are trying to create con-
ditions maximally close to the in vivo environment, they are
obviously far from ideal. Support normally provided by blood
is not entirely compensated by perfusion of ACSF. Glucose-based
composition of ACSF was empirically adjusted more than 60 years
ago for relatively long-lasting preservation of neuronal func-
tion in brain slices and is, obviously, not physiological (Hájos
and Mody, 2009; Zilberter et al., 2010). Slices exposed to ACSF
exhibit severe abnormalities in energy metabolism. For instance,
the rate of glycolysis is reduced by more than 50% in brain
slices (Rolleston and Newsholme, 1967; Benjamin and Verjee,
1980) as compared to the in vivo estimates (Ghajar et al., 1982).
In addition, the total adenine nucleotide pool is decreased by
30–50% in slices as compared to that observed in vivo (Whit-
tingham et al., 1984) and this effect become less important with
increasing of slice thickness (Zur Nedden et al., 2011). Remark-
ably, the slicing procedure causes a decrease to about 50% of the
total content of ATP, creatine, and adenylate, as well as a strong

www.frontiersin.org April 2012 | Volume 3 | Article 65 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Bregestovski and Bernard Brain slices and intracellular chloride

FIGURE 2 | Intracellular Cl concentration and electrical activity strongly

depend on the experimental model and conditions. (A) The mean
intracellular Cl concentration in neurons at different depth from the surface in
the intact hippocampi (�) and acute hippocampal slice preparations (©) at
P5–P7. Note the highly elevated Cl concentrations in neurons from the surface
layers in the slice preparation (Modified from Dzhala et al., 2012). (B) The
effects of slicing conditions on intracellular Cl concentration. Mean Cli as a
function of depth in the hippocampal slices prepared from P5–P7 mice in
control ACSF and in a high sucrose solution (Modified from Dzhala et al.,
2012). (C–E) Genesis of network events and amplitude of local field potentials

strongly depend upon the flow rate of ACSF. (C) Spontaneous network
activity recorded at a low flow rate of 1.9 ml/min (left), and a high flow rate of
5.2 ml/min (right). Note sharp wave–ripple activity only at a high flow rate.
Juvenile (P14–P20) transverse hippocampal 400–450 μm thick slices from
Wistar rats were used here (from Hájos et al., 2009). (D) Examples of local
field potentials measured in the same slice and electrode positions at
different flow rates. Note the remarkable increase in amplitude when the flow
rate is increased. (E) Summary of the dependence of local field potential
(LFP) amplitudes on the oxygen levels and perfusion rates. Slices 400 μm
thick from P4–P7 Swiss mice (from Ivanov et al., 2011).

change in intracellular pH from about 6.6–7.2 (Whittingham et al.,
1984). Such a deficit in the cell energy supply may directly affect
GABAergic action.

To test this hypothesis, Zilberter and collaborators analyzed
whether improving energy supply to neurons with glucose oxida-
tive energy substrates (OES) can modulate the response to GABA.
In neocortical and hippocampal slices from neonatal (P3–P8) rats
and mice, supplementing ACSF with β-hydroxybutyrate, lactate, or

pyruvate significantly hyperpolarized EGABA, switching the GABA
action from excitatory to inhibitory (Holmgren et al., 2010).
Moreover, OES inhibited giant depolarizing potentials (GDPs;
Holmgren et al., 2010; Mukhtarov et al., 2011), a spontaneous
network activity pattern characteristic for neonatal hippocam-
pal slices (Ben-Ari et al., 2007). The beneficial effect of OES on
energy metabolism status in neurons was confirmed by direct
simultaneous measurements of oxygen consumption and NADH
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fluorescence during neuronal activity (Ivanov and Zilberter, 2011;
Ivanov et al., 2011). For instance, in the presence of glucose, lactate
was effectively utilized as an energy substrate (Ivanov et al., 2011),
causing an augmentation of oxidative metabolism (Figure 1D).
Moreover, in the absence of glucose, lactate was fully capable of
maintaining synaptic function (Schurr et al., 1988; Ivanov et al.,
2011). These observations demonstrate that neuronal function can
definitely be improved in both neonatal (Ivanov et al., 2011) and
adult (Ivanov and Zilberter, 2011) slices by supplementing glucose
with OES. Glucose alone, even at strongly hyperglycemic con-
centrations as in standard ACSF (10 versus 1–2 mM in the brain
extracellular fluid (Abi-Saab et al., 2002; Zilberter et al., 2010)
cannot fully cover energy demands during neuronal activation.

These studies have ignited a controversy (Kirmse et al.,
2010; Ruusuvuori et al., 2010; Tyzio et al., 2011). However,
although Tyzio and co-authors failed to reproduce the effects
of b-hydroxybutyrate on EGABA, they did reproduce the EGABA-
hyperpolarizing effect of 5 mM pyruvate. Kirmse et al. (2010) did
not find any effect of β-hydroxybutyrate or pyruvate on GABA-
induced Ca2+ fluorescent transients; but measurements for con-
trol and BHB-treated cells were performed on different slices with
a slow ACSF perfusion rate leading to improper oxygenation (see
Ivanov et al., 2011; Ivanov and Zilberter, 2011). Ruusuvuori et
al. observed the inhibitory effect of lactate on GDP generation
but suggested that this effect is induced by intracellular acidifi-
cation. Indeed, OES caused pHi changes of less than −0.05 pH
units (Ivanov et al., 2011; Mukhtarov et al., 2011). However, the
0.25–0.35 reduction in pHi obtained by substituting bicarbonate-
containing solution with HEPES-based HCO3-free solution did
not eliminate GDPs (Mukhtarov et al., 2011). Therefore, a signifi-
cant contribution of pHi to the effects of OES on GDPs is unlikely
(Ivanov et al., 2011; Mukhtarov et al., 2011). Certainly, the contro-
versy needs to be resolved by independent groups. But the results
clearly demonstrate that metabolic processes are central to the
reorganization of cell function after making brains slices.

Altogether, these observations demonstrate that the slicing pro-
cedure injures cells and disrupts brain metabolism, leading to
intracellular Cl accumulation in neurons and rendering GABA
strongly depolarizing or even excitatory as has been reported
during the first postnatal week in rodents.

This, however, does not rule out the possibility that GABA
may be depolarizing, in particular at very early stages of devel-
opment. For example, treatment of mice with bumetanide during
the period of embryonic cortical developmental results in dis-
ruption of excitatory synapse formation (Wang and Kriegstein,
2011). As bumetanide antagonizes the Na+–K+–2Cl− cotrans-
porter (NKCC1), which accumulates intracellular Cl, these obser-
vations suggest that Cl in embryonic neurons is elevated and plays
an important signaling role in developmental processes.

GABA AND EARLY NETWORK ACTIVITIES
Oscillations/correlated neuronal discharges are a hallmark of net-
work activity at any stage of development (Buzsáki, 1986, 2002;
Spitzer, 1994; Chrobak and Buzsáki, 1998; Leinekugel et al., 2002;
Khazipov et al., 2004; Adelsberger et al., 2005; Sipilä et al., 2006).
At early stages of development, this synchronized activity may
be important for brain maturation, regulating multiple processes

including neuronal migration (Komuro and Rakic, 1998) and
directing neuronal differentiation (Gu and Spitzer, 1997; Spitzer
et al., 2000), dendritic growth and patterning (Katz and Shatz,
1996; Wong and Ghosh, 2002), activation of transmitter recep-
tors (Liao et al., 2001), and the pattern of specific connections
(Penn et al., 1998). The most prominent synchronized activity,
early network oscillations (ENOs) associated with changes in neu-
ronal intracellular Ca2+ concentration, were observed in small
groups of neurons and in large populations in vitro (Garaschuk
et al., 1998, 2000; Corlew et al., 2004) and in vivo (Adelsberger
et al., 2005). Spindle-bursts were described in the neonatal rat
neocortex in vivo (Khazipov et al., 2004). Thus, waves of sponta-
neous electrical activity propagating across many regions of the
brain are a hallmark of developing networks, and actively con-
tribute to cortical development and plasticity (Katz and Shatz,
1996; Mizuno et al., 2007). Distinct mechanisms underlie gener-
ation of synchronized events, including synaptic interaction, gap
junction communication, the presence of pacemaker-like neurons
as well as activation of metabotropic glutamate and ACh receptors
(Kandler and Katz, 1998; Flint et al., 1999; Blankenship and Feller,
2010).

However, the reports that GABA is depolarizing/excitatory in
slices from the immature brain led to a very popular theory, which
inspired many researches in the neurodevelopment field and pro-
vided a conceptual framework to explain early network activities
recorded in vivo. Excitatory GABA (i.e., its ability to drive the
membrane potential to firing threshold) would be essential for
developing networks. In vitro experiments revealed the occur-
rence of spontaneous network events involving large populations
of neurons. This phenomenon was first described by Harris and
Teyler (1983) who called it “spontaneous unison firing.” It was
also observed by Mueller et al. (1984), who wrote: “Immature neu-
rons often demonstrated spontaneous depolarizations of up to 30 mV
amplitude and 30 to 60 sec duration.” Several years later, Ben-Ari
et al. (1989) also described this phenomenon in immature brain
slices, which they named GDPs. GDPs were infrequent or absent
after P12. It was proposed that depolarizing GABA plays a key
role in the generation of GDPs and that this spontaneous activ-
ity results from the synergistic excitatory activities mediated by
GABAA and glutamate N -methyl-d-aspartate (NMDA) receptors
(Ben-Ari et al., 1997). Since GDPs were not observed after post-
natal days 10–11, at the time close to the “excitation/inhibition
switch,” it was postulated that GDPs represent a primitive activ-
ity pattern of the developing brain and that it is “largely based on
excitatory GABA” (Ben-Ari et al., 2007).

These observations led to the broadly accepted idea that the
excitatory action of GABA underlies neuronal maturation of
immature neuronal networks. According to this concept, the ele-
vated Cl concentration and, consequently, the excitatory action of
GABA, represent necessary steps in the development of the ner-
vous system. This viewpoint is epitomized in the recent review of
van Welie et al. (2011), who wrote: “Depolarizing GABA is required
for normal brain development, as it contributes to the morpholog-
ical maturation of neurons (Cancedda et al., 2007) and neuronal
circuits (Ben-Ari, 2001; Akerman and Cline, 2006). Depolarizing
GABA can drive juvenile neurons to fire action potentials (Ben-Ari,
2002) and conversely, neuronal activity can regulate EGABA, by either
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specific patterns of synaptic activation (Woodin et al., 2003; Balena
and Woodin, 2008), or alterations in postsynaptic activity levels via
changes in intracellular Ca2+ (Fiumelli et al., 2005).”

This statement relies on the axiom that the nature of GDPs
observed in brain slices correlates with network activities recorded
in vivo in developing networks. While the general patterns of
this activity may be similar in vitro and in vivo, the underlying
mechanisms may be different. The presence and character of oscil-
latory activity in brain slices highly depend upon energy support,
oxygenation, and perfusion rate (Hájos and Mody, 2009; Hájos
et al., 2009; Holmgren et al., 2010; Mukhtarov et al., 2011). For
instance, sharp wave (SPW) oscillations are a hallmark of hip-
pocampal activity in developing and adult hippocampus in vivo
(Leinekugel et al., 2002). SPWs are usually not observed or very
infrequent in slices when using slow perfusion rates of ACSF
(1.6–2.4 ml/min; Hájos et al., 2009; Maier et al., 2009). How-
ever, SPWs appear (or become more frequent) at high speed
of perfusion (Figure 2C), suggesting that a proper delivery of
oxygen to the whole slice is critical for the genesis of SPWs
in vitro (Hájos et al., 2009). The importance of oxygen delivery
at elevated flow rates was further demonstrated by Ivanov et al.
(2011). A decrease from 15 to 3.25 ml/min in the perfusion rate
resulted in strong decrease of oxygen and a two-fold reduction of
the local field potential amplitude in brain slices from P6 mice
(Figures 2D,E).

Particularly convincing arguments were obtained in a recent
study demonstrating that while GDPs can be recorded both in
slices and the intact hippocampus during the first postnatal week,
the mechanism of their genesis is different (Dzhala et al., 2012).
Isoguvacine application dramatically increased GDP frequency in
brain slices (in keeping with the excitatory action of GABA); whilst
in the intact hippocampus isoguvacine completely abolished GDPs
(in keeping with the inhibitory action of GABA).

Since the slicing procedure also lesions superficial neurons that
leads to Cl accumulation in mature networks (Dzhala et al., 2012),
one would expect GDPs to occur in adult slices. However, the

study by Dzhala et al. (2012) shows that, whilst superficial neu-
rons remain connected to the network in immature slices, they are
functionally disconnected in mature slices. Hence, superficial cells
with high internal Cl do not contribute much to network activity
in mature slice.

Together, these observations strongly suggest that ENOs do
not rely upon excitatory GABA. Hence, the mechanistic insights
regarding GDP genesis/propagation/function gained from slice
studies should be re-evaluated. As underlined in the recent review:
“Usage of brain slice preparations has significantly contributed to
a deeper understanding of neuronal functions at the cellular and
network level in the recent decades. However, given factors such as
absence of blood circulation, longer diffusion distances, steep inter-
stitial pO2 gradients, and composition of the recording solution have
to be kept in mind when interpreting data from slice preparations”
(Kann, 2011).

RESUME
Remaining uncertainties notwithstanding, studies utilizing the
intact hippocampus preparation with more functional neurons,
glial cells, and network activity, as well as the few available in vivo
studies, suggest that GABA plays an inhibitory role in the immature
brain (at least during the first postnatal week in rodents). Perhaps,
the most important take-home message is that our understanding
of brain function is based on experimental methods and measure-
ments that inevitably distort/perturb the system. The observations
are correct, but their interpretation may not be. The concept of
excitatory GABA and its alleged role for neuronal network matu-
ration provides a perfect example of how cautious we should be
when interpreting experimental results.
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