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Cigarette smoking is an addictive behavior, and is the primary cause of cardiovascular
and pulmonary disease, and cancer (among other diseases). Cigarette smoke contains
thousands of components that may affect caloric intake and energy expenditure, although
nicotine is the major addictive substance present, and has the best described actions. Nico-
tine exposure from cigarette smoke can change brain feeding regulation to reduce appetite
via both energy homeostatic and reward mechanisms, causing a negative energy state
which is characterized by reduced energy intake and increased energy expenditure that
are linked to low body weight. These findings have led to the public perception that smok-
ing is associated with weight loss. However, its effects at reducing abdominal fat mass (a
predisposing factor for glucose intolerance and insulin resistance) are marginal, and its pro-
motion of lean body mass loss in animal studies suggests a limited potential for treatment
in obesity. Smoking during pregnancy puts pressure on the mother’s metabolic system
and is a significant contributor to adverse pregnancy outcomes. Smoking is a predictor of
future risk for respiratory dysfunction, social behavioral problems, cardiovascular disease,
obesity, and type-2 diabetes. Catch-up growth is normally observed in children exposed
to intrauterine smoke, which has been linked to subsequent childhood obesity. Nicotine
can have a profound impact on the developing fetal brain, via its ability to rapidly and fully
pass the placenta. In animal studies this has been linked with abnormal hypothalamic gene
expression of appetite regulators such as downregulation of NPY and POMC in the arcuate
nucleus of the hypothalamus. Maternal smoking or nicotine replacement leads to unhealthy
eating habits (such as junk food addiction) and other behavioral disorders in the offspring.
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INTRODUCTION
Cigarette smoking is the leading preventable cause of death and
disability from respiratory disease. Smoking causes addiction and
is negatively correlated with body weight and caloric intake; an
effect which appears to be nicotine-mediated (Hajek et al., 1988).
It is this action of nicotine on energy homeostasis that is attracting
attention as a potential weight loss treatment during the current
global obesity pandemic. However, the fat loss associated with
nicotine has not been confirmed in human subjects under well-
controlled experimental conditions. This review will decipher the
neurophysiological mechanisms that underlie the regulation of
cigarette smoking/nicotine on energy homeostasis based on both
animal and human studies. The impact of maternal smoking
on fetal energy homeostatic regulation will also been discussed,
as there is a relatively high rate of smoking during pregnancy.
Finally, whether or not nicotine is a good candidate as a weight
loss treatment will be discussed.

CIGARETTE SMOKING AND WEIGHT CONTROL
Cigarette smoking is an addictive behavior with the conse-
quences being the leading preventable cause of death and disability

worldwide. It is a primary cause of cancer and cardiovascular
and pulmonary disease. There are >1 billion people who smoke
around the world (DeMarini, 2004), with ∼6 million deaths
each year being due to tobacco/cigarette smoking-related disease;
resulting in significant social and economic cost to Society (World
Health Organization, 2011). It has been estimated that in less than
40 years, deaths due to smoking-related illness will rise to ∼10
million per year (DeMarini, 2004; Hussein et al., 2007).

Smoking induces a negative energy state, characterized by
reduced energy intake and body weight, which has been well doc-
umented across species (Perkins, 1992; Strauss and Mir, 2001;
Bellinger et al., 2003; Fulkerson and French, 2003; Chen et al.,
2006, 2007, 2008). The lowered body weight has been shown to be
independent of diet type, with a similar proportion of weight loss
displayed in mice consuming a diet with either low or high-fat con-
centrations after 7 weeks of cigarette smoke exposure (Chen et al.,
2007). Unfortunately, these and similar observations have led to
the public perception that smoking is associated with weight loss,
and it is commonly used as a weight control strategy, especially
among the young, and females (Camp et al., 1993; Wiseman, 1998;
Fulkerson and French, 2003). Weight gain and increased craving
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for high caloric junk food on cessation of smoking without nico-
tine supplementation is one of the reasons given by people that
prevents them from ceasing smoking (Stamford et al., 1986; Grun-
berg et al., 1988; Filozof et al., 2004), and this is also supported by
the literature, with >75% of former smokers gaining weight after
cessation (Williamson et al., 1991; Leischow et al., 1992).

Cigarette smoke contains at least 6000 components that may
directly or indirectly affect caloric intake and energy expen-
diture. Nicotine, the major addictive substance within ciga-
rette smoke, is the best described for its suppressive effects on
body weight and appetite in both humans and animal models
(Wager-Srdar et al., 1984; Grunberg et al., 1986; Bellinger et al.,
2003). Furthermore, cigarette smoke stimulates the inflammatory
response associated with elevated circulating levels of inflam-
matory cytokines, such as tumor necrosis factor α and inter-
leukin 6, which are associated with the development of disease
states related to smoking (Fernandez-Real et al., 2003). These
cytokines have been shown to inhibit appetite and affect lipid
metabolism (Langhans and Hrupka, 1999; Jansson et al., 2003).
Overall, studies using cigarette smoke exposure have improved
insight into the effects of cigarette smoking-related anorexia and
weight loss.

An important question that arises from such studies is whether
lower caloric intake is the main contributor to the generally lower
body weight in smokers. This question can be answered by the use
of pair-fed animals, which receive the same amount of food as that
consumed by smoke-exposed litter-mates. According to the results
of such studies, the weight loss effects of cigarette smoke exposure
were not only due to the predicted reduction in energy intake,
but also to an enhanced capacity for energy expenditure (Chen
et al., 2006, 2008). Increased energy expenditure and thermogene-
sis can occur when the proton gradient of the inner mitochondrial
membrane dissipates; a state which occurs via the action of mito-
chondrial carrier proteins termed uncoupling proteins (UCPs;
Dalgaard and Pedersen, 2001). Uncoupling of the mitochondrial
proton gradient is thought to be important for the maintenance of
cellular respiration, activation of substrate oxidation, and preven-
tion of the generation of reactive oxygen species (Lee et al., 1999).
There are several homologs of UCPs including UCP1, which, when
active in brown fat is responsible for non-shivering thermogene-
sis in newborn humans, in cold acclimatization, and hibernating
mammals (Cannon and Nedergaard, 2004). In contrast, UCP3
is implicated in the regulation of shivering and other forms of
thermogenesis,mitochondrial fatty acid transport,and basal meta-
bolic rate (Samec et al., 1998; Argyropoulos and Harper, 2002;
Schrauwen and Hesselink, 2003). Fasting or chronic food restric-
tion normally results in the downregulation of UCP1 expression
in brown fat (Champigny and Ricquier, 1990) while nicotine
induces UCP1 mRNA expression, which likely leads to enhanced
energy expenditure (Yoshida et al., 1999; Arai et al., 2001). In
mice directly exposed to cigarette smoke, both UCP1 and three
mRNA expression was increased compared with pair-fed animals
(Chen et al., 2006, 2008), suggesting that increased energy expendi-
ture occurred despite their reduced energy intake. This theory has
also been supported by data from humans, where energy expen-
diture was increased by nicotine administration (Perkins et al.,
1989).

CIGARETTE SMOKING AND ADIPOSITY
Although smokers are generally thought to weigh less than non-
smokers, smoking is actually a predisposing factor for abdominal
obesity, glucose intolerance, and insulin resistance (Canoy et al.,
2005; Chen et al., 2007), which is a situation not well recognized
by the general public. In a rodent model, we have shown that
the reduction in fat mass after cigarette smoke exposure occurred
only if the mice consumed a low-fat balanced diet. In addition, this
weight loss was accompanied by lean body mass wasting, including
that associated with some major organs such as liver, kidney, and
skeletal muscle (Chen et al., 2005, 2006, 2008). Cigarette smoke
exposure failed to cause fat loss when the mice consumed a high-
fat cafeteria style diet consisting of foods such as fried potatoes,
cakes, and sweet biscuits; whereas lean body mass loss became the
prominent cause of weight loss in these mice (Chen et al., 2007).
We speculate that this observation was due to a change of food
preference induced by cigarette smoke exposure or, perhaps that
the nature of the high-fat diet to induce over accumulation of
fat mass, even with restricted caloric intake. In both human and
animal studies, food high in refined sugar and fat is more pre-
ferred when they are exposed to cigarette smoke (Marangon et al.,
1998; Chen et al., 2007). Consuming such food can increase fat
mass, blood lipid levels, and glucose intolerance even when the
total calorie intake does not exceed the daily requirement (Shiraev
et al., 2009). In contrast, when smoke-exposed mice consume a
high-fat diet, they consume twice the energy of the recommended
daily requirement (Chen et al., 2007). Thus, we can speculate that
adiposity induced by consumption of a high-fat diet, together with
the loss of lean body mass found exclusively after cigarette smoke
exposure may increase the risk of metabolic disorders.

In fact, both active and passive smoking contribute to glucose
intolerance and insulin resistance, leading to type-2 diabetes; and
smoking cessation has been demonstrated to improve insulin sen-
sitivity (Facchini et al., 1992; Eliasson et al., 1997). It has been
suggested that insulin resistance among smokers may be due to
the direct impact of nicotine, carbon monoxide, or other agents
in the tobacco smoke (Facchini et al., 1992). Nicotine infusion
stimulates lipolysis to increase triglyceride levels in both human
and animal studies (Sztalryd et al., 1996; Andersson and Arner,
2001), while hyperlipidemia is strongly associated with the onset of
insulin resistance (Stannard and Johnson, 2004). Anorexia devel-
oped in long-term smokers also contributes to muscle wasting,
especially in those with chronic obstructive pulmonary disease
(Morrison et al., 1988; Jagoe and Engelen, 2003). Skeletal muscle
is one of the major sites for insulin-dependent glucose deposition
when blood glucose rises. Thus, in smokers, the reduction in mus-
cle mass can directly impair systemic glucose uptake, contributing
to postprandial hyperglycemia, and an elevated risk of develop-
ing type-2 diabetes. Vascular changes associated with prolonged
smoking may also lead to reduced blood flow to skeletal muscle and
decreased insulin-mediated glucose uptake (Facchini et al., 1992).

NEUROLOGICAL MECHANISMS UNDERLYING SUPPRESSED
APPETITE
CLASSICAL FEEDING REGULATORS
The reduction in energy intake associated with smoking shows a
relationship to the effects of several brain appetite regulators, and
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indeed, nicotinic receptors have been demonstrated in the appetite
regulating area of the hypothalamus (Jo et al., 2002). The most
widely studied appetite regulator is neuropeptide Y (NPY), a 36
amino acid peptide. NPY is a member of the pancreatic polypep-
tide family, and is abundant throughout the central nervous system
and the periphery (Tatemoto et al., 1982; Allen et al., 1983). NPY
is a powerful neurochemical stimulator of feeding in many species
(Vettor et al., 1994; Raposinho et al., 2001), with its levels reflecting
the nutritional status of the body, and contributing to the long-
term regulation of energy homeostasis. Administration of NPY
into different brain regions, including the hypothalamus, frontal
cortex, hindbrain, and hippocampus, induces hyperphagia (even
in a satiated state), decreased sympathetic activity and thermoge-
nesis, increased fat deposition, and promotion of weight gain and
obesity (Clark et al., 1984; Billington et al., 1991; Egawa et al., 1991;
Raposinho et al., 2001).

In studies of a mouse model of cigarette smoke exposure, the
hypothalamic NPY concentration was significantly suppressed by
smoke exposure, compared with food restriction (pair-feeding;
Chen et al., 2006, 2008). This effect appears to be predominately
nicotine-mediated, as a similar suppression of NPY has been
observed in nicotine-treated animals (Jo et al., 2002). Physiolog-
ically, the decreased hypothalamic NPY levels can upregulate the
expression of orexigenic NPY receptors. However, the hypothala-
mic density of the NPY Y1 receptor is reduced by chronic nicotine
treatment (Kane et al., 2001). Thus, it is possible that a volun-
tary reduction in energy intake in smokers can be attributed to
suppressed NPY signaling in both the presynaptic production of
the peptide and at the postsynaptic receptor level. This inhibitory
effect of nicotine on appetite may be an important clue for ther-
apy development for the treatment of obesity. This is of significant
relevance, as clinical trials targeting NPY pathways have failed in
obese patients due to redundancy in the mechanisms regulating
energy homeostasis.

Neuropeptide Y is not the only neuropeptide in the cen-
tral nerve system that can regulate appetite and energy balance.
Agouti-related protein (AgRP) is another potent orexigenic mol-
ecule, which co-localizes with NPY in hypothalamic neurons
(Hahn et al., 1998). In addition, there are also melanocortins,
including adrenocorticotropin and melanocyte-stimulating hor-
mones (MSH), which are peptide cleavage products of proop-
iomelanocortin (POMC) and exert their effects by binding to
the melanocortin receptors (MCRs). The melanocortin system
is thought to be one of the most important pathways involved
in food intake and energy regulation, with mutations contribut-
ing to ∼4% of genetic obesity in humans (Horvath et al.,
2004). Neurons expressing orexigenic NPY and AgRP cooper-
ate with neurons expressing anorexigenic POMC and cocaine-
amphetamine-regulated transcript (CART). In the diet-induced
obese mouse, when hypothalamic NPY mRNA expression was
reduced, AgRP and POMC mRNA were also downregulated (Lin
et al., 2000; Wang et al., 2002). This suggests that the anorex-
igenic neurons containing POMC respond synchronously with
orexigenic neurons to maintain the balance between orexigenic
and anorexigenic neuropeptides. However, in nicotine-treated
mice, the hypothalamic level of CART and POMC derived α-
MSH has been shown to be increased (Marty et al., 1985;

Kramer et al., 2007), in the face of suppression of NPY and
AgRP levels (Chen et al., 2006; Martínez de Morentin et al.,
2012). In addition, it has been shown that nicotine withdrawal
is linked to increased hypothalamic NPY and AgRP, although
with reduced UCP3 expression (Fornari et al., 2006) resulting
in an increased drive to eat, and reduced capacity for energy
expenditure.

PSYCHOLOGICAL REGULATORS
Feeding is not only controlled by homeostatic mechanisms, which
theoretically would allow an individual to maintain an ideal body
weight in the long term. Feeding is also controlled by brain reward
systems and psychological states, which reinforce the motives for
excessive eating without homeostatic value (Saper et al., 2002);
namely, those independent of energy expenditure. The consump-
tion of highly palatable foods is now considered to be an addictive
behavior (Heilig et al., 1989). In this respect, food and nicotine
addiction may share the same central pathways. Addictive eating
behavior has been suggested to be predominantly controlled by
the interactions between the classical “feeding center” in the lateral
hypothalamus and the nucleus accumbens within the mesolimbic
system, and coordination between the neurotransmitters, such as
dopamine, serotonin, and the opioid system (Saper et al., 2002).
Nicotine administration releases dopamine in many brain regions
involved in reward, such as the mesolimbic area, the corpus stria-
tum, the frontal cortex, and ventral tegmental area in the brain
stem (Gilbert et al., 1989; Benowitz, 2010). Increased brain release
of serotonin and endogenous opioid peptides, as well as the upreg-
ulation of opioid receptors, have also been reported in various
animals models following nicotine administration (Marty et al.,
1985; Martínez de Morentin et al., 2012). Eating, especially binge
eating, is considered to be a physiological reaction to counteract
stress in some individuals (Polivy et al., 1994). Nicotine has been
shown to reduce anxiety in a dose-dependent manner (Gilbert
et al., 1989; Pomerleau and Pomerleau, 2007), which may also
overpower the desire to eat, in addition to its suppressive abil-
ity of central orexigenic pathways. Nicotine withdrawal can cause
anxiety and stress (Picciotto et al., 2002), and both can serve as
powerful incentives for former smokers to either overeat or smoke
again.

Tolerance due to chronic nicotine use may potentially affect
its activation of the brain reward pathway. To date, only the
impact of nicotine tolerance on brain dopamine release is well
studied, which is also site dependent (Damsma et al., 1989; Izen-
wasser and Cox, 1992). Nicotine tolerance is only seen in subjec-
tive mood effects, such as dizziness and confusion as reviewed
by Perkins (2002). However, this tolerance may still lead to
an increased demand for nicotine if it is used as an appetite
suppressant.

SMOKING DURING PREGNANCY AND THE IMPACT ON
OFFSPRING
Smoking during pregnancy puts physiological pressure on the
mother’s metabolic system and is a significant contributor to
adverse pregnancy outcomes, including miscarriage, low birth
weight, preterm birth, and perinatal death (Ng et al., 2006; Nielsen
et al., 2006; Raatikainen et al., 2007). Moreover, it significantly

www.frontiersin.org July 2012 | Volume 3 | Article 147 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Chen et al. Smoking and energy homeostasis

interrupts fetal development and predicts the future risks for
respiratory dysfunction, social behavioral problems, cardiovascu-
lar disease, obesity, and type-2 diabetes (Whincup et al., 1989;
Orlebeke et al., 1999; Stocks and Dezateux, 2003; Burke et al.,
2004; Al Mamun et al., 2006; Bruin et al., 2008b). Despite
the disadvantages of maternal smoking, reports still show that
∼25–29% pregnant women smoke during pregnancy (Contal
et al., 2005). Some of these processes along with the underly-
ing neurophysiological changes are shown diagrammatically in
Figure 1.

EFFECTS ON BODY WEIGHT AND EATING BEHAVIOR IN OFFSPRING
In Western countries, it is maternal smoking during pregnancy
rather than poverty that is the major cause of low birth weight
(Power and Jefferis, 2002). Even maternal obesity cannot coun-
teract the infant growth retardation due to smoking during preg-
nancy (Haworth et al., 1980). Studies in humans and other pri-
mates suggest that lower birth weight associated with maternal
smoking is mainly nicotine-mediated (Haworth et al., 1980; Grove
et al., 2001; Collet and Beillard, 2005). However, brain weight does
not appear to be affected by intrauterine nicotine exposure (Grove
et al., 2001); an observation that may be due to the redistribution
of nutrients to preserve brain growth, at the cost of the develop-
ment of other organs such as the liver and pancreas (Ernst et al.,
2001).

Catch-up growth is normally observed in children exposed
to intrauterine maternal smoking, and there is evidence linking
maternal smoking and childhood obesity in offspring, especially

FIGURE 1 | Neurophysiological mechanism of how maternal smoking
programs metabolic disorders in offspring.

those from the mothers who smoke during early pregnancy (Power
and Jefferis, 2002; Al Mamun et al., 2006). It has been reported
that children of mothers who smoked during pregnancy started
to display an increased risk of being overweight at 5 years of
age (Wideroe et al., 2003). Adolescents who are the offspring
of mothers who smoked had an increased risk of being among
the highest percentile for body mass index (Power and Jefferis,
2002; Al Mamun et al., 2006). Interestingly, smoking cessation
after the first trimester does not appear to reduce this risk to the
offspring (Toschke et al., 2003), suggesting that the first 3 months
of pregnancy are critical for long-term impacts on the wellbe-
ing of the offspring. However, children from former smoking
mothers did not show increased risk of obesity (Oken et al.,
2005).

Smoking mothers tend to have a shorter breastfeeding period,
which deprives the offspring of the protection provided by breast
milk against future eating disorders (Gilchrist et al., 2004; Mayer-
Davis et al., 2006). On this basis, it can be suggested that the rapid
weight gain during the early postnatal period may be due to the
effect of nicotine withdrawal, in a similar manner to the increased
craving for food and subsequent weight gain seen in smokers after
smoking cessation (Lerman et al., 2004). Furthermore, as children
also tend to copy the eating habits of their parents, this will be
detrimental in the children of smokers, as smokers are more likely
to choose foods low in fiber, vitamins and minerals, and high in
monounsaturated fatty acids, starch, as well as sugar-sweetened
soft drinks (Crawley and While, 1996; Rogers et al., 2003). Indeed,
the children of smokers are more likely to be exposed to passive
smoking, with ongoing detrimental effects of the chemicals in the
cigarette smoke.

EFFECTS ON BRAIN ENERGY HOMEOSTATIC REGULATORS
Nicotine can have a profound impact on the developing fetal brain,
via its ability to rapidly and fully pass across the placenta, with fetal
concentrations ∼115% of maternal levels (Walker et al., 1999).
When the fetus leaves the womb, the supply of nicotine is removed,
and the impact of nicotine withdrawal can be observed in these
newborns, as they show increased signs of stress and dysregulation
of the hypothalamic-pituitary-adrenal axis (Huizink and Mulder,
2006). Studies in humans, other primates, and mice have observed
some neuronal abnormalities relevant to feeding regulation that
result from maternal smoking or exposure to nicotine (Mantzoros
et al., 1997; Grove et al., 2001; Bruin et al., 2008a). However, the
impact of maternal smoking during gestation on brain energy
homeostatic pathways in the offspring requires further study.

Maternal smoking is clearly linked to abnormal hypothala-
mic gene expression of appetite regulators, with NPY and POMC
gene expression in the arcuate nucleus of the hypothalamus being
significantly downregulated in the newborn primate following
intrauterine nicotine exposure (Grove et al., 2001); a state that may
reflect an under-developed brain. This state is similar to observa-
tions in adult animals with nicotine or cigarette smoke exposure,
as clarified above. Indeed, it can be suggested that without the
continuing inhibition of nicotine, NPY, and POMC gene expres-
sion can rebound to that equal to an early postnatal age, leading
to hyperphagia and future obesity. As yet there is no direct data
to date to support this hypothesis. However, studies of mouse
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models have examined the adult offspring from mothers exposed
to cigarette smoke and/or those consuming a high-fat diet during
the pregnancy (Chen et al., 2011). Surprisingly, despite increased
adiposity in offspring from smoke-exposed mothers, their daily
caloric intake was actually lower than the offspring from con-
trol mothers, regardless of postnatal diet type. Although the levels
of POMC were not different between groups, NPY gene expres-
sion was only suppressed by maternal consumption of a high-fat
diet, and not intrauterine smoke exposure per se. However, NPY
Y1 receptor gene expression was significantly downregulated by
both maternal smoke exposure and a high-fat diet, with this being
reflected by reduced food intake in those offspring (Chen et al.,
2011). In addition, other components of cigarette smoke, such as
carbon monoxide and ingredients in tobacco tar, can also directly
affect the fetal brain, and thereby contribute to the above changes
in the fetal brain (Ernst et al., 2001). It can be suggested that at
adulthood, the changes in brain appetite regulators may be an
adaptation to increased adiposity, rather than a prolonged impact
of intrauterine smoke exposure.

Another important appetite regulator is the adipocyte-derived
hormone leptin, which is critical for the development of neurons
and neural projections between hypothalamic nuclei involved in
appetite control in early life (Bouret et al., 2004). In mice, a lack of
leptin during the early postnatal period results in sparse neuronal
projections in the hypothalamus, and later in life, an obese phe-
notype (Zhang et al., 1994; Chua et al., 1996; Bouret et al., 2004).
Leptin supplementation during this early postnatal period can
partially restore the reduced hypothalamic neural projections in
the leptin-deficient ob/ob mouse, and partially reverse the hyper-
phagic phenotype (Bouret et al., 2004). In humans, cord blood
leptin concentrations in both full-term and preterm newborns
from smoking mothers are reported to be significantly decreased
compared to those from non-smoking mothers (Mantzoros et al.,
1997). It has been suggested that smoking might increase the pro-
duction of catecholamines in the infants leading to lipolysis and fat
loss, which can be associated with decreased leptin levels (Mant-
zoros et al., 1997; Ozkan et al., 2005), as circulating leptin levels
are in relative proportion to fat mass. In a similar manner, in

primates serum leptin levels are reduced by ∼50% in newborns
from nicotine-treated mothers compared with those from control
mothers (Grove et al., 2001). One hypothesis that may account
for this observation is that reduced leptin in newborns from
smoking mothers may interrupt the development of the neurons
controlling energy homeostasis, contributing to unhealthy eating
behavior at adulthood. As with smokers, it may be that the reward
pathways override the energy homeostatic control in such off-
spring, resulting in a preference for junk foods. Studies of offspring
from nicotine-treated animals show that dopamine receptor bind-
ing affinity is increased, despite reduced receptor density; while
brain serotonin turnover was reduced, whilst its transporter was
increased in such offspring (Fung and Lau, 1989; Muneoka et al.,
1997, 2001). In the original studies of this topic, this finding was
used to explain the abnormal social behavioral problems, such as
attention deficit hyperactivity disorder or addiction, as found in
offspring with intrauterine nicotine exposure. However, changes
in the reward pathway may also underlie the unhealthy eating
behavior.

CONCLUSION
Nicotine can change brain feeding regulation to reduce appetite
via both energy homeostatic and reward mechanisms. In ani-
mal models, the effects of cigarette smoke exposure on energy
homeostasis are clearly both time and dose dependent. As such,
the higher the dose, the greater the reduction in caloric intake and
body weight. However, the marginal effect of nicotine at reduc-
ing abdominal fat in high-fat diet fed animals may shed light
on its potential application in the treatment of obesity. Mater-
nal smoking or nicotine replacement can clearly lead to unhealthy
eating habits (such as junk food addiction) and other behavioral
disorders in the offspring. Thus, smoking cessation without nico-
tine replacement during pregnancy is recommended. Although the
direct use of nicotine for fat loss in the obese is not plausible, the
appetite suppressive and energy expenditure promoting effects of
nicotine may still be useful. The development of nicotine analogs
should be encouraged which avoid addiction, but retain the fat
burning-obesity reduction effect.
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